Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C10H8O6S, which was synthesized by the intra­molecular cyclization of diethyl 3,4-bis­(2-hydroxy­ethoxy)thio­phene-2,5-dicarboxyl­ate, the thio­phene portion lies on a mirror plane. The crystal structure is stabilized by inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054001/ng2356sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054001/ng2356Isup2.hkl
Contains datablock I

CCDC reference: 672840

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • R factor = 0.066
  • wR factor = 0.151
  • Data-to-parameter ratio = 10.8

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Heterocyclic compounds containing a 1,4-dioxepin-5-one ring (7-membered lactone) are expected to exhibit antibacterial activity (Ito et al., 1997; Rao, 1996). In addition, the compounds are of interest in terms of their polymerization abilities (Mathisen et al., 1989). The title compound, (I), is the first example of a thiophene derivative with two fused 1,4-dioxepin-5-one rings and its molecular and crystal structures are described here.

The compound (I) crystallizes in the Pnma space group with one molecule in the asymmetric unit (Fig. 1). The bond lengths and angles are within the normal ranges (Table 1). The molecule lies on the mirror plane except the O2, C6, C9 and C10 atoms and the H atoms bonded to the C atoms, which are crystallographically disordered about the plane over each site with 0.5 of occupancy.

In the crystal structure, the molecules stack along the b axis, where no molecular overlap was observed (Fig. 2). The distance between the molecular planes is 3.45 Å. As shown in Table 2 and Fig. 2, the stacks are linked by intermolecular C—H···O hydrogen bonds (Taylor & Kennard, 1982; Biradha et al., 1993; Batchelor et al., 2000).

Related literature top

For the synthesis of the starting reagent, see: Halfpenny et al. (2000). For the antibacterial activity of 1,4-dioxepin-5-one compounds, see: Ito et al. (1997); Rao (1996). For their polymerization abilities, see: Mathisen et al. (1989). For related literature on molecular structures including a 1,4-dioxepin-5-one ring, see: Blaser & Stoeckli-Evans (1991); Brassy et al. (1977); Connolly et al. (1984); Lamothe & Fuchs (1993); Kawahara et al. (1988); Mulzer et al. (1996); Xu et al. (2000). For literature on C–H···O hydrogen bonds, see: Batchelor et al. (2000); Biradha et al. (1993); Taylor & Kennard (1982).

Experimental top

The title compound (I) was synthesized by the intramolecular cyclization of diethyl 3,4-bis(2-hydroxyethoxy)-2,5-thiophenedicarboxylate (II). Compound (II) was prepared as follows: A mixture of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate (Halfpenny et al., 2000) (6.55 g, 25.2 mmol) and caesium fluoride (11.5 g, 75.7 mmol) in dry acetonitrile (150 ml) was stirred for 1 h under nitrogen. A solution of ethylene glycol monotosylate (12.0 g, 55.5 mmol) in acetonitrile (50 ml) was added dropwise and the mixture was refluxed for 62 h. After cooling, the reaction mixture was filtered and the filtrate was concentrated. The residue was dissolved in dichloromethane and the solution was washed with water. The organic solution was dried over Na2SO4 and concentrated. The resulting solid was chromatographed on alumina gel (from AcOEt to AcOEt/EtOH = 1:1) and silica gel (CH2Cl2/AcOEt = from 7:3 to 1:1) to give compound (II) (3.96 g, 45%) as colorless needles. Physical data for (II): m.p. 356–357 K; IR (KBr, cm-1): 3306, 1715, 1493, 1370, 1296, 1256, 1076, 1047; 1H NMR (CDCl3, δ p.p.m.): 1.38 (t, J = 7.1 Hz, 6H), 3.83 (br s, 6H), 4.33–4.41 (m, 8H); 13C NMR (CDCl3, δ p.p.m.): 14.2, 61.0, 61.9, 76.4, 120.2, 153.1, 160.9; MS (EI): m/z 348 (M+), 302, 286, 256, 212, 168. Anal. Calcd. For C14H20O8S: C, 48.27; H, 5.79. Found: C, 48.28; H, 5.68.

Compound (I) was prepared as follows: A mixture of compound (II) (367 mg, 1.05 mmol) and p-toluenesulfonic acid (20 mg) in toluene was refluxed with a Dean-Stark apparatus for 20 h. The white precipitate was filtered to give compound (I) (245 mg, 91%). Physical data for (I): m.p. >573 K; IR (KBr, cm-1): 1692, 1522, 1462, 1406, 1373, 1325, 1161, 1100, 1044, 1015, 968, 752; 1H NMR (DMSO-d6, δ p.p.m.): 4.64–4.69 (m, 8H); 13C NMR (DMSO-d6, δ p.p.m.): 162.8, 145.6, 113.1, 71.4, 67.4; MS (EI): m/z 256 (M+), 212, 185. Anal. Calcd. For C10H8O6S: C, 46.87; H, 3.15. Found: C, 46.90; H, 3.10. Colorless crystals of (I) suitable for X-ray analysis were grown from an acetone solution.

Refinement top

All H atoms were positioned geometrically refined using a riding model with C—H = 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku,2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii. The crystallographically disordered atoms for O2, C6, C9 and C10 are omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.
2H,10H-1,4-Dioxepino[5',6':4,5]thieno[3,2-e][1,4]dioxepine-5,7(3H,9H)-dione top
Crystal data top
C10H8O6SDx = 1.653 Mg m3
Mr = 256.22Melting point > 573 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2nCell parameters from 2531 reflections
a = 20.301 (2) Åθ = 3.0–27.5°
b = 6.9037 (8) ŵ = 0.33 mm1
c = 7.3463 (8) ÅT = 296 K
V = 1029.6 (2) Å3Prism, colorless
Z = 40.25 × 0.25 × 0.10 mm
F(000) = 528
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1222 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.038
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.4°
Detector resolution: 14.6199 pixels mm-1h = 2623
ϕ & ω scansk = 88
7769 measured reflectionsl = 69
1246 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1532P)2 + 1.2875P]
where P = (Fo2 + 2Fc2)/3
1246 reflections(Δ/σ)max = 0.003
115 parametersΔρmax = 0.24 e Å3
39 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H8O6SV = 1029.6 (2) Å3
Mr = 256.22Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 20.301 (2) ŵ = 0.33 mm1
b = 6.9037 (8) ÅT = 296 K
c = 7.3463 (8) Å0.25 × 0.25 × 0.10 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1222 reflections with I > 2σ(I)
7769 measured reflectionsRint = 0.038
1246 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06639 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.12Δρmax = 0.24 e Å3
1246 reflectionsΔρmin = 0.28 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.03443 (5)0.25000.59051 (10)0.0415 (3)
O10.16771 (17)0.25000.7229 (4)0.0830 (12)
O20.22262 (18)0.1835 (6)0.4789 (5)0.0626 (14)0.50
O30.12917 (14)0.25000.1296 (3)0.0647 (9)
O40.10643 (16)0.25000.5961 (4)0.0637 (8)
O50.13039 (15)0.25000.3096 (4)0.0825 (12)
O60.00129 (15)0.25000.0697 (3)0.0829 (13)
C10.10475 (18)0.25000.4587 (4)0.0393 (7)
C20.08960 (18)0.25000.2764 (4)0.0436 (8)
C30.02063 (18)0.25000.2444 (4)0.0446 (8)
C40.01558 (18)0.25000.4004 (4)0.0382 (7)
C50.1665 (2)0.25000.5615 (5)0.0551 (10)
C60.2204 (3)0.1130 (11)0.2935 (8)0.0624 (15)0.50
H6A0.19110.00200.28900.075*0.50
H6B0.26410.06840.26010.075*0.50
C70.1991 (2)0.25000.1616 (6)0.0687 (13)
H7A0.22150.22340.04760.082*0.50
H7B0.21230.37840.20110.082*0.50
C80.08665 (19)0.25000.4417 (5)0.0452 (8)
C90.1102 (3)0.1692 (10)0.1254 (7)0.0619 (15)0.50
H9A0.08610.04880.13990.074*0.50
H9B0.14860.14530.05020.074*0.50
C100.0673 (3)0.3208 (10)0.0416 (7)0.0599 (18)0.50
H10A0.07690.33470.08710.072*0.50
H10B0.07380.44490.10080.072*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0580 (6)0.0389 (5)0.0277 (4)0.0000.0007 (3)0.000
O10.077 (2)0.135 (3)0.0370 (14)0.0000.0137 (14)0.000
O20.0498 (19)0.092 (4)0.0462 (18)0.0018 (18)0.0067 (15)0.0049 (18)
O30.0526 (16)0.111 (3)0.0304 (12)0.0000.0031 (11)0.000
O40.0643 (18)0.082 (2)0.0452 (15)0.0000.0140 (13)0.000
O50.0471 (17)0.154 (4)0.0467 (16)0.0000.0001 (13)0.000
O60.0514 (17)0.168 (4)0.0289 (13)0.0000.0037 (11)0.000
C10.0520 (19)0.0342 (17)0.0317 (14)0.0000.0017 (13)0.000
C20.054 (2)0.047 (2)0.0293 (15)0.0000.0005 (13)0.000
C30.050 (2)0.054 (2)0.0292 (15)0.0000.0043 (13)0.000
C40.0517 (18)0.0304 (15)0.0326 (15)0.0000.0003 (13)0.000
C50.057 (2)0.070 (3)0.0378 (18)0.0000.0049 (16)0.000
C60.046 (3)0.084 (4)0.057 (3)0.004 (3)0.004 (2)0.008 (3)
C70.051 (2)0.107 (4)0.048 (2)0.0000.0029 (18)0.000
C80.052 (2)0.0413 (19)0.0425 (18)0.0000.0015 (15)0.000
C90.055 (3)0.080 (4)0.051 (3)0.003 (3)0.012 (2)0.011 (3)
C100.056 (3)0.090 (5)0.034 (2)0.010 (3)0.011 (2)0.004 (2)
Geometric parameters (Å, º) top
S1—C11.725 (4)C2—C31.420 (5)
S1—C41.727 (3)C3—C41.361 (5)
O1—C51.186 (4)C4—C81.474 (5)
O2—C61.447 (6)C5—O2i1.370 (5)
O2—C51.370 (5)C6—C71.421 (7)
O3—C21.345 (4)C6—H6A0.9700
O3—C71.439 (5)C6—H6B0.9700
O4—C81.204 (4)C7—C6i1.421 (7)
O5—C81.315 (5)C7—H7A0.9700
O5—C9i1.520 (6)C7—H7B0.9700
O5—C91.520 (6)C9—C101.494 (8)
O6—C31.342 (4)C9—H9A0.9700
O6—C101.491 (6)C9—H9B0.9700
O6—C10i1.491 (6)C10—H10A0.9700
C1—C21.375 (4)C10—H10B0.9700
C1—C51.463 (5)
C1—S1—C491.88 (16)O2—C6—H6B108.4
C6—O2—C5120.2 (4)C7—C6—H6B108.4
C2—O3—C7117.3 (3)H6A—C6—H6B107.5
C8—O5—C9i118.3 (3)C6i—C7—C683.4 (6)
C8—O5—C9118.3 (3)C6i—C7—O3114.3 (3)
C3—O6—C10113.9 (3)C6—C7—O3114.3 (3)
C3—O6—C10i113.9 (3)C6i—C7—H7A124.9
C2—C1—C5134.0 (3)C6—C7—H7A108.7
C2—C1—S1111.2 (3)O3—C7—H7A108.7
C5—C1—S1114.8 (2)C6—C7—H7B108.7
O3—C2—C1130.4 (3)O3—C7—H7B108.7
O3—C2—C3117.2 (3)H7A—C7—H7B107.6
C1—C2—C3112.4 (3)O4—C8—O5118.0 (4)
O6—C3—C4130.3 (3)O4—C8—C4121.4 (3)
O6—C3—C2116.5 (3)O5—C8—C4120.6 (3)
C4—C3—C2113.2 (3)C10—C9—O5105.5 (4)
C3—C4—C8134.6 (3)C10—C9—H9A110.6
C3—C4—S1111.3 (3)O5—C9—H9A110.6
C8—C4—S1114.1 (2)C10—C9—H9B110.6
O1—C5—C1122.2 (4)O5—C9—H9B110.6
O1—C5—O2i115.2 (4)H9A—C9—H9B108.8
C1—C5—O2i119.0 (3)O6—C10—C9104.9 (4)
O1—C5—O2115.2 (4)O6—C10—H10A110.8
C1—C5—O2119.0 (3)C9—C10—H10A110.8
O2—C6—C7115.3 (5)O6—C10—H10B110.8
O2—C6—H6A108.4C9—C10—H10B110.8
C7—C6—H6A108.4H10A—C10—H10B108.8
C4—S1—C1—C20.0S1—C1—C5—O2i157.5 (2)
C4—S1—C1—C5180.0C2—C1—C5—O222.5 (2)
C7—O3—C2—C10.0S1—C1—C5—O2157.5 (2)
C7—O3—C2—C3180.0C6—O2—C5—O1158.5 (4)
C5—C1—C2—O30.0C6—O2—C5—C10.5 (5)
S1—C1—C2—O3180.0C6—O2—C5—O2i101.9 (4)
C5—C1—C2—C3180.0C5—O2—C6—C760.1 (6)
S1—C1—C2—C30.0O2—C6—C7—C6i23.1 (6)
C10—O6—C3—C421.0 (3)O2—C6—C7—O390.6 (5)
C10i—O6—C3—C421.0 (3)C2—O3—C7—C6i46.9 (4)
C10—O6—C3—C2159.0 (3)C2—O3—C7—C646.9 (4)
C10i—O6—C3—C2159.0 (3)C9i—O5—C8—O4155.4 (3)
O3—C2—C3—O60.0C9—O5—C8—O4155.4 (3)
C1—C2—C3—O6180.0C9i—O5—C8—C424.6 (3)
O3—C2—C3—C4180.0C9—O5—C8—C424.6 (3)
C1—C2—C3—C40.0C3—C4—C8—O4180.0
O6—C3—C4—C80.0S1—C4—C8—O40.0
C2—C3—C4—C8180.0C3—C4—C8—O50.0
O6—C3—C4—S1180.0S1—C4—C8—O5180.0
C2—C3—C4—S10.0C8—O5—C9—C1075.3 (4)
C1—S1—C4—C30.0C9i—O5—C9—C1027.0 (4)
C1—S1—C4—C8180.0C3—O6—C10—C968.2 (4)
C2—C1—C5—O1180.0C10i—O6—C10—C930.7 (4)
S1—C1—C5—O10.0O5—C9—C10—O6101.2 (4)
C2—C1—C5—O2i22.5 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O4ii0.972.593.506 (7)158
C10—H10A···O4iii0.972.473.403 (6)160
C6—H6B···O5iv0.972.533.262 (7)132
C6—H6B···O1v0.972.613.422 (7)141
Symmetry codes: (ii) x, y1/2, z+1; (iii) x, y, z1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H8O6S
Mr256.22
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)20.301 (2), 6.9037 (8), 7.3463 (8)
V3)1029.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.25 × 0.25 × 0.10
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7769, 1246, 1222
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.151, 1.12
No. of reflections1246
No. of parameters115
No. of restraints39
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku,2001), CrystalClear (Molecular Structure Corporation & Rigaku, 2001), TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O4i0.972.593.506 (7)158.0
C10—H10A···O4ii0.972.473.403 (6)160.4
C6—H6B···O5iii0.972.533.262 (7)131.8
C6—H6B···O1iv0.972.613.422 (7)141.1
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y, z1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds