metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Carbonyl­chloridobis(ethyl­di­phenyl­phosphine-κP)rhodium(I)

aDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
*Correspondence e-mail: brj@chem.ubc.ca

(Received 21 November 2007; accepted 6 December 2007; online 12 December 2007)

The title compound, [RhCl(C14H15P)2(CO)], crystallizes with two almost identical mol­ecules in the asymmetric unit. The mol­ecules have the RhI atom in a square-planar geometry. The crystal structure involves intermolecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Beck et al. (1999[Beck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311-5317 and references therein.]); Higham et al. (2004[Higham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202-4208.]); Hoye et al. (1993[Hoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269-274.]); Lorenzini et al. (2007a[Lorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224-3226.],b[Lorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem. 46, 8998-9002.],c[Lorenzini, F., Patrick, B. O. & James, B. R. (2007c). Inorg. Chim. Acta. doi: 10.1016/j.ica.2007.10.044. In the press.]); O'Connor & Wilkinson (1969[O'Connor, C. & Wilkinson, G. (1969). Tetrahedron Lett. pp. 1375-1377.]); Vallarino (1957[Vallarino, L. (1957). J. Chem. Soc. pp. 2287-2292.]); Vaska & Di Luzio (1961[Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784-2785.], 1962[Vaska, L. & Di Luzio, J. W. (1962). J. Am. Chem. Soc. 84, 679-680.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C14H15P)2(CO)]

  • Mr = 594.83

  • Monoclinic, P 21

  • a = 9.8557 (14) Å

  • b = 16.385 (2) Å

  • c = 16.381 (2) Å

  • β = 90.216 (6)°

  • V = 2645.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 173.0 (1) K

  • 0.15 × 0.15 × 0.07 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.940

  • 41680 measured reflections

  • 12665 independent reflections

  • 8610 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.080

  • S = 0.98

  • 12665 reflections

  • 668 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6047 Friedel pairs

  • Flack parameter: 0.04 (4)

Table 1
Selected geometric parameters (Å, °)

C57—Rh1 1.803 (13)
Cl1—Rh1 2.386 (3)
C58—Rh2 1.770 (17)
Cl2—Rh2 2.409 (4)
P1—Rh1 2.3161 (11)
P2—Rh1 2.3207 (11)
P3—Rh2 2.3154 (11)
P4—Rh2 2.3132 (11)
C57—Rh1—P1 89.8 (4)
C57—Rh1—P2 89.8 (4)
P1—Rh1—P2 178.85 (7)
C57—Rh1—Cl1 178.9 (4)
P1—Rh1—Cl1 89.65 (9)
P2—Rh1—Cl1 90.70 (9)
C58—Rh2—P4 91.4 (5)
C58—Rh2—P3 89.2 (5)
P4—Rh2—P3 179.25 (7)
C58—Rh2—Cl2 177.0 (5)
P4—Rh2—Cl2 89.25 (12)
P3—Rh2—Cl2 90.22 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O2i 0.95 2.64 3.424 (18) 140
C48—H48⋯O1Bii 0.95 2.68 3.51 (3) 145
C4—H4⋯O1Biii 0.95 2.71 3.51 (3) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+2]; (iii) [-x+2, y-{\script{1\over 2}}, -z+2].

Data collection: SAINT (Bruker, 1997[Bruker (1997). SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We have recently reported the syntheses of water-soluble RhI—THP complexes (THP is tris(hydroxymethyl)phosphine, P(CH2OH)3) (Lorenzini et al., 2007a). During a subsequent study of the general reactivity of such complexes with other potential ligands, we discovered a remarkable reaction of RhCl(cod)(THP), where cod = 1,5-cyclooctadiene, with several PRR'2 phosphines (R = or ≠ R'), that generates, concomitantly with R'H, the phosphine-phosphinite derivatives RhCl(PRR'2)[P,PR'(R)POCH2P(CH2OH)2] in two isomeric cis- and trans-forms (cis and trans refer to the disposition of the P-atoms with the R and R' substituents) (Lorenzini et al., 2007b). Such reactions, when investigated under a hydrogen atmosphere, led to the serendipitous isolation of the dihydrido complexes cis,mer-Rh(H)2Cl(PRR'2)3, where R = Me, R' = Ph, or R = Cy, R' = Ph (Lorenzini et al., 2007c). 31P{1H} NMR data suggested the presence of traces of trans-RhCl(CO)(PRR'2)2 in some of the isolated RhCl(PRR'2)[P,PR'(R)POCH2P(CH2OH)2] complexes and in the in situ preparative solutions of the phosphine-phosphinite and dihydrido species (Lorenzini et al., 2007b). The carbonyl ligand is thought to arise via decarbonylation of formaldehyde which can be readily formed from transition metal-THP species (Higham et al., 2004; Hoye et al., 1993); the Wilkinson-type complex such as RhCl(PPh3)3 is well known to decarbonylate aldehydes with formation of trans-RhCl(CO)(PPh3)2 (Beck et al., 1999). The suggested formation of trans-RhCl(CO)(PRR'2)2 has now been confirmed by X-ray structural analysis of a single-crystal of trans-RhCl(CO)(PEtPh2)2 that was precipitated in trace yield during the reaction of RhCl(cod)(THP) with PEtPh2, under a hydrogen atmosphere.

The complex trans-RhCl(CO)(PPh3)2 was first reported 50 years ago (Vallarino, 1957), but it was not until the Ir analogue (Vaska's compound) was synthesized (Vaska & Di Luzio, 1961) and shown to oxidatively add H2 and other small molecules (Vaska & Di Luzio, 1962) that interest in such d8 square-planar molecules intensified. According to the Cambridge Crystallography Data Base, there have been 125 crystallographically characterized complexes of the type trans-RhCl(CO)(P-phosphine)2, where (P-phosphine)2 represents two monodentate ligands or one bidentate phosphine ligand but there are none containing PEtPh2. Indeed, in spite of the vast literature on the chemistry of Rh-phosphine complexes, we can find no other example of any isolated Rh-complex containing PEtPh2, although an in situ RhCl/PEtPh2 species has been noted (O'Connor & Wilkinson, 1969).

Related literature top

For related literature, see: Beck et al. (1999); Higham et al. (2004); Hoye et al. (1993); Lorenzini et al. (2007a, 2007b, 2007c); O'Connor & Wilkinson (1969); Vallarino (1957); Vaska & Di Luzio (1961, 1962).

Experimental top

General. The RhCl(cod)(THP) complex was synthesized by our recently reported method; (Lorenzini et al., 2007a) and PEtPh2 was used as received from Strem Chemicals. The Rh-phosphine reaction was carried out under Ar or H2 using standard Schlenk techniques. Acetone-d6 and CD3OD (Cambridge Isotope Laboratory) were used as received. 31P{1H}-NMR spectra were measured in acetone-d6 and CD3OD at room temperature (~300 K) on a Bruker AV400 spectrometer. External 85% aq H3PO4 were used as references (d = doublet, m = multiplet).

Trans-RhCl(CO)(PEtPh2)2. Addition of PEtPh2 (12 µL, 0.057 mmol) in acetone-d6 (0.3 ml) to a yellow CD3OD solution (0.3 ml) of RhCl(cod)(THP) (10 mg, 0.026 mmol) at room temperature under Ar results in the immediate formation of a brown solution. The Ar is then replaced by H2 and the vessel shaken, this resulting in a yellow solution. Over 12 h, a minute quantity of X-ray quality, yellow prism crystals of trans-RhCl(CO)(PEtPh2)2 deposit from the solution; the 31P{1H} of the yellow solution shows the doublet resonance of the title compound (δ 27.49, d, JPRh = 123.4 Hz) and also resonances at δ 36.64 (dd, 2P, JPRh = 112.0, JPP = 21.0 Hz, trans-P), and 18.29 (m, 1P, P-trans to Cl) thought to be due to RhCl(PEtPh2)3.

Refinement top

The material crystallizes with two molecules in the asymmetric unit. In each molecule the Cl and CO ligands are positionally disordered. Each was modelled such that the sum of the ligands at each coordination site was 1.

Structure description top

We have recently reported the syntheses of water-soluble RhI—THP complexes (THP is tris(hydroxymethyl)phosphine, P(CH2OH)3) (Lorenzini et al., 2007a). During a subsequent study of the general reactivity of such complexes with other potential ligands, we discovered a remarkable reaction of RhCl(cod)(THP), where cod = 1,5-cyclooctadiene, with several PRR'2 phosphines (R = or ≠ R'), that generates, concomitantly with R'H, the phosphine-phosphinite derivatives RhCl(PRR'2)[P,PR'(R)POCH2P(CH2OH)2] in two isomeric cis- and trans-forms (cis and trans refer to the disposition of the P-atoms with the R and R' substituents) (Lorenzini et al., 2007b). Such reactions, when investigated under a hydrogen atmosphere, led to the serendipitous isolation of the dihydrido complexes cis,mer-Rh(H)2Cl(PRR'2)3, where R = Me, R' = Ph, or R = Cy, R' = Ph (Lorenzini et al., 2007c). 31P{1H} NMR data suggested the presence of traces of trans-RhCl(CO)(PRR'2)2 in some of the isolated RhCl(PRR'2)[P,PR'(R)POCH2P(CH2OH)2] complexes and in the in situ preparative solutions of the phosphine-phosphinite and dihydrido species (Lorenzini et al., 2007b). The carbonyl ligand is thought to arise via decarbonylation of formaldehyde which can be readily formed from transition metal-THP species (Higham et al., 2004; Hoye et al., 1993); the Wilkinson-type complex such as RhCl(PPh3)3 is well known to decarbonylate aldehydes with formation of trans-RhCl(CO)(PPh3)2 (Beck et al., 1999). The suggested formation of trans-RhCl(CO)(PRR'2)2 has now been confirmed by X-ray structural analysis of a single-crystal of trans-RhCl(CO)(PEtPh2)2 that was precipitated in trace yield during the reaction of RhCl(cod)(THP) with PEtPh2, under a hydrogen atmosphere.

The complex trans-RhCl(CO)(PPh3)2 was first reported 50 years ago (Vallarino, 1957), but it was not until the Ir analogue (Vaska's compound) was synthesized (Vaska & Di Luzio, 1961) and shown to oxidatively add H2 and other small molecules (Vaska & Di Luzio, 1962) that interest in such d8 square-planar molecules intensified. According to the Cambridge Crystallography Data Base, there have been 125 crystallographically characterized complexes of the type trans-RhCl(CO)(P-phosphine)2, where (P-phosphine)2 represents two monodentate ligands or one bidentate phosphine ligand but there are none containing PEtPh2. Indeed, in spite of the vast literature on the chemistry of Rh-phosphine complexes, we can find no other example of any isolated Rh-complex containing PEtPh2, although an in situ RhCl/PEtPh2 species has been noted (O'Connor & Wilkinson, 1969).

For related literature, see: Beck et al. (1999); Higham et al. (2004); Hoye et al. (1993); Lorenzini et al. (2007a, 2007b, 2007c); O'Connor & Wilkinson (1969); Vallarino (1957); Vaska & Di Luzio (1961, 1962).

Computing details top

Data collection: SAINT or APEX2? (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1.  
trans-Carbonylchloridobis(ethyldiphenylphosphine-κP)rhodium(I) top
Crystal data top
[RhCl(C14H15P)2(CO)]F(000) = 1216
Mr = 594.83Dx = 1.494 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.8557 (14) ÅCell parameters from 6687 reflections
b = 16.385 (2) Åθ = 2.4–27.8°
c = 16.381 (2) ŵ = 0.89 mm1
β = 90.216 (6)°T = 173 K
V = 2645.3 (6) Å3Prism, yellow
Z = 40.15 × 0.15 × 0.07 mm
Data collection top
Bruker X8 APEXII
diffractometer
12665 independent reflections
Radiation source: fine-focus sealed tube8610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
area–detector scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.701, Tmax = 0.940k = 2121
41680 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0297P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
12665 reflectionsΔρmax = 0.45 e Å3
668 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 6047 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
[RhCl(C14H15P)2(CO)]V = 2645.3 (6) Å3
Mr = 594.83Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.8557 (14) ŵ = 0.89 mm1
b = 16.385 (2) ÅT = 173 K
c = 16.381 (2) Å0.15 × 0.15 × 0.07 mm
β = 90.216 (6)°
Data collection top
Bruker X8 APEXII
diffractometer
12665 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
8610 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.940Rint = 0.049
41680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.45 e Å3
S = 0.98Δρmin = 0.36 e Å3
12665 reflectionsAbsolute structure: Flack (1983), 6047 Friedel pairs
668 parametersAbsolute structure parameter: 0.04 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9538 (4)0.4119 (3)0.9327 (3)0.0217 (10)
C20.9587 (4)0.4211 (3)0.8491 (3)0.0229 (10)
H20.97770.47290.82580.027*
C30.9356 (4)0.3539 (3)0.7992 (3)0.0286 (10)
H30.93710.36070.74170.034*
C40.9107 (5)0.2785 (3)0.8311 (3)0.0337 (13)
H40.89690.23310.79610.040*
C50.9058 (5)0.2687 (3)0.9160 (4)0.0306 (13)
H50.88860.21670.93920.037*
C60.9264 (5)0.3359 (3)0.9653 (3)0.0288 (11)
H60.92160.32981.02280.035*
C70.9578 (5)0.5884 (3)0.9429 (3)0.0201 (11)
C80.8304 (5)0.6227 (3)0.9481 (3)0.0318 (13)
H80.76390.59880.98240.038*
C90.7990 (5)0.6921 (3)0.9032 (3)0.0381 (13)
H90.71060.71500.90620.046*
C100.8947 (6)0.7274 (3)0.8551 (4)0.0306 (14)
H100.87390.77590.82580.037*
C111.0193 (5)0.6935 (3)0.8489 (3)0.0327 (12)
H111.08470.71770.81390.039*
C121.0527 (5)0.6247 (3)0.8924 (3)0.0285 (10)
H121.14110.60200.88790.034*
C131.1777 (4)0.4925 (3)1.0074 (2)0.0253 (9)
H13A1.21410.49290.95120.030*
H13B1.21080.54231.03530.030*
C141.2332 (5)0.4181 (3)1.0520 (3)0.0389 (12)
H14A1.19820.41711.10780.058*
H14B1.33250.42081.05340.058*
H14C1.20480.36841.02330.058*
C150.8052 (5)0.4018 (3)1.3072 (3)0.0229 (11)
C160.9351 (5)0.3710 (3)1.3029 (3)0.0318 (13)
H161.00030.39821.27020.038*
C170.9731 (5)0.3013 (3)1.3452 (3)0.0377 (13)
H171.06360.28171.34230.045*
C180.8783 (6)0.2608 (4)1.3914 (4)0.0361 (14)
H180.90260.21231.41960.043*
C190.7478 (5)0.2909 (3)1.3967 (3)0.0430 (14)
H190.68260.26321.42900.052*
C200.7116 (5)0.3606 (3)1.3554 (3)0.0379 (12)
H200.62160.38081.35970.045*
C210.7961 (4)0.5771 (3)1.3191 (3)0.0225 (10)
C220.7836 (4)0.5671 (3)1.4027 (3)0.0261 (10)
H220.76220.51501.42450.031*
C230.8021 (5)0.6328 (3)1.4547 (3)0.0333 (12)
H230.79330.62541.51190.040*
C240.8332 (5)0.7093 (3)1.4237 (3)0.0349 (13)
H240.84780.75401.45960.042*
C250.8427 (5)0.7200 (3)1.3417 (4)0.0361 (14)
H250.86140.77271.32040.043*
C260.8254 (5)0.6549 (3)1.2888 (3)0.0296 (11)
H260.83340.66311.23160.036*
C270.5785 (4)0.4937 (3)1.2440 (3)0.0316 (10)
H27A0.54770.44401.21500.038*
H27B0.54230.49141.30020.038*
C280.5200 (5)0.5684 (3)1.2010 (3)0.0428 (13)
H28A0.54910.61791.22970.064*
H28B0.42080.56521.20100.064*
H28C0.55270.57001.14450.064*
C290.5462 (5)0.9084 (3)0.1954 (3)0.0207 (11)
C300.4458 (5)0.8558 (3)0.1673 (3)0.0323 (11)
H300.35280.86930.17460.039*
C310.4809 (5)0.7846 (3)0.1291 (3)0.0377 (13)
H310.41160.74790.11240.045*
C320.6137 (6)0.7653 (4)0.1143 (4)0.0317 (14)
H320.63650.71660.08600.038*
C330.7145 (5)0.8179 (3)0.1414 (3)0.0317 (11)
H330.80720.80520.13200.038*
C340.6804 (5)0.8888 (3)0.1821 (3)0.0249 (11)
H340.74990.92440.20090.030*
C350.5486 (4)1.0840 (3)0.1819 (3)0.0228 (10)
C360.5895 (5)1.1597 (3)0.2134 (3)0.0290 (11)
H360.60071.16680.27060.035*
C370.6134 (5)1.2244 (3)0.1605 (4)0.0308 (13)
H370.64091.27570.18190.037*
C380.5980 (5)1.2152 (3)0.0787 (3)0.0335 (13)
H380.61411.26010.04340.040*
C390.5591 (5)1.1409 (3)0.0463 (3)0.0316 (11)
H390.55001.13450.01110.038*
C400.5333 (4)1.0753 (3)0.0982 (3)0.0259 (10)
H400.50511.02440.07620.031*
C410.3228 (4)1.0043 (3)0.2550 (2)0.0264 (9)
H41A0.28721.00060.19850.032*
H41B0.28940.95620.28550.032*
C420.2677 (5)1.0820 (3)0.2950 (3)0.0372 (12)
H42A0.30081.08540.35140.056*
H42B0.16831.08050.29490.056*
H42C0.29871.12980.26440.056*
C430.6994 (4)0.9272 (3)0.5727 (3)0.0225 (10)
C440.6515 (4)0.8529 (3)0.5463 (3)0.0265 (11)
H440.63560.84410.48980.032*
C450.6264 (5)0.7911 (3)0.6014 (4)0.0368 (15)
H450.59370.73980.58280.044*
C460.6488 (5)0.8042 (3)0.6836 (3)0.0356 (13)
H460.63120.76190.72180.043*
C470.6962 (5)0.8777 (3)0.7100 (3)0.0334 (12)
H470.71060.88660.76660.040*
C480.7234 (4)0.9395 (3)0.6551 (3)0.0254 (10)
H480.75840.99020.67380.030*
C490.7068 (5)1.1020 (3)0.5537 (3)0.0213 (11)
C500.5730 (5)1.1252 (3)0.5646 (3)0.0305 (13)
H500.50211.09160.54400.037*
C510.5414 (5)1.1965 (3)0.6052 (3)0.0397 (13)
H510.44921.21080.61400.048*
C520.6422 (6)1.2462 (4)0.6325 (4)0.0405 (16)
H520.62021.29580.65950.049*
C530.7755 (5)1.2252 (3)0.6212 (3)0.0404 (13)
H530.84571.26040.63980.049*
C540.8080 (5)1.1519 (3)0.5823 (3)0.0321 (11)
H540.90031.13660.57580.039*
C550.9249 (4)1.0010 (3)0.4947 (2)0.0272 (9)
H55A0.95941.04810.46310.033*
H55B0.96121.00570.55090.033*
C560.9788 (5)0.9231 (3)0.4568 (3)0.0389 (13)
H56A0.95350.87650.49100.058*
H56B1.07790.92630.45300.058*
H56C0.93990.91630.40210.058*
O10.6403 (12)0.4282 (9)1.0455 (9)0.042 (3)0.690 (16)
C570.7319 (13)0.4523 (8)1.0755 (8)0.026 (2)0.690 (16)
Cl11.0740 (4)0.5520 (2)1.1907 (2)0.0325 (13)0.690 (16)
O20.3780 (16)0.9494 (11)0.4549 (11)0.046 (4)0.505 (16)
C580.4754 (16)0.9675 (10)0.4244 (9)0.029 (3)0.505 (16)
Cl20.8281 (4)1.0452 (3)0.3070 (3)0.0330 (16)0.505 (16)
O1B1.118 (2)0.5677 (18)1.2021 (16)0.036 (6)0.310 (16)
C57B1.017 (3)0.5407 (15)1.1698 (14)0.024 (5)0.310 (16)
Cl1B0.6789 (8)0.4422 (6)1.0585 (5)0.029 (2)0.310 (16)
O2B0.8740 (14)1.0596 (10)0.2968 (9)0.044 (3)0.495 (16)
C58B0.7709 (15)1.0374 (7)0.3261 (8)0.028 (3)*0.495 (16)
Cl2B0.4212 (5)0.9610 (3)0.4431 (3)0.0271 (16)0.495 (16)
P10.99277 (10)0.49628 (8)1.00219 (6)0.0213 (2)
P20.76358 (10)0.49333 (8)1.24884 (6)0.0232 (2)
P30.50860 (10)1.00148 (8)0.25227 (6)0.0206 (2)
P40.74016 (10)1.00706 (8)0.49855 (6)0.0207 (2)
Rh10.87809 (4)0.49622 (3)1.12535 (3)0.02214 (9)
Rh20.62381 (4)1.00347 (3)0.37570 (3)0.02055 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (2)0.023 (2)0.022 (2)0.0041 (18)0.0033 (18)0.0033 (19)
C20.021 (2)0.023 (2)0.024 (2)0.0045 (18)0.0029 (18)0.0027 (18)
C30.028 (2)0.033 (3)0.025 (3)0.006 (2)0.0021 (19)0.007 (2)
C40.032 (3)0.028 (3)0.041 (3)0.005 (2)0.001 (2)0.011 (2)
C50.031 (3)0.021 (3)0.040 (3)0.002 (2)0.002 (2)0.007 (2)
C60.035 (3)0.026 (3)0.025 (3)0.003 (2)0.002 (2)0.005 (2)
C70.022 (2)0.018 (2)0.021 (3)0.0014 (18)0.0001 (19)0.0026 (19)
C80.031 (3)0.031 (3)0.034 (3)0.003 (2)0.009 (2)0.008 (2)
C90.026 (3)0.037 (3)0.051 (4)0.010 (2)0.005 (2)0.000 (3)
C100.038 (3)0.022 (3)0.032 (3)0.001 (2)0.001 (2)0.000 (2)
C110.035 (3)0.029 (3)0.034 (3)0.002 (2)0.005 (2)0.007 (2)
C120.026 (2)0.030 (2)0.029 (3)0.002 (2)0.007 (2)0.007 (2)
C130.023 (2)0.029 (2)0.024 (2)0.002 (2)0.0001 (16)0.004 (2)
C140.036 (3)0.044 (3)0.036 (3)0.007 (2)0.003 (2)0.011 (2)
C150.028 (3)0.020 (2)0.021 (3)0.0035 (19)0.0034 (19)0.0016 (19)
C160.032 (3)0.030 (3)0.034 (3)0.003 (2)0.007 (2)0.003 (2)
C170.039 (3)0.038 (3)0.036 (3)0.009 (2)0.008 (2)0.015 (2)
C180.054 (4)0.025 (3)0.029 (3)0.000 (2)0.009 (3)0.009 (2)
C190.043 (3)0.045 (3)0.041 (3)0.013 (3)0.002 (2)0.023 (3)
C200.030 (3)0.039 (3)0.045 (3)0.007 (2)0.005 (2)0.011 (2)
C210.019 (2)0.024 (2)0.024 (2)0.0016 (18)0.0049 (18)0.0018 (18)
C220.022 (2)0.029 (2)0.027 (2)0.0041 (19)0.0048 (18)0.002 (2)
C230.031 (3)0.045 (3)0.024 (3)0.006 (2)0.003 (2)0.005 (2)
C240.031 (3)0.032 (3)0.042 (3)0.001 (2)0.006 (2)0.014 (2)
C250.034 (3)0.025 (3)0.049 (4)0.006 (2)0.014 (3)0.004 (2)
C260.031 (3)0.029 (3)0.029 (3)0.005 (2)0.004 (2)0.002 (2)
C270.025 (2)0.039 (3)0.030 (2)0.005 (2)0.0068 (17)0.002 (2)
C280.031 (3)0.050 (3)0.048 (3)0.007 (2)0.004 (2)0.003 (3)
C290.022 (3)0.024 (3)0.016 (3)0.005 (2)0.0011 (19)0.000 (2)
C300.024 (2)0.033 (3)0.039 (3)0.002 (2)0.001 (2)0.015 (2)
C310.033 (3)0.031 (3)0.049 (4)0.010 (2)0.004 (2)0.014 (2)
C320.039 (3)0.029 (3)0.028 (3)0.001 (2)0.002 (2)0.007 (2)
C330.025 (3)0.037 (3)0.034 (3)0.000 (2)0.002 (2)0.004 (2)
C340.022 (2)0.026 (3)0.026 (3)0.004 (2)0.004 (2)0.002 (2)
C350.020 (2)0.027 (2)0.021 (2)0.0020 (19)0.0016 (18)0.0037 (19)
C360.034 (3)0.024 (2)0.029 (3)0.004 (2)0.002 (2)0.006 (2)
C370.028 (3)0.024 (3)0.040 (3)0.000 (2)0.001 (2)0.001 (2)
C380.040 (3)0.026 (3)0.034 (3)0.005 (2)0.008 (2)0.010 (2)
C390.034 (3)0.041 (3)0.020 (2)0.005 (2)0.0040 (19)0.009 (2)
C400.025 (2)0.026 (2)0.026 (2)0.0012 (18)0.0019 (18)0.0007 (19)
C410.021 (2)0.031 (3)0.027 (2)0.004 (2)0.0003 (16)0.001 (2)
C420.032 (3)0.037 (3)0.042 (3)0.007 (2)0.003 (2)0.007 (2)
C430.021 (2)0.022 (2)0.024 (2)0.0003 (18)0.0012 (18)0.0003 (18)
C440.028 (3)0.026 (2)0.025 (3)0.005 (2)0.001 (2)0.001 (2)
C450.033 (3)0.025 (3)0.053 (4)0.003 (2)0.005 (3)0.007 (3)
C460.033 (3)0.035 (3)0.039 (3)0.004 (2)0.010 (2)0.019 (2)
C470.032 (3)0.047 (3)0.022 (3)0.013 (2)0.004 (2)0.008 (2)
C480.028 (2)0.027 (2)0.021 (2)0.0058 (19)0.0035 (18)0.0013 (19)
C490.029 (3)0.018 (2)0.017 (3)0.0006 (19)0.0038 (19)0.0008 (18)
C500.032 (3)0.023 (3)0.036 (3)0.002 (2)0.003 (2)0.005 (2)
C510.039 (3)0.040 (3)0.040 (3)0.010 (2)0.002 (3)0.008 (3)
C520.057 (4)0.026 (3)0.038 (4)0.008 (3)0.003 (3)0.009 (3)
C530.049 (3)0.034 (3)0.038 (3)0.008 (3)0.006 (3)0.012 (2)
C540.029 (3)0.034 (3)0.034 (3)0.005 (2)0.003 (2)0.003 (2)
C550.025 (2)0.031 (3)0.026 (2)0.004 (2)0.0040 (16)0.001 (2)
C560.031 (3)0.041 (3)0.045 (3)0.006 (2)0.003 (2)0.005 (3)
O10.033 (7)0.056 (6)0.038 (6)0.015 (5)0.003 (4)0.009 (4)
C570.025 (7)0.031 (5)0.021 (5)0.007 (5)0.003 (5)0.001 (4)
Cl10.032 (3)0.037 (2)0.028 (2)0.004 (2)0.0013 (19)0.0021 (15)
O20.040 (9)0.064 (8)0.033 (7)0.009 (6)0.011 (6)0.001 (5)
C580.025 (8)0.040 (7)0.020 (6)0.012 (6)0.009 (5)0.000 (5)
Cl20.027 (4)0.045 (2)0.027 (2)0.0107 (19)0.001 (2)0.0060 (14)
O1B0.022 (12)0.041 (13)0.046 (11)0.005 (8)0.015 (8)0.002 (8)
C57B0.032 (14)0.027 (10)0.014 (10)0.006 (10)0.003 (9)0.007 (8)
Cl1B0.017 (6)0.045 (4)0.026 (5)0.016 (4)0.006 (4)0.008 (3)
O2B0.024 (7)0.060 (7)0.048 (7)0.019 (5)0.004 (5)0.005 (5)
Cl2B0.022 (4)0.038 (2)0.022 (3)0.003 (2)0.004 (2)0.0006 (17)
P10.0240 (5)0.0224 (6)0.0175 (5)0.0000 (5)0.0027 (4)0.0026 (5)
P20.0233 (5)0.0245 (6)0.0219 (6)0.0033 (5)0.0042 (4)0.0027 (5)
P30.0218 (5)0.0226 (6)0.0175 (5)0.0030 (5)0.0024 (4)0.0018 (5)
P40.0224 (5)0.0219 (6)0.0179 (5)0.0024 (5)0.0023 (4)0.0016 (5)
Rh10.02361 (14)0.0258 (2)0.01709 (13)0.00473 (15)0.00288 (10)0.00149 (14)
Rh20.02122 (13)0.0247 (2)0.01573 (12)0.00439 (14)0.00130 (9)0.00039 (13)
Geometric parameters (Å, º) top
C1—C21.379 (6)C32—H320.9500
C1—C61.381 (6)C33—C341.382 (7)
C1—P11.831 (4)C33—H330.9500
C2—C31.388 (6)C34—H340.9500
C2—H20.9500C35—C401.385 (6)
C3—C41.363 (6)C35—C361.403 (6)
C3—H30.9500C35—P31.821 (4)
C4—C51.400 (8)C36—C371.390 (7)
C4—H40.9500C36—H360.9500
C5—C61.380 (7)C37—C381.357 (8)
C5—H50.9500C37—H370.9500
C6—H60.9500C38—C391.381 (7)
C7—C81.379 (6)C38—H380.9500
C7—C121.385 (6)C39—C401.395 (6)
C7—P11.827 (5)C39—H390.9500
C8—C91.388 (7)C40—H400.9500
C8—H80.9500C41—C421.533 (6)
C9—C101.360 (7)C41—P31.832 (4)
C9—H90.9500C41—H41A0.9900
C10—C111.352 (7)C41—H41B0.9900
C10—H100.9500C42—H42A0.9800
C11—C121.374 (6)C42—H42B0.9800
C11—H110.9500C42—H42C0.9800
C12—H120.9500C43—C441.374 (6)
C13—C141.521 (6)C43—C481.384 (6)
C13—P11.825 (4)C43—P41.831 (4)
C13—H13A0.9900C44—C451.379 (7)
C13—H13B0.9900C44—H440.9500
C14—H14A0.9800C45—C461.381 (8)
C14—H14B0.9800C45—H450.9500
C14—H14C0.9800C46—C471.362 (7)
C15—C161.378 (7)C46—H460.9500
C15—C201.392 (7)C47—C481.381 (6)
C15—P21.824 (5)C47—H470.9500
C16—C171.387 (7)C48—H480.9500
C16—H160.9500C49—C541.371 (6)
C17—C181.375 (7)C49—C501.385 (7)
C17—H170.9500C49—P41.829 (5)
C18—C191.380 (7)C50—C511.380 (6)
C18—H180.9500C50—H500.9500
C19—C201.374 (7)C51—C521.359 (8)
C19—H190.9500C51—H510.9500
C20—H200.9500C52—C531.372 (7)
C21—C221.385 (6)C52—H520.9500
C21—C261.399 (6)C53—C541.397 (6)
C21—P21.818 (4)C53—H530.9500
C22—C231.383 (6)C54—H540.9500
C22—H220.9500C55—C561.516 (6)
C23—C241.387 (7)C55—P41.825 (4)
C23—H230.9500C55—H55A0.9900
C24—C251.358 (8)C55—H55B0.9900
C24—H240.9500C56—H56A0.9800
C25—C261.385 (7)C56—H56B0.9800
C25—H250.9500C56—H56C0.9800
C26—H260.9500O1—C571.10 (2)
C27—C281.524 (6)C57—Rh11.803 (13)
C27—P21.825 (4)Cl1—Rh12.386 (3)
C27—H27A0.9900O2—C581.12 (3)
C27—H27B0.9900C58—Rh21.770 (17)
C28—H28A0.9800Cl2—Rh22.409 (4)
C28—H28B0.9800O1B—C57B1.21 (4)
C28—H28C0.9800C57B—Rh11.71 (3)
C29—C341.379 (6)Cl1B—Rh12.412 (6)
C29—C301.390 (6)O2B—C58B1.18 (3)
C29—P31.826 (5)C58B—Rh21.755 (17)
C30—C311.369 (6)Cl2B—Rh22.389 (4)
C30—H300.9500P1—Rh12.3161 (11)
C31—C321.370 (7)P2—Rh12.3207 (11)
C31—H310.9500P3—Rh22.3154 (11)
C32—C331.388 (7)P4—Rh22.3132 (11)
C2—C1—C6119.3 (4)C39—C38—H38119.8
C2—C1—P1121.8 (3)C38—C39—C40119.7 (4)
C6—C1—P1118.8 (3)C38—C39—H39120.1
C1—C2—C3119.4 (4)C40—C39—H39120.1
C1—C2—H2120.3C35—C40—C39120.3 (4)
C3—C2—H2120.3C35—C40—H40119.8
C4—C3—C2121.5 (5)C39—C40—H40119.8
C4—C3—H3119.3C42—C41—P3112.7 (3)
C2—C3—H3119.3C42—C41—H41A109.0
C3—C4—C5119.4 (5)P3—C41—H41A109.0
C3—C4—H4120.3C42—C41—H41B109.0
C5—C4—H4120.3P3—C41—H41B109.0
C6—C5—C4118.9 (5)H41A—C41—H41B107.8
C6—C5—H5120.5C41—C42—H42A109.5
C4—C5—H5120.5C41—C42—H42B109.5
C5—C6—C1121.4 (4)H42A—C42—H42B109.5
C5—C6—H6119.3C41—C42—H42C109.5
C1—C6—H6119.3H42A—C42—H42C109.5
C8—C7—C12118.6 (4)H42B—C42—H42C109.5
C8—C7—P1118.3 (4)C44—C43—C48119.5 (4)
C12—C7—P1123.1 (4)C44—C43—P4120.0 (3)
C7—C8—C9120.2 (4)C48—C43—P4120.3 (3)
C7—C8—H8119.9C43—C44—C45120.5 (5)
C9—C8—H8119.9C43—C44—H44119.8
C10—C9—C8120.1 (5)C45—C44—H44119.8
C10—C9—H9120.0C44—C45—C46119.7 (5)
C8—C9—H9120.0C44—C45—H45120.2
C11—C10—C9120.0 (5)C46—C45—H45120.2
C11—C10—H10120.0C47—C46—C45120.0 (5)
C9—C10—H10120.0C47—C46—H46120.0
C10—C11—C12121.0 (5)C45—C46—H46120.0
C10—C11—H11119.5C46—C47—C48120.6 (5)
C12—C11—H11119.5C46—C47—H47119.7
C11—C12—C7120.1 (4)C48—C47—H47119.7
C11—C12—H12120.0C47—C48—C43119.7 (4)
C7—C12—H12120.0C47—C48—H48120.2
C14—C13—P1114.0 (3)C43—C48—H48120.2
C14—C13—H13A108.7C54—C49—C50118.9 (4)
P1—C13—H13A108.7C54—C49—P4123.0 (4)
C14—C13—H13B108.7C50—C49—P4118.0 (4)
P1—C13—H13B108.7C51—C50—C49120.8 (5)
H13A—C13—H13B107.6C51—C50—H50119.6
C13—C14—H14A109.5C49—C50—H50119.6
C13—C14—H14B109.5C52—C51—C50120.0 (5)
H14A—C14—H14B109.5C52—C51—H51120.0
C13—C14—H14C109.5C50—C51—H51120.0
H14A—C14—H14C109.5C51—C52—C53120.3 (5)
H14B—C14—H14C109.5C51—C52—H52119.9
C16—C15—C20118.0 (5)C53—C52—H52119.9
C16—C15—P2118.8 (4)C52—C53—C54119.9 (5)
C20—C15—P2123.2 (4)C52—C53—H53120.0
C15—C16—C17121.7 (5)C54—C53—H53120.0
C15—C16—H16119.1C49—C54—C53120.1 (5)
C17—C16—H16119.1C49—C54—H54120.0
C18—C17—C16119.3 (5)C53—C54—H54120.0
C18—C17—H17120.3C56—C55—P4114.3 (3)
C16—C17—H17120.3C56—C55—H55A108.7
C17—C18—C19119.9 (5)P4—C55—H55A108.7
C17—C18—H18120.1C56—C55—H55B108.7
C19—C18—H18120.1P4—C55—H55B108.7
C20—C19—C18120.4 (5)H55A—C55—H55B107.6
C20—C19—H19119.8C55—C56—H56A109.5
C18—C19—H19119.8C55—C56—H56B109.5
C19—C20—C15120.8 (5)H56A—C56—H56B109.5
C19—C20—H20119.6C55—C56—H56C109.5
C15—C20—H20119.6H56A—C56—H56C109.5
C22—C21—C26118.5 (4)H56B—C56—H56C109.5
C22—C21—P2121.4 (3)O1—C57—Rh1177.3 (16)
C26—C21—P2119.9 (4)O2—C58—Rh2175.7 (19)
C23—C22—C21120.3 (4)O1B—C57B—Rh1176 (3)
C23—C22—H22119.8O2B—C58B—Rh2176.1 (14)
C21—C22—H22119.8C13—P1—C7103.8 (2)
C22—C23—C24120.5 (4)C13—P1—C1102.2 (2)
C22—C23—H23119.8C7—P1—C1104.76 (19)
C24—C23—H23119.8C13—P1—Rh1116.71 (13)
C25—C24—C23119.6 (5)C7—P1—Rh1111.83 (16)
C25—C24—H24120.2C1—P1—Rh1116.06 (15)
C23—C24—H24120.2C21—P2—C15104.4 (2)
C24—C25—C26120.7 (5)C21—P2—C27101.5 (2)
C24—C25—H25119.6C15—P2—C27104.4 (2)
C26—C25—H25119.6C21—P2—Rh1116.82 (14)
C25—C26—C21120.3 (5)C15—P2—Rh1111.38 (17)
C25—C26—H26119.8C27—P2—Rh1116.82 (14)
C21—C26—H26119.8C35—P3—C29104.62 (19)
C28—C27—P2113.5 (3)C35—P3—C41102.4 (2)
C28—C27—H27A108.9C29—P3—C41103.8 (2)
P2—C27—H27A108.9C35—P3—Rh2115.85 (15)
C28—C27—H27B108.9C29—P3—Rh2110.93 (16)
P2—C27—H27B108.9C41—P3—Rh2117.74 (13)
H27A—C27—H27B107.7C55—P4—C49104.2 (2)
C27—C28—H28A109.5C55—P4—C43101.9 (2)
C27—C28—H28B109.5C49—P4—C43103.9 (2)
H28A—C28—H28B109.5C55—P4—Rh2117.37 (13)
C27—C28—H28C109.5C49—P4—Rh2111.21 (17)
H28A—C28—H28C109.5C43—P4—Rh2116.70 (15)
H28B—C28—H28C109.5C57B—Rh1—C57177.8 (11)
C34—C29—C30119.1 (4)C57B—Rh1—P188.7 (8)
C34—C29—P3118.2 (3)C57—Rh1—P189.8 (4)
C30—C29—P3122.7 (4)C57B—Rh1—P291.7 (8)
C31—C30—C29119.9 (5)C57—Rh1—P289.8 (4)
C31—C30—H30120.0P1—Rh1—P2178.85 (7)
C29—C30—H30120.0C57B—Rh1—Cl12.8 (8)
C30—C31—C32121.4 (5)C57—Rh1—Cl1178.9 (4)
C30—C31—H31119.3P1—Rh1—Cl189.65 (9)
C32—C31—H31119.3P2—Rh1—Cl190.70 (9)
C31—C32—C33118.9 (5)C57B—Rh1—Cl1B176.2 (9)
C31—C32—H32120.6C57—Rh1—Cl1B2.0 (4)
C33—C32—H32120.6P1—Rh1—Cl1B90.2 (2)
C34—C33—C32120.1 (5)P2—Rh1—Cl1B89.5 (2)
C34—C33—H33119.9Cl1—Rh1—Cl1B179.0 (3)
C32—C33—H33119.9C58B—Rh2—C58178.8 (7)
C29—C34—C33120.5 (4)C58B—Rh2—P489.3 (4)
C29—C34—H34119.8C58—Rh2—P491.4 (5)
C33—C34—H34119.8C58B—Rh2—P390.2 (4)
C40—C35—C36119.0 (4)C58—Rh2—P389.2 (5)
C40—C35—P3121.8 (3)P4—Rh2—P3179.25 (7)
C36—C35—P3119.1 (3)C58B—Rh2—Cl2B178.4 (4)
C37—C36—C35119.6 (5)C58—Rh2—Cl2B2.5 (5)
C37—C36—H36120.2P4—Rh2—Cl2B91.03 (13)
C35—C36—H36120.2P3—Rh2—Cl2B89.50 (13)
C38—C37—C36120.8 (5)C58B—Rh2—Cl22.0 (4)
C38—C37—H37119.6C58—Rh2—Cl2177.0 (5)
C36—C37—H37119.6P4—Rh2—Cl289.25 (12)
C37—C38—C39120.5 (5)P3—Rh2—Cl290.22 (11)
C37—C38—H38119.8Cl2B—Rh2—Cl2179.5 (2)
C6—C1—C2—C30.2 (6)C16—C15—P2—C2191.8 (5)
P1—C1—C2—C3176.4 (3)C20—C15—P2—C2189.1 (5)
C1—C2—C3—C41.3 (7)C16—C15—P2—C27162.0 (4)
C2—C3—C4—C51.2 (7)C20—C15—P2—C2717.0 (5)
C3—C4—C5—C60.0 (7)C16—C15—P2—Rh135.1 (5)
C4—C5—C6—C11.1 (7)C20—C15—P2—Rh1144.0 (4)
C2—C1—C6—C51.0 (7)C28—C27—P2—C2168.7 (4)
P1—C1—C6—C5175.3 (4)C28—C27—P2—C15177.0 (3)
C12—C7—C8—C90.1 (8)C28—C27—P2—Rh159.5 (4)
P1—C7—C8—C9179.2 (4)C40—C35—P3—C2931.4 (4)
C7—C8—C9—C101.2 (8)C36—C35—P3—C29151.8 (4)
C8—C9—C10—C112.0 (9)C40—C35—P3—C4176.6 (4)
C9—C10—C11—C121.8 (9)C36—C35—P3—C41100.1 (4)
C10—C11—C12—C70.7 (8)C40—C35—P3—Rh2153.9 (3)
C8—C7—C12—C110.1 (7)C36—C35—P3—Rh229.4 (4)
P1—C7—C12—C11179.4 (4)C34—C29—P3—C3572.5 (4)
C20—C15—C16—C170.3 (8)C30—C29—P3—C35109.3 (4)
P2—C15—C16—C17179.4 (4)C34—C29—P3—C41179.5 (4)
C15—C16—C17—C181.3 (9)C30—C29—P3—C412.3 (5)
C16—C17—C18—C191.4 (9)C34—C29—P3—Rh253.1 (4)
C17—C18—C19—C200.6 (9)C30—C29—P3—Rh2125.1 (4)
C18—C19—C20—C150.4 (9)C42—C41—P3—C3567.0 (3)
C16—C15—C20—C190.5 (8)C42—C41—P3—C29175.7 (3)
P2—C15—C20—C19178.6 (4)C42—C41—P3—Rh261.3 (3)
C26—C21—C22—C231.1 (6)C56—C55—P4—C49175.6 (3)
P2—C21—C22—C23176.7 (3)C56—C55—P4—C4367.8 (4)
C21—C22—C23—C240.1 (7)C56—C55—P4—Rh261.0 (4)
C22—C23—C24—C251.4 (7)C54—C49—P4—C550.0 (5)
C23—C24—C25—C261.8 (8)C50—C49—P4—C55178.2 (4)
C24—C25—C26—C210.8 (8)C54—C49—P4—C43106.3 (4)
C22—C21—C26—C250.7 (7)C50—C49—P4—C4375.5 (4)
P2—C21—C26—C25176.3 (4)C54—C49—P4—Rh2127.3 (4)
C34—C29—C30—C311.9 (7)C50—C49—P4—Rh250.9 (4)
P3—C29—C30—C31176.3 (4)C44—C43—P4—C55102.2 (4)
C29—C30—C31—C323.0 (8)C48—C43—P4—C5574.3 (4)
C30—C31—C32—C332.3 (9)C44—C43—P4—C49149.8 (4)
C31—C32—C33—C340.5 (8)C48—C43—P4—C4933.8 (4)
C30—C29—C34—C330.1 (7)C44—C43—P4—Rh227.0 (4)
P3—C29—C34—C33178.2 (4)C48—C43—P4—Rh2156.6 (3)
C32—C33—C34—C290.6 (8)C13—P1—Rh1—C57B27.4 (8)
C40—C35—C36—C370.2 (7)C7—P1—Rh1—C57B91.9 (8)
P3—C35—C36—C37176.7 (3)C1—P1—Rh1—C57B148.0 (8)
C35—C36—C37—C380.1 (7)C13—P1—Rh1—C57154.3 (4)
C36—C37—C38—C390.5 (8)C7—P1—Rh1—C5786.4 (4)
C37—C38—C39—C401.1 (7)C1—P1—Rh1—C5733.7 (4)
C36—C35—C40—C390.4 (6)C13—P1—Rh1—Cl124.7 (2)
P3—C35—C40—C39177.2 (3)C7—P1—Rh1—Cl194.6 (2)
C38—C39—C40—C351.0 (7)C1—P1—Rh1—Cl1145.30 (19)
C48—C43—C44—C450.5 (7)C13—P1—Rh1—Cl1B156.3 (3)
P4—C43—C44—C45177.0 (4)C7—P1—Rh1—Cl1B84.4 (3)
C43—C44—C45—C460.3 (8)C1—P1—Rh1—Cl1B35.7 (3)
C44—C45—C46—C470.3 (8)C21—P2—Rh1—C57B33.7 (8)
C45—C46—C47—C480.6 (7)C15—P2—Rh1—C57B86.2 (8)
C46—C47—C48—C431.5 (7)C27—P2—Rh1—C57B154.0 (8)
C44—C43—C48—C471.4 (6)C21—P2—Rh1—C57144.7 (4)
P4—C43—C48—C47177.9 (3)C15—P2—Rh1—C5795.5 (4)
C54—C49—C50—C511.3 (8)C27—P2—Rh1—C5724.3 (4)
P4—C49—C50—C51179.5 (4)C21—P2—Rh1—Cl136.3 (2)
C49—C50—C51—C522.2 (8)C15—P2—Rh1—Cl183.5 (2)
C50—C51—C52—C531.2 (9)C27—P2—Rh1—Cl1156.7 (2)
C51—C52—C53—C540.7 (9)C21—P2—Rh1—Cl1B142.7 (3)
C50—C49—C54—C530.7 (7)C15—P2—Rh1—Cl1B97.5 (3)
P4—C49—C54—C53177.5 (4)C27—P2—Rh1—Cl1B22.3 (3)
C52—C53—C54—C491.7 (8)C43—P4—Rh2—C58B144.0 (4)
C14—C13—P1—C7177.9 (3)C55—P4—Rh2—C58156.3 (5)
C14—C13—P1—C169.1 (4)C49—P4—Rh2—C5884.0 (5)
C14—C13—P1—Rh158.6 (4)C43—P4—Rh2—C5835.0 (5)
C8—C7—P1—C13160.7 (4)C55—P4—Rh2—Cl2B158.8 (2)
C12—C7—P1—C1320.0 (5)C49—P4—Rh2—Cl2B81.4 (2)
C8—C7—P1—C192.4 (4)C43—P4—Rh2—Cl2B37.5 (2)
C12—C7—P1—C186.8 (4)C55—P4—Rh2—Cl220.8 (2)
C8—C7—P1—Rh134.1 (5)C49—P4—Rh2—Cl299.0 (2)
C12—C7—P1—Rh1146.7 (4)C43—P4—Rh2—Cl2142.1 (2)
C2—C1—P1—C1383.1 (4)C35—P3—Rh2—C58B37.8 (4)
C6—C1—P1—C1393.1 (4)C29—P3—Rh2—C58B81.2 (4)
C2—C1—P1—C724.9 (4)C41—P3—Rh2—C58B159.5 (4)
C6—C1—P1—C7158.9 (4)C35—P3—Rh2—C58143.2 (5)
C2—C1—P1—Rh1148.8 (3)C29—P3—Rh2—C5897.8 (5)
C6—C1—P1—Rh135.0 (4)C41—P3—Rh2—C5821.5 (5)
C22—C21—P2—C1528.8 (4)C35—P3—Rh2—Cl2B140.6 (2)
C26—C21—P2—C15155.6 (4)C29—P3—Rh2—Cl2B100.3 (2)
C22—C21—P2—C2779.5 (4)C41—P3—Rh2—Cl2B19.0 (2)
C26—C21—P2—C2796.1 (4)C35—P3—Rh2—Cl239.8 (2)
C22—C21—P2—Rh1152.3 (3)C29—P3—Rh2—Cl279.2 (2)
C26—C21—P2—Rh132.1 (4)C41—P3—Rh2—Cl2161.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O2i0.952.643.424 (18)140
C48—H48···O1Bii0.952.683.51 (3)145
C4—H4···O1Biii0.952.713.51 (3)142
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+2, y+1/2, z+2; (iii) x+2, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[RhCl(C14H15P)2(CO)]
Mr594.83
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.8557 (14), 16.385 (2), 16.381 (2)
β (°) 90.216 (6)
V3)2645.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.15 × 0.15 × 0.07
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.701, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
41680, 12665, 8610
Rint0.049
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.080, 0.98
No. of reflections12665
No. of parameters668
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.36
Absolute structureFlack (1983), 6047 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: SAINT or APEX2? (Bruker, 1997), SAINT (Bruker, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C57—Rh11.803 (13)P1—Rh12.3161 (11)
Cl1—Rh12.386 (3)P2—Rh12.3207 (11)
C58—Rh21.770 (17)P3—Rh22.3154 (11)
Cl2—Rh22.409 (4)P4—Rh22.3132 (11)
C57—Rh1—P189.8 (4)C58—Rh2—P491.4 (5)
C57—Rh1—P289.8 (4)C58—Rh2—P389.2 (5)
P1—Rh1—P2178.85 (7)P4—Rh2—P3179.25 (7)
C57—Rh1—Cl1178.9 (4)C58—Rh2—Cl2177.0 (5)
P1—Rh1—Cl189.65 (9)P4—Rh2—Cl289.25 (12)
P2—Rh1—Cl190.70 (9)P3—Rh2—Cl290.22 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O2i0.952.643.424 (18)139.8
C48—H48···O1Bii0.952.683.51 (3)145.2
C4—H4···O1Biii0.952.713.51 (3)141.6
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+2, y+1/2, z+2; (iii) x+2, y1/2, z+2.
 

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support via a Discovery Grant.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311–5317 and references therein.  Google Scholar
First citationBruker (1997). SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202–4208.  CSD CrossRef Google Scholar
First citationHoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269–274.  CrossRef Web of Science Google Scholar
First citationLorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224–3226.  CSD CrossRef Google Scholar
First citationLorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem. 46, 8998–9002.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLorenzini, F., Patrick, B. O. & James, B. R. (2007c). Inorg. Chim. Acta. doi: 10.1016/j.ica.2007.10.044. In the press.  Google Scholar
First citationO'Connor, C. & Wilkinson, G. (1969). Tetrahedron Lett. pp. 1375–1377.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVallarino, L. (1957). J. Chem. Soc. pp. 2287–2292.  CrossRef Web of Science Google Scholar
First citationVaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785.  CrossRef CAS Web of Science Google Scholar
First citationVaska, L. & Di Luzio, J. W. (1962). J. Am. Chem. Soc. 84, 679–680.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds