Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Co2(NCS)4(C10H9N3)3]n, 4,4′-di­pyridyl­amine (dpa) ligands link octa­hedrally and tetra­hedrally coordinated CoII atoms with pendant isothio­cyanate ligands into [Co2(NCS)4(dpa)3]n chains that propagate along the c axis. These form sinusoidal pseudo-layers coincident with the ac plane via N—H...S hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705057X/ng2333sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705057X/ng2333Isup2.hkl
Contains datablock I

CCDC reference: 667172

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.066
  • wR factor = 0.168
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level A DIFF020_ALERT_1_A _diffrn_standards_interval_count and _diffrn_standards_interval_time are missing. Number of measurements between standards or time (min) between standards.
Author Response: CCD detector used
PLAT242_ALERT_2_A Check Low       Ueq as Compared to Neighbors for        C33
Author Response: C33 is part of terminal isothiocyanate ligand with large S ADP, which could not be modeled successfully as a disordered position.

Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 47 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT220_ALERT_2_C Large Non-Solvent S Ueq(max)/Ueq(min) ... 2.70 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C32
Author Response: C33 is part of terminal isothiocyanate ligand with large S ADP, which could not be modeled successfully as a disordered position.
PLAT242_ALERT_2_C Check Low       Ueq as Compared to Neighbors for        C34
Author Response: C33 is part of terminal isothiocyanate ligand with large S ADP, which could not be modeled successfully as a disordered position.
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ...         11
PLAT731_ALERT_1_C Bond    Calc     0.89(5), Rep     0.89(2) ......       2.50 su-Ra
              N2   -H2N     1.555   1.555
PLAT735_ALERT_1_C D-H     Calc     0.89(5), Rep     0.89(2) ......       2.50 su-Ra
              N2   -H2N     1.555   1.555

Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 8215 Count of symmetry unique reflns 5050 Completeness (_total/calc) 162.67% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 3165 Fraction of Friedel pairs measured 0.627 Are heavy atom types Z>Si present yes PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (2) 1.56 PLAT794_ALERT_5_G Check Predicted Bond Valency for Co2 (2) 1.79 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

One of the most common tethering ligands for the generation of functional coordination polymers is 4,4'-bipyridine. By comparison, similar materials based on 4,4'-dipyridylamine (dpa) are much less common (Montney et al., 2007). The title compound was prepared during continued attempts to investigate the effect of the counteranion on the structure of dpa-containing cobalt coordination polymers (Mallika Krishnan et al., 2007).

The title compound crystallizes in the non-centrosymmetric space group P212121 with an asymmetric unit (Fig. 1) comprised of two cobalt atoms, four ligated N-bound isothiocyanate anions and three crystallographically distinct dpa ligands. The two crystallographically distinct cobalt atoms have differing coordination geometries, with Co1 displaying an octahedral [CoN6] arrangement and Co2 possessing a tetrahedral [CoN4] coordination sphere. The longer bond distances about the octahedrally coordinated Co atom are consistent with the well known trend towards larger ionic radii for higher coordination numbers (Shannon, 1976).

Propagation of the asymmetric unit via the 21 screw axis coincident with the c crystal direction generates a 1-D coordination polymeric ribbon with a formulation of [Co2(SCN)4(dpa)3] (Fig. 2). Each octahedrally coordinated Co1 atom connects to two other neighboring Co1 atoms and two tetrahedrally coordinated Co2 atoms through tethering dpa ligands. In turn, each Co2 atom is linked to two neighboring Co1 atoms in the same fashion. The Co1–Co1 distance measures 11.409 (1) Å, while the two distinct through-ligand Co1–Co2 distances are 11.160 (1) Å and 11.234 (1) Å.

The 1-D ribbon motifs construct sinusoidal pseudo 2-D layers coincident with the ac crystal planess via N—H···S hydrogen bonding between dpa amines and S2 atoms of isothiocyanate ligands bound to Co2, within the next-nearest neighbor ribbon motif (Fig. 3). Neighboring ribbons within the pseudo 2-D layer do not engage in hydrogen bonding. The closest Co—Co distance between neighboring ribbons within the same pseudo 2-D layer is 7.924 (1) Å, defining the a lattice parameter. These layers in turn link together via three different N–H···S hydrogen bonding interactions to afford the full pseudo 3-D structure of the title compound.

Related literature top

For literature on complexes of 4,4'-dipyridylamine, see: Mallika Krishnan et al. (2007); Montney et al. (2007). For the synthesis of 4,4'-dipyridylamine, see Zapf et al. (1998). For the radii of cobalt ions, see: Shannon (1976).

Experimental top

Cobalt thiocyanate was obtained commercially. 4,4'-Dipyridylamine (dpa) was prepared via a published procedure (Zapf et al., 1998). Cobalt thiocyanate (58 mg, 0.33 mmol) and dpa (57 mg, 0.33 mmol) were added to 10 ml water in a 23 ml a Teflon-lined Parr acid digestion bomb. The mixture was then heated under autogenous pressure at 423 K for 48 h, whereupon it was cooled slowly to 293 K. Dark blue crystals (78 mg, 0.27 mmol, 82% yield base on dpa) of the title compound were produced.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 (2) Å and refined in riding mode with Uiso = 1.2Ueq(C). Two of the H atoms bound to N within dpa ligands were found via Fourier difference map, restrained with N—H = 0.88 (2) Å, and refined with Uiso = 1.2Ueq(N). The third dpa amine H atom was placed in a calculated position, with N—H = 0.88 (2) Å and refined in riding mode with Uiso = 1.2Ueq(N).

Structure description top

One of the most common tethering ligands for the generation of functional coordination polymers is 4,4'-bipyridine. By comparison, similar materials based on 4,4'-dipyridylamine (dpa) are much less common (Montney et al., 2007). The title compound was prepared during continued attempts to investigate the effect of the counteranion on the structure of dpa-containing cobalt coordination polymers (Mallika Krishnan et al., 2007).

The title compound crystallizes in the non-centrosymmetric space group P212121 with an asymmetric unit (Fig. 1) comprised of two cobalt atoms, four ligated N-bound isothiocyanate anions and three crystallographically distinct dpa ligands. The two crystallographically distinct cobalt atoms have differing coordination geometries, with Co1 displaying an octahedral [CoN6] arrangement and Co2 possessing a tetrahedral [CoN4] coordination sphere. The longer bond distances about the octahedrally coordinated Co atom are consistent with the well known trend towards larger ionic radii for higher coordination numbers (Shannon, 1976).

Propagation of the asymmetric unit via the 21 screw axis coincident with the c crystal direction generates a 1-D coordination polymeric ribbon with a formulation of [Co2(SCN)4(dpa)3] (Fig. 2). Each octahedrally coordinated Co1 atom connects to two other neighboring Co1 atoms and two tetrahedrally coordinated Co2 atoms through tethering dpa ligands. In turn, each Co2 atom is linked to two neighboring Co1 atoms in the same fashion. The Co1–Co1 distance measures 11.409 (1) Å, while the two distinct through-ligand Co1–Co2 distances are 11.160 (1) Å and 11.234 (1) Å.

The 1-D ribbon motifs construct sinusoidal pseudo 2-D layers coincident with the ac crystal planess via N—H···S hydrogen bonding between dpa amines and S2 atoms of isothiocyanate ligands bound to Co2, within the next-nearest neighbor ribbon motif (Fig. 3). Neighboring ribbons within the pseudo 2-D layer do not engage in hydrogen bonding. The closest Co—Co distance between neighboring ribbons within the same pseudo 2-D layer is 7.924 (1) Å, defining the a lattice parameter. These layers in turn link together via three different N–H···S hydrogen bonding interactions to afford the full pseudo 3-D structure of the title compound.

For literature on complexes of 4,4'-dipyridylamine, see: Mallika Krishnan et al. (2007); Montney et al. (2007). For the synthesis of 4,4'-dipyridylamine, see Zapf et al. (1998). For the radii of cobalt ions, see: Shannon (1976).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: APEX2 (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalMaker (Palmer, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing 50% probability ellipsoids and partial atom numbering scheme. H atom positions are shown as gray sticks. Color codes: light-blue N, yellow S, black C, dark blue Co.
[Figure 2] Fig. 2. A single [Co2(NCS)4(dpa)3]n chain viewed down c.
[Figure 3] Fig. 3. A pseudo two-dimensional layer formed by N—H···S hydrogen bonding interactions (shown as dashed lines) between next-nearest neighbor [Co2(NCS)4(dpa)3]n chains.
Poly[tris(µ-di-4-pyridylamine-κ2N:N')tetrathiocyanato-κ4Ndicobalt(II)] top
Crystal data top
[Co2(NCS)4(C10H9N3)3]Dx = 1.462 Mg m3
Mr = 863.79Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 21566 reflections
a = 7.9245 (2) Åθ = 1.3–27.5°
b = 21.7051 (5) ŵ = 1.10 mm1
c = 22.8134 (5) ÅT = 173 K
V = 3923.95 (16) Å3Plate, blue
Z = 40.24 × 0.16 × 0.04 mm
F(000) = 1760
Data collection top
Bruker APEXII
diffractometer
8215 independent reflections
Radiation source: fine-focus sealed tube3888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω/φ scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.769, Tmax = 0.957k = 2327
21566 measured reflectionsl = 2928
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0636P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
8215 reflectionsΔρmax = 0.48 e Å3
484 parametersΔρmin = 0.44 e Å3
2 restraintsAbsolute structure: Flack (1983), with 4324 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (3)
Crystal data top
[Co2(NCS)4(C10H9N3)3]V = 3923.95 (16) Å3
Mr = 863.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9245 (2) ŵ = 1.10 mm1
b = 21.7051 (5) ÅT = 173 K
c = 22.8134 (5) Å0.24 × 0.16 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
8215 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3888 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.957Rint = 0.087
21566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168Δρmax = 0.48 e Å3
S = 1.00Δρmin = 0.44 e Å3
8215 reflectionsAbsolute structure: Flack (1983), with 4324 Friedel pairs
484 parametersAbsolute structure parameter: 0.07 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.72244 (11)0.50638 (5)0.98492 (4)0.0355 (3)
Co20.19707 (13)0.77752 (6)1.25735 (5)0.0601 (4)
S10.3044 (3)0.36061 (11)1.04968 (12)0.0650 (7)
S20.5888 (6)0.6243 (2)1.22905 (16)0.1580 (19)
S31.1421 (3)0.63571 (12)0.89090 (10)0.0585 (7)
S40.4974 (3)0.95834 (18)1.28237 (18)0.1299 (16)
N11.5164 (8)0.2278 (4)0.8190 (3)0.059 (2)
N21.0726 (9)0.2531 (3)0.9131 (3)0.0503 (19)
H2N1.023 (9)0.2168 (19)0.909 (3)0.060*
N30.8455 (7)0.4207 (3)0.9616 (2)0.0360 (16)
N40.6024 (7)0.5921 (3)1.0081 (3)0.0397 (16)
N50.3715 (8)0.7490 (3)1.0815 (3)0.054 (2)
H5A0.42760.78371.07700.064*
N60.0573 (8)0.7694 (4)1.1858 (3)0.0530 (19)
N70.5961 (6)0.5045 (3)0.8987 (2)0.0332 (15)
N80.3962 (7)0.4829 (4)0.7301 (3)0.057 (2)
H8N0.287 (3)0.491 (4)0.731 (3)0.069*
N90.6494 (7)0.4914 (3)0.5685 (2)0.0378 (16)
N100.9299 (8)0.5549 (3)0.9507 (3)0.0414 (17)
N110.5209 (8)0.4570 (3)1.0222 (3)0.0441 (17)
N120.3452 (10)0.7073 (4)1.2577 (4)0.080 (3)
N130.3002 (10)0.8556 (4)1.2636 (3)0.074 (2)
C11.3997 (12)0.1836 (5)0.8223 (4)0.066 (3)
H11.42200.14590.80260.080*
C21.2493 (11)0.1886 (4)0.8523 (3)0.056 (2)
H21.16870.15620.85270.068*
C31.2216 (10)0.2452 (4)0.8826 (3)0.047 (2)
C41.3462 (10)0.2899 (4)0.8809 (3)0.050 (2)
H41.33410.32730.90210.059*
C51.4861 (11)0.2789 (5)0.8482 (4)0.063 (3)
H51.56860.31060.84630.075*
C60.9431 (10)0.4146 (4)0.9130 (3)0.043 (2)
H60.96000.45060.89000.052*
C71.0190 (10)0.3622 (4)0.8941 (4)0.047 (2)
H71.08270.36150.85890.057*
C81.0000 (9)0.3095 (4)0.9282 (3)0.038 (2)
C90.8950 (9)0.3134 (4)0.9768 (3)0.045 (2)
H90.87280.27780.99970.054*
C100.8250 (9)0.3675 (4)0.9915 (3)0.048 (2)
H100.75580.36841.02550.058*
C110.6909 (10)0.6408 (4)1.0275 (3)0.046 (2)
H110.81040.63961.02430.055*
C120.6186 (10)0.6920 (4)1.0517 (3)0.051 (2)
H120.68770.72481.06530.061*
C130.4435 (10)0.6962 (4)1.0565 (3)0.048 (2)
C140.3538 (11)0.6476 (4)1.0330 (4)0.058 (3)
H140.23400.64891.03300.069*
C150.4360 (10)0.5969 (4)1.0094 (4)0.053 (2)
H150.37020.56440.99350.064*
C160.0310 (10)0.8176 (4)1.1639 (3)0.048 (2)
H160.00470.85801.17380.058*
C170.1659 (9)0.8114 (4)1.1290 (3)0.048 (2)
H170.22430.84691.11540.058*
C180.2204 (11)0.7526 (4)1.1128 (3)0.052 (2)
C190.1268 (11)0.7033 (4)1.1330 (4)0.069 (3)
H190.15710.66241.12240.082*
C200.0092 (12)0.7135 (5)1.1683 (4)0.065 (3)
H200.07300.67901.18110.078*
C210.4854 (9)0.5064 (4)0.5748 (3)0.042 (2)
H210.42600.51940.54080.051*
C220.3991 (9)0.5044 (4)0.6259 (3)0.055 (2)
H220.28390.51640.62720.066*
C230.4817 (8)0.4843 (4)0.6772 (3)0.042 (2)
C240.6493 (9)0.4671 (4)0.6714 (3)0.0362 (19)
H240.71020.45140.70400.043*
C250.7255 (9)0.4729 (3)0.6180 (3)0.041 (2)
H250.84210.46310.61570.049*
C260.4431 (9)0.4811 (4)0.8876 (3)0.046 (2)
H260.37760.46830.92020.055*
C270.3730 (10)0.4740 (4)0.8332 (3)0.055 (3)
H270.26340.45680.82900.066*
C280.4634 (9)0.4922 (4)0.7844 (3)0.046 (2)
C290.6197 (9)0.5176 (4)0.7943 (3)0.046 (2)
H290.68630.53120.76220.055*
C300.6785 (9)0.5234 (3)0.8494 (3)0.038 (2)
H300.78600.54210.85430.045*
C311.0209 (9)0.5889 (4)0.9264 (3)0.035 (2)
C320.4329 (9)0.4177 (4)1.0336 (3)0.039 (2)
C330.4444 (13)0.6725 (5)1.2456 (4)0.068 (3)
C340.3839 (11)0.8982 (5)1.2716 (4)0.072 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0386 (5)0.0427 (7)0.0253 (5)0.0015 (5)0.0051 (5)0.0005 (5)
Co20.0419 (6)0.0872 (10)0.0514 (7)0.0058 (7)0.0016 (6)0.0045 (7)
S10.0450 (11)0.0500 (16)0.1002 (18)0.0023 (12)0.0013 (14)0.0113 (15)
S20.189 (4)0.178 (4)0.107 (3)0.109 (4)0.042 (3)0.019 (3)
S30.0443 (11)0.0676 (18)0.0634 (15)0.0119 (12)0.0110 (12)0.0117 (14)
S40.0483 (15)0.141 (3)0.200 (4)0.0435 (18)0.040 (2)0.094 (3)
N10.048 (4)0.063 (6)0.066 (5)0.005 (4)0.006 (4)0.013 (5)
N20.060 (4)0.028 (5)0.063 (5)0.000 (4)0.016 (4)0.002 (4)
N30.038 (3)0.037 (4)0.032 (3)0.003 (3)0.002 (3)0.002 (3)
N40.035 (3)0.052 (5)0.032 (4)0.007 (3)0.001 (3)0.006 (4)
N50.056 (4)0.039 (5)0.065 (5)0.004 (4)0.011 (4)0.012 (4)
N60.042 (4)0.060 (6)0.057 (5)0.002 (4)0.002 (4)0.003 (5)
N70.037 (3)0.034 (4)0.029 (3)0.001 (3)0.003 (3)0.009 (3)
N80.036 (3)0.105 (7)0.031 (4)0.023 (4)0.004 (3)0.001 (4)
N90.034 (3)0.050 (5)0.029 (3)0.004 (3)0.003 (3)0.005 (3)
N100.042 (4)0.046 (5)0.036 (4)0.001 (3)0.005 (3)0.006 (4)
N110.045 (4)0.052 (5)0.035 (4)0.001 (4)0.001 (3)0.004 (4)
N120.072 (5)0.097 (8)0.071 (6)0.021 (5)0.000 (5)0.001 (5)
N130.063 (4)0.102 (7)0.057 (5)0.047 (5)0.003 (5)0.011 (5)
C10.067 (6)0.058 (7)0.074 (7)0.003 (6)0.027 (6)0.018 (6)
C20.069 (6)0.048 (6)0.052 (5)0.008 (5)0.015 (5)0.000 (5)
C30.041 (4)0.057 (6)0.044 (5)0.005 (5)0.010 (4)0.006 (5)
C40.051 (5)0.058 (7)0.039 (5)0.014 (5)0.007 (4)0.006 (5)
C50.053 (5)0.060 (7)0.075 (6)0.014 (5)0.015 (5)0.022 (6)
C60.053 (5)0.041 (6)0.035 (4)0.000 (4)0.011 (4)0.008 (4)
C70.051 (5)0.037 (6)0.054 (5)0.001 (4)0.023 (4)0.001 (5)
C80.048 (4)0.041 (6)0.026 (4)0.001 (4)0.003 (4)0.003 (4)
C90.051 (4)0.036 (5)0.047 (5)0.008 (4)0.008 (4)0.007 (5)
C100.049 (5)0.051 (6)0.044 (5)0.011 (4)0.017 (4)0.007 (5)
C110.045 (4)0.053 (6)0.039 (5)0.004 (5)0.011 (4)0.003 (5)
C120.060 (5)0.042 (6)0.051 (5)0.004 (5)0.005 (5)0.004 (5)
C130.051 (5)0.054 (7)0.040 (5)0.012 (5)0.006 (4)0.009 (5)
C140.048 (5)0.063 (7)0.062 (6)0.006 (5)0.018 (5)0.005 (5)
C150.060 (5)0.053 (6)0.046 (5)0.012 (5)0.013 (5)0.006 (5)
C160.038 (4)0.055 (7)0.051 (5)0.012 (5)0.001 (4)0.011 (5)
C170.036 (4)0.042 (6)0.066 (6)0.004 (4)0.002 (4)0.005 (5)
C180.054 (5)0.060 (7)0.043 (5)0.017 (5)0.000 (5)0.005 (5)
C190.066 (6)0.037 (6)0.102 (8)0.007 (5)0.014 (6)0.012 (6)
C200.073 (7)0.055 (8)0.068 (7)0.005 (6)0.022 (6)0.004 (6)
C210.045 (4)0.054 (6)0.029 (4)0.007 (4)0.005 (4)0.000 (5)
C220.035 (4)0.100 (8)0.031 (4)0.001 (5)0.000 (4)0.006 (5)
C230.036 (4)0.063 (7)0.026 (4)0.016 (4)0.002 (4)0.007 (4)
C240.037 (4)0.048 (6)0.024 (4)0.002 (4)0.005 (3)0.001 (4)
C250.036 (4)0.053 (6)0.033 (4)0.008 (4)0.005 (4)0.003 (4)
C260.043 (4)0.063 (7)0.032 (4)0.015 (4)0.012 (4)0.007 (5)
C270.052 (5)0.092 (8)0.022 (4)0.026 (5)0.004 (4)0.004 (5)
C280.043 (4)0.072 (7)0.023 (4)0.010 (5)0.009 (4)0.009 (5)
C290.044 (4)0.071 (7)0.023 (4)0.009 (4)0.002 (4)0.004 (4)
C300.036 (4)0.048 (6)0.029 (4)0.010 (4)0.008 (4)0.001 (4)
C310.028 (4)0.052 (6)0.026 (4)0.007 (4)0.007 (4)0.009 (4)
C320.032 (4)0.049 (6)0.036 (5)0.004 (4)0.004 (4)0.002 (4)
C330.080 (7)0.076 (8)0.049 (6)0.011 (6)0.004 (6)0.005 (6)
C340.050 (5)0.116 (10)0.050 (6)0.005 (6)0.011 (5)0.037 (7)
Geometric parameters (Å, º) top
Co1—N102.103 (7)C3—C41.385 (11)
Co1—N112.103 (7)C4—C51.357 (10)
Co1—N42.155 (6)C4—H40.9500
Co1—N9i2.161 (5)C5—H50.9500
Co1—N32.165 (6)C6—C71.357 (10)
Co1—N72.207 (5)C6—H60.9500
Co2—N131.888 (8)C7—C81.390 (10)
Co2—N121.924 (9)C7—H70.9500
Co2—N61.981 (7)C8—C91.390 (10)
Co2—N1i2.010 (7)C9—C101.340 (10)
S1—C321.645 (9)C9—H90.9500
S2—C331.596 (12)C10—H100.9500
S3—C311.615 (9)C11—C121.366 (11)
S4—C341.605 (11)C11—H110.9500
N1—C51.317 (11)C12—C131.394 (11)
N1—C11.334 (11)C12—H120.9500
N1—Co2ii2.010 (7)C13—C141.380 (11)
N2—C31.380 (10)C14—C151.387 (11)
N2—C81.396 (10)C14—H140.9500
N2—H2N0.89 (2)C15—H150.9500
N3—C101.352 (9)C16—C171.339 (10)
N3—C61.358 (9)C16—H160.9500
N4—C151.323 (10)C17—C181.398 (11)
N4—C111.344 (9)C17—H170.9500
N5—C181.396 (10)C18—C191.381 (12)
N5—C131.402 (10)C19—C201.363 (12)
N5—H5A0.8800C19—H190.9500
N6—C201.332 (11)C20—H200.9500
N6—C161.354 (10)C21—C221.353 (9)
N7—C261.339 (9)C21—H210.9500
N7—C301.365 (8)C22—C231.409 (10)
N8—C281.364 (9)C22—H220.9500
N8—C231.383 (9)C23—C241.387 (10)
N8—H8N0.88 (2)C24—C251.365 (9)
N9—C251.341 (8)C24—H240.9500
N9—C211.348 (8)C25—H250.9500
N9—Co1ii2.161 (5)C26—C271.367 (9)
N10—C311.171 (9)C26—H260.9500
N11—C321.131 (9)C27—C281.381 (10)
N12—C331.124 (10)C27—H270.9500
N13—C341.151 (11)C28—C291.375 (10)
C1—C21.378 (11)C29—C301.346 (9)
C1—H10.9500C29—H290.9500
C2—C31.429 (11)C30—H300.9500
C2—H20.9500
N10—Co1—N11177.7 (2)C9—C8—C7117.4 (8)
N10—Co1—N490.2 (2)C9—C8—N2119.9 (8)
N11—Co1—N490.3 (2)C7—C8—N2122.5 (7)
N10—Co1—N9i87.1 (2)C10—C9—C8120.1 (8)
N11—Co1—N9i90.7 (2)C10—C9—H9120.0
N4—Co1—N9i88.4 (2)C8—C9—H9120.0
N10—Co1—N389.2 (2)C9—C10—N3124.9 (7)
N11—Co1—N390.2 (2)C9—C10—H10117.5
N4—Co1—N3179.4 (2)N3—C10—H10117.5
N9i—Co1—N391.4 (2)N4—C11—C12123.6 (8)
N10—Co1—N791.9 (2)N4—C11—H11118.2
N11—Co1—N790.3 (2)C12—C11—H11118.2
N4—Co1—N792.0 (2)C11—C12—C13120.2 (8)
N9i—Co1—N7178.9 (2)C11—C12—H12119.9
N3—Co1—N788.3 (2)C13—C12—H12119.9
N13—Co2—N12116.6 (4)C14—C13—C12115.6 (8)
N13—Co2—N6112.6 (3)C14—C13—N5125.0 (7)
N12—Co2—N6105.9 (3)C12—C13—N5119.4 (8)
N13—Co2—N1i107.9 (3)C13—C14—C15121.0 (8)
N12—Co2—N1i112.7 (3)C13—C14—H14119.5
N6—Co2—N1i100.0 (3)C15—C14—H14119.5
C5—N1—C1116.8 (8)N4—C15—C14122.6 (8)
C5—N1—Co2ii122.1 (7)N4—C15—H15118.7
C1—N1—Co2ii119.5 (7)C14—C15—H15118.7
C3—N2—C8125.8 (7)C17—C16—N6123.7 (9)
C3—N2—H2N103 (5)C17—C16—H16118.1
C8—N2—H2N128 (5)N6—C16—H16118.1
C10—N3—C6113.4 (6)C16—C17—C18119.7 (9)
C10—N3—Co1123.8 (5)C16—C17—H17120.2
C6—N3—Co1122.7 (5)C18—C17—H17120.2
C15—N4—C11116.8 (7)C19—C18—N5126.0 (9)
C15—N4—Co1120.9 (6)C19—C18—C17117.0 (8)
C11—N4—Co1122.0 (5)N5—C18—C17116.8 (8)
C18—N5—C13127.1 (8)C20—C19—C18119.6 (9)
C18—N5—H5A116.5C20—C19—H19120.2
C13—N5—H5A116.5C18—C19—H19120.2
C20—N6—C16116.4 (7)N6—C20—C19123.5 (9)
C20—N6—Co2119.2 (7)N6—C20—H20118.2
C16—N6—Co2121.6 (6)C19—C20—H20118.2
C26—N7—C30113.0 (6)N9—C21—C22124.8 (7)
C26—N7—Co1126.0 (5)N9—C21—H21117.6
C30—N7—Co1120.8 (4)C22—C21—H21117.6
C28—N8—C23126.7 (6)C21—C22—C23119.4 (7)
C28—N8—H8N109 (5)C21—C22—H22120.3
C23—N8—H8N121 (5)C23—C22—H22120.3
C25—N9—C21114.6 (6)N8—C23—C24123.1 (7)
C25—N9—Co1ii122.6 (4)N8—C23—C22120.2 (6)
C21—N9—Co1ii122.8 (5)C24—C23—C22116.6 (6)
C31—N10—Co1166.6 (6)C25—C24—C23119.0 (7)
C32—N11—Co1161.0 (7)C25—C24—H24120.5
C33—N12—Co2163.1 (9)C23—C24—H24120.5
C34—N13—Co2169.0 (9)N9—C25—C24125.5 (6)
N1—C1—C2124.8 (9)N9—C25—H25117.3
N1—C1—H1117.6C24—C25—H25117.3
C2—C1—H1117.6N7—C26—C27125.6 (7)
C1—C2—C3116.2 (9)N7—C26—H26117.2
C1—C2—H2121.9C27—C26—H26117.2
C3—C2—H2121.9C26—C27—C28119.3 (7)
N2—C3—C4122.5 (8)C26—C27—H27120.4
N2—C3—C2118.8 (8)C28—C27—H27120.4
C4—C3—C2118.7 (8)N8—C28—C29124.1 (7)
C5—C4—C3118.4 (8)N8—C28—C27119.2 (6)
C5—C4—H4120.8C29—C28—C27116.7 (6)
C3—C4—H4120.8C30—C29—C28120.2 (7)
N1—C5—C4125.1 (9)C30—C29—H29119.9
N1—C5—H5117.5C28—C29—H29119.9
C4—C5—H5117.5C29—C30—N7125.2 (7)
C7—C6—N3126.4 (8)C29—C30—H30117.4
C7—C6—H6116.8N7—C30—H30117.4
N3—C6—H6116.8N10—C31—S3178.0 (6)
C6—C7—C8117.6 (7)N11—C32—S1179.5 (8)
C6—C7—H7121.2N12—C33—S2178.6 (11)
C8—C7—H7121.2N13—C34—S4178.9 (11)
N10—Co1—N3—C10149.6 (6)C6—C7—C8—C94.4 (11)
N11—Co1—N3—C1028.1 (6)C6—C7—C8—N2179.9 (7)
N9i—Co1—N3—C1062.5 (6)C3—N2—C8—C9153.7 (8)
N7—Co1—N3—C10118.5 (6)C3—N2—C8—C730.8 (12)
N10—Co1—N3—C634.6 (6)C7—C8—C9—C104.2 (11)
N11—Co1—N3—C6147.6 (6)N2—C8—C9—C10180.0 (7)
N9i—Co1—N3—C6121.7 (5)C8—C9—C10—N31.2 (12)
N7—Co1—N3—C657.3 (5)C6—N3—C10—C91.4 (11)
N10—Co1—N4—C15150.3 (6)Co1—N3—C10—C9177.5 (6)
N11—Co1—N4—C1531.9 (6)C15—N4—C11—C124.7 (11)
N9i—Co1—N4—C15122.6 (6)Co1—N4—C11—C12168.7 (6)
N7—Co1—N4—C1558.4 (6)N4—C11—C12—C131.1 (12)
N10—Co1—N4—C1136.5 (6)C11—C12—C13—C142.9 (12)
N11—Co1—N4—C11141.3 (6)C11—C12—C13—N5179.8 (7)
N9i—Co1—N4—C1150.6 (6)C18—N5—C13—C1433.3 (13)
N7—Co1—N4—C11128.4 (6)C18—N5—C13—C12149.8 (8)
N13—Co2—N6—C20164.5 (7)C12—C13—C14—C153.4 (12)
N12—Co2—N6—C2036.0 (8)N5—C13—C14—C15179.5 (8)
N1i—Co2—N6—C2081.2 (7)C11—N4—C15—C144.2 (12)
N13—Co2—N6—C1635.0 (7)Co1—N4—C15—C14169.3 (6)
N12—Co2—N6—C16163.6 (6)C13—C14—C15—N40.2 (14)
N1i—Co2—N6—C1679.2 (6)C20—N6—C16—C173.6 (12)
N10—Co1—N7—C26177.1 (6)Co2—N6—C16—C17157.4 (6)
N11—Co1—N7—C263.6 (7)N6—C16—C17—C181.0 (12)
N4—Co1—N7—C2686.8 (6)C13—N5—C18—C1911.1 (13)
N3—Co1—N7—C2693.8 (6)C13—N5—C18—C17174.2 (8)
N10—Co1—N7—C308.9 (6)C16—C17—C18—C191.7 (12)
N11—Co1—N7—C30170.5 (6)C16—C17—C18—N5173.6 (7)
N4—Co1—N7—C3099.2 (6)N5—C18—C19—C20173.2 (8)
N4—Co1—N10—C3147 (3)C17—C18—C19—C201.6 (13)
N9i—Co1—N10—C31135 (3)C16—N6—C20—C193.7 (14)
N3—Co1—N10—C31134 (3)Co2—N6—C20—C19157.8 (7)
N7—Co1—N10—C3145 (3)C18—C19—C20—N61.2 (15)
N4—Co1—N11—C32165 (2)C25—N9—C21—C220.6 (13)
N9i—Co1—N11—C32106 (2)Co1ii—N9—C21—C22178.4 (7)
N3—Co1—N11—C3215 (2)N9—C21—C22—C231.1 (15)
N7—Co1—N11—C3273 (2)C28—N8—C23—C2431.3 (14)
N13—Co2—N12—C3365 (3)C28—N8—C23—C22148.2 (10)
N6—Co2—N12—C3361 (3)C21—C22—C23—N8179.0 (8)
N1i—Co2—N12—C33170 (3)C21—C22—C23—C240.6 (13)
N12—Co2—N13—C3424 (4)N8—C23—C24—C25176.8 (7)
N6—Co2—N13—C34147 (4)C22—C23—C24—C252.8 (12)
N1i—Co2—N13—C34104 (4)C21—N9—C25—C241.9 (12)
C5—N1—C1—C22.2 (15)Co1ii—N9—C25—C24176.0 (6)
Co2ii—N1—C1—C2163.8 (7)C23—C24—C25—N93.6 (12)
N1—C1—C2—C31.5 (14)C30—N7—C26—C272.0 (12)
C8—N2—C3—C423.3 (13)Co1—N7—C26—C27172.5 (7)
C8—N2—C3—C2157.5 (8)N7—C26—C27—C280.2 (14)
C1—C2—C3—N2179.6 (8)C23—N8—C28—C2914.9 (15)
C1—C2—C3—C41.2 (11)C23—N8—C28—C27163.6 (9)
N2—C3—C4—C5177.9 (8)C26—C27—C28—N8177.4 (9)
C2—C3—C4—C53.0 (12)C26—C27—C28—C291.2 (13)
C1—N1—C5—C40.3 (14)N8—C28—C29—C30177.9 (8)
Co2ii—N1—C5—C4165.4 (7)C27—C28—C29—C300.6 (13)
C3—C4—C5—N12.3 (14)C28—C29—C30—N71.4 (13)
C10—N3—C6—C71.1 (11)C26—N7—C30—C292.6 (11)
Co1—N3—C6—C7177.2 (6)Co1—N7—C30—C29172.2 (6)
N3—C6—C7—C81.9 (12)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1iii0.89 (2)2.59 (5)3.366 (7)147 (7)
N5—H5A···S3iv0.882.553.355 (7)153
N8—H8N···S4v0.88 (2)2.53 (3)3.382 (7)162 (7)
Symmetry codes: (iii) x+1/2, y+1/2, z+2; (iv) x1/2, y+3/2, z+2; (v) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[Co2(NCS)4(C10H9N3)3]
Mr863.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.9245 (2), 21.7051 (5), 22.8134 (5)
V3)3923.95 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.24 × 0.16 × 0.04
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.769, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
21566, 8215, 3888
Rint0.087
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.168, 1.00
No. of reflections8215
No. of parameters484
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.44
Absolute structureFlack (1983), with 4324 Friedel pairs
Absolute structure parameter0.07 (3)

Computer programs: APEX2 (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CrystalMaker (Palmer, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.89 (2)2.59 (5)3.366 (7)147 (7)
N5—H5A···S3ii0.882.553.355 (7)153.0
N8—H8N···S4iii0.88 (2)2.53 (3)3.382 (7)162 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+3/2, z+2; (iii) x+1/2, y+3/2, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds