organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzyl­piperazin-1-ium chloride chloro­form solvate

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, RO-400028, Cluj Napoca, Romania, and bInstitut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334 Bremen, Germany
*Correspondence e-mail: richy@chem.ubbcluj.ro

(Received 10 July 2008; accepted 18 July 2008; online 23 July 2008)

The ions of the title chloro­form-solvated salt, C11H17N2+·Cl·CHCl3, are linked by a strong N—H⋯Cl hydrogen bond; the solvent mol­ecule also inter­acts with the chloride ion through a C—H⋯Cl hydrogen bond. Additionally, neighboring cations form weak hydrogen bonds to the anion, resulting in a supra­molecular ribbon that runs along the a axis.

Related literature

For related literature, see Albinati et al. (1980[Albinati, A., Meille, S. V., Cariati, F., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1980). Inorg. Chim. Acta, 38, 221-226.]); Antolini et al. (1981[Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Marcotrigiano, G. & Porzio, W. (1981). J. Chem. Soc. Dalton Trans. pp. 1753-1759.], 1982[Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M. & Marcotrigiano, G. (1982). Inorg. Chim. Acta, 58, 193-200.]); Osa et al. (2002[Osa, Y., Sato, Y., Hatano, A. & Takayanagi, T. (2002). Anal. Sci. 18, 1069-1070.]); Tanaka et al. (2005[Tanaka, R., Haramura, M., Tanaka, A. & Hirayama, N. (2005). X-ray Struct. Anal. Online, 21, x3-x4.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17N2+·Cl·CHCl3

  • Mr = 332.08

  • Triclinic, [P \overline 1]

  • a = 5.6053 (4) Å

  • b = 9.4889 (9) Å

  • c = 15.303 (2) Å

  • α = 100.980 (8)°

  • β = 90.957 (7)°

  • γ = 93.219 (7)°

  • V = 797.51 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 173 (2) K

  • 0.40 × 0.32 × 0.30 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 4013 measured reflections

  • 2967 independent reflections

  • 2811 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 197 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.07

  • 2967 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯Cl1 0.85 (2) 2.30 (2) 3.140 (2) 169 (2)
C12—H12⋯Cl1 0.89 (3) 2.60 (3) 3.401 (2) 151 (2)
N2—H2N⋯Cl1i 0.88 (2) 2.26 (2) 3.096 (2) 159 (2)
C10—H10A⋯Cl1ii 0.97 2.74 3.684 (2) 165
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Derivatives of piperazine are useful compounds because of their biological activity (Osa et al., 2002). Trimetazidine is a clinically antianginal agent (Tanaka et al., 2005). A compound of the type (NBzpipzH2)2CuCl6 (NBzpipzH2 = N-benzylpiperazinium dication) was reported (Antolini et al., 1982) and the preparation of mercury(III) compounds (NbzpipzH)Hg2X5 (NbzpipzH = N-benzylpiperazinium monocation; X = Cl, Br) is known (Albinati, et al., 1980, Antolini et al., 1981).

The title compound (Fig.1) is formed by C11H17N2+ cation and Cl- anion connected through a strong N—H···Cl- hydrogen bond [H1N···Cl1 = 2.30 (2) Å, N2—H1N···Cl1 = 169 (2)°] and crystallizes with a CHCl3 molecule bonded to the Cl- through a hydrogen bond [H12···Cl1 = 2.60 (3) Å, C12—H12···Cl1 = 151 (2)°]. Intermolecular hydrogen bonds link the Cl- anion to two aditional cations (Table 1) resulting in a double chain-like supramolecular arrangement along the a axis. In crystal there are no interactions between the chains (Fig.2).

Related literature top

For related literature, see Albinati et al. (1980); Antolini et al. (1981, 1982); Osa et al. (2002); Tanaka et al. (2005).

Experimental top

The compound was obtained as a by-product of the reaction between [2-{HN(CH2CH2)2NCH2}C6H4]Li and BiCl3. Crystals were grown by slow difusion from chloroform / n-hexane (1:5).

1H NMR (CDCl3, 200 MHz, 291 K): δ 2.74 (4H, m, N—CH2—CH2—N), 3.20 (4H, m, N—CH2—CH2—N), 3.55 (2H, s, C6H5—CH2—N), 7.29 (5H, m, C6H5), 8.90 (2H, s, br, NH2). 13C NMR (CDCl3, 50 MHz, 291 K): δ 43.59 (s, N—CH2—CH2—N), 49.47 (s, N—CH2—CH2—N), 62.39 (s, C6H5—CH2—N), 127.53 (s, C-p), 128.45 (s, C-m), 128.95 (s, C-o), 136.89 (s, C-i).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso= 1.2Ueq (C) for aryl H and Uiso= 1.5Ueq (C) for the rest. The hydrogen H1N, H2N and H12 atoms bonded to N2 and C12, respectively, were found in a difference map and refined with a restrained N—H distance of 0.85 (2) and 0.88 (2) Å, and C—H distance of 0.89 (3) Å, respectively.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. : View of the title compound showing the atom-numbering (50% probability thermal ellipsoids).
[Figure 2] Fig. 2. : Crystal packing of the title compound showing the supramolecular arrays (hydrogen bonds as dashes lines).
4-Benzylpiperazin-1-ium chloride chloroform solvate top
Crystal data top
C11H17N2+·Cl·CHCl3Z = 2
Mr = 332.08F(000) = 344
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6053 (4) ÅCell parameters from 44 reflections
b = 9.4889 (9) Åθ = 8.5–25.1°
c = 15.303 (2) ŵ = 0.73 mm1
α = 100.980 (8)°T = 173 K
β = 90.957 (7)°Block, colorless
γ = 93.219 (7)°0.40 × 0.32 × 0.30 mm
V = 797.51 (15) Å3
Data collection top
Siemens P4
diffractometer
Rint = 0.015
Radiation source: sealed tubeθmax = 25.5°, θmin = 2.7°
Graphite monochromatorh = 62
2θ–/ω scansk = 1111
4013 measured reflectionsl = 1818
2967 independent reflections3 standard reflections every 197 reflections
2811 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.5046P]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.56 e Å3
2 restraintsΔρmin = 0.72 e Å3
Crystal data top
C11H17N2+·Cl·CHCl3γ = 93.219 (7)°
Mr = 332.08V = 797.51 (15) Å3
Triclinic, P1Z = 2
a = 5.6053 (4) ÅMo Kα radiation
b = 9.4889 (9) ŵ = 0.73 mm1
c = 15.303 (2) ÅT = 173 K
α = 100.980 (8)°0.40 × 0.32 × 0.30 mm
β = 90.957 (7)°
Data collection top
Siemens P4
diffractometer
Rint = 0.015
4013 measured reflections3 standard reflections every 197 reflections
2967 independent reflections intensity decay: none
2811 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.56 e Å3
2967 reflectionsΔρmin = 0.72 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl41.23828 (12)0.13191 (10)0.29039 (5)0.0610 (2)
C120.9555 (4)0.1520 (2)0.24518 (15)0.0300 (5)
Cl10.70662 (8)0.21020 (5)0.44910 (3)0.02735 (17)
Cl20.94353 (13)0.32245 (6)0.21628 (5)0.0472 (2)
Cl30.87877 (13)0.01645 (7)0.15238 (4)0.0450 (2)
N10.3777 (3)0.37270 (18)0.71793 (11)0.0228 (4)
N20.2108 (3)0.25651 (19)0.53939 (12)0.0251 (4)
C20.6514 (4)0.2552 (3)0.89764 (16)0.0353 (5)
H20.78720.23080.86540.042*
C60.2964 (4)0.3838 (3)0.91871 (15)0.0324 (5)
H60.19240.44660.90100.039*
C110.3743 (4)0.2181 (2)0.68279 (14)0.0275 (4)
H11A0.34860.16590.73080.033*
H11B0.52740.19400.65720.033*
C10.5004 (4)0.3496 (2)0.87052 (13)0.0264 (4)
C80.4281 (4)0.4505 (2)0.64568 (14)0.0260 (4)
H8A0.58040.42420.62020.031*
H8B0.43860.55310.66900.031*
C90.2325 (4)0.4145 (2)0.57441 (14)0.0273 (4)
H9A0.08190.44600.59910.033*
H9B0.26890.46470.52620.033*
C50.2475 (4)0.3245 (3)0.99313 (16)0.0380 (5)
H50.11060.34771.02490.046*
C100.1780 (4)0.1739 (2)0.61243 (14)0.0280 (4)
H10A0.18080.07180.58840.034*
H10B0.02390.19170.63890.034*
C40.4008 (5)0.2314 (3)1.02029 (15)0.0389 (6)
H40.36810.19251.07050.047*
C70.5559 (4)0.4164 (2)0.79057 (14)0.0286 (5)
H7A0.56340.52030.80850.034*
H7B0.71170.38880.76910.034*
C30.6033 (5)0.1962 (3)0.97243 (17)0.0415 (6)
H30.70710.13320.99020.050*
H1N0.339 (4)0.232 (3)0.5127 (17)0.035 (7)*
H2N0.089 (4)0.235 (3)0.5012 (16)0.039 (7)*
H120.848 (5)0.145 (3)0.2865 (19)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0309 (4)0.0937 (6)0.0588 (5)0.0100 (3)0.0096 (3)0.0144 (4)
C120.0240 (10)0.0381 (12)0.0271 (10)0.0006 (9)0.0046 (9)0.0044 (9)
Cl10.0176 (3)0.0367 (3)0.0265 (3)0.0034 (2)0.00211 (19)0.0023 (2)
Cl20.0565 (4)0.0326 (3)0.0527 (4)0.0009 (3)0.0136 (3)0.0079 (3)
Cl30.0589 (4)0.0362 (3)0.0360 (3)0.0047 (3)0.0030 (3)0.0007 (2)
N10.0214 (8)0.0232 (8)0.0230 (8)0.0007 (6)0.0010 (7)0.0032 (6)
N20.0167 (8)0.0323 (9)0.0248 (9)0.0026 (7)0.0004 (7)0.0014 (7)
C20.0256 (11)0.0460 (13)0.0335 (12)0.0042 (9)0.0001 (9)0.0053 (10)
C60.0274 (11)0.0396 (12)0.0286 (11)0.0031 (9)0.0004 (9)0.0020 (9)
C110.0290 (11)0.0248 (10)0.0283 (10)0.0021 (8)0.0002 (8)0.0043 (8)
C10.0231 (10)0.0306 (10)0.0226 (10)0.0044 (8)0.0037 (8)0.0001 (8)
C80.0254 (10)0.0253 (10)0.0272 (10)0.0021 (8)0.0027 (8)0.0056 (8)
C90.0264 (10)0.0274 (10)0.0291 (10)0.0035 (8)0.0008 (8)0.0074 (8)
C50.0335 (12)0.0491 (14)0.0282 (11)0.0033 (10)0.0062 (9)0.0003 (10)
C100.0268 (10)0.0250 (10)0.0312 (11)0.0029 (8)0.0000 (8)0.0040 (8)
C40.0443 (14)0.0468 (13)0.0246 (10)0.0096 (11)0.0027 (10)0.0082 (10)
C70.0230 (10)0.0333 (11)0.0273 (10)0.0053 (8)0.0017 (8)0.0023 (9)
C30.0418 (14)0.0471 (14)0.0380 (13)0.0035 (11)0.0078 (11)0.0146 (11)
Geometric parameters (Å, º) top
Cl4—C121.753 (2)C11—H11A0.9700
C12—Cl31.755 (2)C11—H11B0.9700
C12—Cl21.761 (2)C1—C71.510 (3)
C12—H120.89 (3)C8—C91.511 (3)
N1—C111.462 (3)C8—H8A0.9700
N1—C81.464 (2)C8—H8B0.9700
N1—C71.465 (3)C9—H9A0.9700
N2—C91.490 (3)C9—H9B0.9700
N2—C101.491 (3)C5—C41.381 (4)
N2—H1N0.852 (17)C5—H50.9300
N2—H2N0.881 (17)C10—H10A0.9700
C2—C11.381 (3)C10—H10B0.9700
C2—C31.391 (3)C4—C31.383 (4)
C2—H20.9300C4—H40.9300
C6—C51.387 (3)C7—H7A0.9700
C6—C11.391 (3)C7—H7B0.9700
C6—H60.9300C3—H30.9300
C11—C101.511 (3)
Cl4—C12—Cl3111.93 (13)C9—C8—H8A109.6
Cl4—C12—Cl2110.52 (13)N1—C8—H8B109.6
Cl3—C12—Cl2110.17 (12)C9—C8—H8B109.6
Cl4—C12—H12108.1 (19)H8A—C8—H8B108.2
Cl3—C12—H12107.5 (19)N2—C9—C8110.19 (16)
Cl2—C12—H12108.5 (18)N2—C9—H9A109.6
C11—N1—C8109.08 (16)C8—C9—H9A109.6
C11—N1—C7111.36 (16)N2—C9—H9B109.6
C8—N1—C7110.31 (16)C8—C9—H9B109.6
C9—N2—C10111.57 (16)H9A—C9—H9B108.1
C9—N2—H1N108.5 (19)C4—C5—C6120.4 (2)
C10—N2—H1N108.6 (18)C4—C5—H5119.8
C9—N2—H2N109.8 (18)C6—C5—H5119.8
C10—N2—H2N109.3 (18)N2—C10—C11110.24 (17)
H1N—N2—H2N109 (3)N2—C10—H10A109.6
C1—C2—C3120.9 (2)C11—C10—H10A109.6
C1—C2—H2119.5N2—C10—H10B109.6
C3—C2—H2119.5C11—C10—H10B109.6
C5—C6—C1120.3 (2)H10A—C10—H10B108.1
C5—C6—H6119.8C5—C4—C3119.6 (2)
C1—C6—H6119.8C5—C4—H4120.2
N1—C11—C10110.42 (17)C3—C4—H4120.2
N1—C11—H11A109.6N1—C7—C1112.66 (17)
C10—C11—H11A109.6N1—C7—H7A109.1
N1—C11—H11B109.6C1—C7—H7A109.1
C10—C11—H11B109.6N1—C7—H7B109.1
H11A—C11—H11B108.1C1—C7—H7B109.1
C2—C1—C6118.9 (2)H7A—C7—H7B107.8
C2—C1—C7120.9 (2)C4—C3—C2119.8 (2)
C6—C1—C7120.3 (2)C4—C3—H3120.1
N1—C8—C9110.12 (16)C2—C3—H3120.1
N1—C8—H8A109.6
C8—N1—C11—C1061.9 (2)C1—C6—C5—C40.1 (4)
C7—N1—C11—C10176.10 (16)C9—N2—C10—C1153.5 (2)
C3—C2—C1—C60.8 (3)N1—C11—C10—N257.5 (2)
C3—C2—C1—C7178.5 (2)C6—C5—C4—C30.5 (4)
C5—C6—C1—C20.5 (3)C11—N1—C7—C163.9 (2)
C5—C6—C1—C7178.8 (2)C8—N1—C7—C1174.83 (17)
C11—N1—C8—C962.1 (2)C2—C1—C7—N1115.9 (2)
C7—N1—C8—C9175.25 (17)C6—C1—C7—N164.7 (3)
C10—N2—C9—C853.8 (2)C5—C4—C3—C20.2 (4)
N1—C8—C9—N258.0 (2)C1—C2—C3—C40.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···Cl10.85 (2)2.30 (2)3.140 (2)169 (2)
C12—H12···Cl10.89 (3)2.60 (3)3.401 (2)151 (2)
N2—H2N···Cl1i0.88 (2)2.26 (2)3.096 (2)159 (2)
C10—H10A···Cl1ii0.972.743.684 (2)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H17N2+·Cl·CHCl3
Mr332.08
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.6053 (4), 9.4889 (9), 15.303 (2)
α, β, γ (°)100.980 (8), 90.957 (7), 93.219 (7)
V3)797.51 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.40 × 0.32 × 0.30
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4013, 2967, 2811
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.07
No. of reflections2967
No. of parameters175
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.72

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···Cl10.85 (2)2.30 (2)3.140 (2)169 (2)
C12—H12···Cl10.89 (3)2.60 (3)3.401 (2)151 (2)
N2—H2N···Cl1i0.88 (2)2.26 (2)3.096 (2)159 (2)
C10—H10A···Cl1ii0.972.743.684 (2)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The financial support provided by the Ministry of Education and Research of Romania (Excellency Research Program, project CEx-05-D11-16/2005; grant No. CNCSIS TD-80/2007) is greatly appreciated.

References

First citationAlbinati, A., Meille, S. V., Cariati, F., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1980). Inorg. Chim. Acta, 38, 221–226.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntolini, L., Menabue, L., Pellacani, G. C., Saladini, M. & Marcotrigiano, G. (1982). Inorg. Chim. Acta, 58, 193–200.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Marcotrigiano, G. & Porzio, W. (1981). J. Chem. Soc. Dalton Trans. pp. 1753–1759.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationOsa, Y., Sato, Y., Hatano, A. & Takayanagi, T. (2002). Anal. Sci. 18, 1069–1070.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTanaka, R., Haramura, M., Tanaka, A. & Hirayama, N. (2005). X-ray Struct. Anal. Online, 21, x3–x4.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds