Download citation
Download citation
link to html
In the crystal structure of [Ni(C11H14NO4)2]·CH4O, the 2-[tris­(hydroxy­meth­yl)methyl­imino­meth­yl]phenolate monoanions bind in a tridentate mode through the phenolate, alcohol and imine donor atoms to confer an octa­hedral geometry on nickel. Adjacent mol­ecules are linked by O—H...O hydrogen bonds into a three-dimensional supra­molecular network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704384X/ng2321sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704384X/ng2321Isup2.hkl
Contains datablock I

CCDC reference: 663600

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.040
  • wR factor = 0.063
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.837 0.962 Tmin(prime) and Tmax expected: 0.914 0.932 RR(prime) = 0.887 Please check that your absorption correction is appropriate. PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 42 Perc. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.88 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C1 .. 5.23 su PLAT230_ALERT_2_C Hirshfeld Test Diff for N2 - C18 .. 5.80 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C8 - C9 .. 5.42 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C13 - C14 .. 5.37 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C16 - C17 .. 5.25 su PLAT417_ALERT_2_C Short Inter D-H..H-D H6A .. H8A .. 2.13 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 26 O1 -NI1 -O4 -C11 -39.20 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 34 O4 -NI1 -O1 -C1 42.80 0.70 1.555 1.555 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.829(10) ...... 3.00 su-Ra O3 -H3A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.82(3), Rep 0.824(10) ...... 3.00 su-Ra O8 -H8A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.82(3), Rep 0.816(10) ...... 3.00 su-Ra O2 -H2A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.83(3), Rep 0.829(10) ...... 3.00 su-Ra O3 -H3A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(3), Rep 0.824(10) ...... 3.00 su-Ra O8 -H8A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.82(3), Rep 0.816(10) ...... 3.00 su-Ra O2 -H2A 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.77(3), Rep 1.763(11) ...... 2.73 su-Ra H3A -O5 1.555 4.556 PLAT736_ALERT_1_C H...A Calc 1.80(3), Rep 1.795(11) ...... 2.73 su-Ra H8A -O1 1.555 6.657 PLAT736_ALERT_1_C H...A Calc 1.89(3), Rep 1.895(12) ...... 2.50 su-Ra H2A -O3 1.555 4.456 PLAT736_ALERT_1_C H...A Calc 1.94(3), Rep 1.936(12) ...... 2.50 su-Ra H6A -O8 1.555 6.557
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C23 H32 N2 Ni1 O9 Atom count from _chemical_formula_moiety:C23 H32 N2 O9 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.15 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 24 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 14 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Single-crystal X-ray diffraction analyses revealed that (I) is neutral, mononuclear molecule with the Ni(II) ion being octahedral coordination supplied by monoanionic and tridentate binding through the Ophen, Oalk and Nimi groups from two 2-[tris(hydroxymethyl)methyliminomethyl]phenolate ligands (Fig. 1). And The structure is isostructural with the zinc analog (Dey et al., 2002). Selected bond lengths and bond angels are listed in Table 1. Of the three –CH2OH groups, only one is bound to the nickel center, while the other two remain free. At the same time one methanol molecule is cocrystallized in this complex which makes abundant O—H···O hydrogen bonds (Table 2) between the molecules.

Mononuclear Cu(II) complex coordinatd by one chelate 2-[tris(hydroxymethyl)methyliminomethyl]phenolate was reported in crystal structure (Ni et al., 2005). And the isostructural zinc complex was reported by Dey et al. (2002).

Related literature top

See Dey et al. (2002) for the isostructural zinc analog. For a related CuII complex, see Ni (2005).

Experimental top

2-[tris(hydroxymethyl)methyliminomethyl]phenolate was synthesized using the salicylaldehyde and the 2-amino-2-(hydroxymethyl)propane-1,3-diol. A mixture of Nickel acetate dihydrate (0.11 g, 0.5 mmol), 2-[tris(hydroxymethyl)methyliminomethyl]phenolate (0.13 g, 0.5 mmol), and methanol (15 ml) was heated and stirring for 20 min. Suitable crystals were obtained by evaporation of the filtrate in air at room temperature.

Refinement top

All H atoms besides H atoms bonded to O—H were placed at calculated positions in the riding-model approximation (C—Haromatic = 0.93Å and C—Hmethyl = 0.96 Å), with their displacement parameters tied to those of the parent atoms by Uiso(H) = 1.2–1.5 times Ueq(C). H atoms bonded to O—H were located from different Fourier maps and were refined with restrained O—H distances with O—Hmethyl = 0.82 (1) Å.

Structure description top

Single-crystal X-ray diffraction analyses revealed that (I) is neutral, mononuclear molecule with the Ni(II) ion being octahedral coordination supplied by monoanionic and tridentate binding through the Ophen, Oalk and Nimi groups from two 2-[tris(hydroxymethyl)methyliminomethyl]phenolate ligands (Fig. 1). And The structure is isostructural with the zinc analog (Dey et al., 2002). Selected bond lengths and bond angels are listed in Table 1. Of the three –CH2OH groups, only one is bound to the nickel center, while the other two remain free. At the same time one methanol molecule is cocrystallized in this complex which makes abundant O—H···O hydrogen bonds (Table 2) between the molecules.

Mononuclear Cu(II) complex coordinatd by one chelate 2-[tris(hydroxymethyl)methyliminomethyl]phenolate was reported in crystal structure (Ni et al., 2005). And the isostructural zinc complex was reported by Dey et al. (2002).

See Dey et al. (2002) for the isostructural zinc analog. For a related CuII complex, see Ni (2005).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and maXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the local coordination of Ni(II) with the coordinated atoms numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis{2-[tris(hydroxymethyl)methyliminomethyl]phenolato-κ3 N,O,O'}nickel(II) methanol solvate top
Crystal data top
[Ni(C11H14NO4)2]·CH4ODx = 1.516 Mg m3
Mr = 539.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 15150 reflections
a = 11.1900 (3) Åθ = 3.4–27.5°
b = 18.8378 (5) ŵ = 0.88 mm1
c = 22.4202 (8) ÅT = 293 K
V = 4726.1 (2) Å3Block, green
Z = 80.1 × 0.08 × 0.08 mm
F(000) = 2272
Data collection top
Nonius KappaCCD
diffractometer
4329 independent reflections
Radiation source: fine-focus sealed tube1833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 0.76 pixels mm-1θmax = 25.4°, θmin = 3.5°
CCD scansh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2222
Tmin = 0.837, Tmax = 0.962l = 2627
8161 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0165P)2]
where P = (Fo2 + 2Fc2)/3
4329 reflections(Δ/σ)max = 0.001
340 parametersΔρmax = 0.38 e Å3
7 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C11H14NO4)2]·CH4OV = 4726.1 (2) Å3
Mr = 539.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.1900 (3) ŵ = 0.88 mm1
b = 18.8378 (5) ÅT = 293 K
c = 22.4202 (8) Å0.1 × 0.08 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4329 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1833 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.962Rint = 0.093
8161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0407 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.38 e Å3
4329 reflectionsΔρmin = 0.26 e Å3
340 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.49786 (4)0.214735 (17)0.619437 (17)0.02801 (13)
N10.5029 (3)0.22644 (12)0.53015 (10)0.0246 (6)
N20.5308 (2)0.20154 (12)0.70767 (11)0.0274 (8)
O70.6646 (2)0.15588 (12)0.61811 (12)0.0351 (6)
O40.5970 (2)0.31185 (12)0.61416 (12)0.0361 (6)
O10.39482 (19)0.12901 (9)0.61149 (10)0.0325 (6)
O50.35296 (18)0.27329 (10)0.63661 (10)0.0338 (6)
O30.6982 (2)0.23657 (13)0.44870 (11)0.0442 (7)
H3A0.744 (3)0.2362 (17)0.4198 (11)0.066*
O80.7673 (3)0.10518 (13)0.79279 (10)0.0448 (7)
H8A0.804 (3)0.1107 (17)0.8242 (9)0.067*
O20.3458 (2)0.31959 (12)0.46821 (11)0.0396 (7)
H2A0.301 (3)0.2989 (16)0.4912 (13)0.059*
O60.4756 (2)0.06072 (12)0.76045 (12)0.0472 (7)
H6A0.4104 (17)0.0748 (18)0.7484 (17)0.071*
O90.5291 (3)0.45139 (14)0.64657 (12)0.0842 (10)
H90.518 (5)0.468 (2)0.6799 (9)0.126*
C230.5141 (4)0.50424 (18)0.60590 (17)0.0995 (18)
H23A0.53930.54850.62290.149*
H23B0.43140.50720.59490.149*
H23C0.56120.49420.57110.149*
C10.3786 (3)0.09038 (17)0.56388 (16)0.0277 (9)
C170.4001 (3)0.30043 (17)0.73773 (17)0.0341 (10)
C110.6375 (3)0.32327 (15)0.55423 (16)0.0355 (10)
H11A0.71380.29970.54880.043*
H11B0.64950.37370.54790.043*
C190.6216 (3)0.14735 (16)0.72315 (15)0.0258 (9)
C160.3750 (4)0.34180 (18)0.78839 (17)0.0491 (12)
H16A0.41810.33350.82320.059*
C100.6118 (3)0.29154 (16)0.44774 (15)0.0378 (10)
H10A0.55400.28250.41640.045*
H10B0.65040.33660.43950.045*
C220.6750 (3)0.15574 (16)0.78512 (14)0.0343 (10)
H22A0.70690.20330.78980.041*
H22B0.61360.14860.81510.041*
C80.5485 (3)0.29521 (17)0.50759 (15)0.0278 (9)
C180.4887 (3)0.24383 (16)0.74729 (15)0.0367 (9)
H18A0.51700.23810.78600.044*
C60.4161 (3)0.11161 (17)0.50603 (16)0.0265 (9)
C50.3961 (3)0.06634 (18)0.45729 (15)0.0384 (10)
H5A0.42060.08090.41960.046*
C70.4713 (3)0.17885 (17)0.49257 (15)0.0288 (10)
H7A0.48530.18870.45250.035*
C210.7194 (3)0.15597 (16)0.67598 (15)0.0347 (10)
H21A0.76190.20020.68230.042*
H21B0.77620.11720.67900.042*
C90.4411 (3)0.34640 (16)0.50372 (15)0.0356 (10)
H9A0.41160.35560.54370.043*
H9B0.46790.39120.48710.043*
C20.3211 (3)0.02409 (17)0.56840 (17)0.0428 (11)
H2B0.29430.00880.60550.051*
C120.3370 (3)0.31122 (17)0.68496 (18)0.0314 (10)
C200.5663 (3)0.07282 (15)0.71672 (15)0.0342 (10)
H20A0.53200.06790.67720.041*
H20B0.62840.03730.72100.041*
C150.2898 (4)0.39380 (18)0.78853 (19)0.0588 (14)
H15A0.27420.42090.82230.071*
C40.3417 (3)0.00142 (19)0.4632 (2)0.0502 (12)
H4A0.33070.02820.43050.060*
C130.2489 (3)0.36394 (17)0.68445 (16)0.0445 (11)
H13A0.20490.37200.64990.053*
C140.2268 (4)0.40409 (19)0.73480 (19)0.0565 (14)
H14A0.16840.43910.73320.068*
C30.3036 (4)0.01862 (18)0.5195 (2)0.0521 (13)
H3B0.26520.06200.52430.063*
H4B0.569 (3)0.3489 (10)0.6263 (14)0.071 (16)*
H7B0.716 (2)0.1614 (16)0.5924 (11)0.045 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0288 (3)0.0313 (2)0.0239 (2)0.0010 (2)0.0014 (3)0.0011 (2)
N10.0221 (17)0.0259 (15)0.0259 (17)0.0003 (16)0.0001 (18)0.0009 (13)
N20.031 (2)0.0269 (16)0.0246 (18)0.0002 (14)0.0028 (15)0.0053 (13)
O70.0325 (18)0.0504 (15)0.0224 (17)0.0055 (13)0.0036 (18)0.0002 (15)
O40.0416 (18)0.0339 (15)0.0328 (18)0.0023 (13)0.0017 (16)0.0025 (15)
O10.0404 (17)0.0362 (13)0.0208 (15)0.0126 (12)0.0043 (14)0.0043 (12)
O50.0295 (16)0.0443 (14)0.0276 (16)0.0064 (12)0.0036 (13)0.0039 (13)
O30.036 (2)0.0597 (16)0.0369 (19)0.0100 (15)0.0150 (14)0.0038 (15)
O80.043 (2)0.0577 (15)0.0336 (18)0.0132 (14)0.0168 (15)0.0025 (15)
O20.033 (2)0.0495 (17)0.036 (2)0.0014 (14)0.0043 (15)0.0075 (13)
O60.046 (2)0.0514 (15)0.0442 (18)0.0093 (15)0.0015 (18)0.0109 (13)
O90.131 (3)0.0654 (19)0.056 (2)0.0266 (19)0.016 (3)0.0011 (16)
C230.156 (5)0.073 (3)0.069 (4)0.020 (4)0.012 (4)0.004 (2)
C10.017 (2)0.031 (2)0.035 (3)0.0017 (19)0.001 (2)0.002 (2)
C170.034 (3)0.035 (2)0.033 (3)0.005 (2)0.000 (2)0.011 (2)
C110.035 (3)0.033 (2)0.039 (3)0.0045 (19)0.005 (2)0.0059 (19)
C190.025 (3)0.031 (2)0.021 (2)0.0009 (19)0.002 (2)0.0037 (18)
C160.057 (3)0.043 (2)0.047 (3)0.001 (2)0.005 (2)0.006 (2)
C100.036 (3)0.044 (2)0.033 (3)0.006 (2)0.003 (2)0.008 (2)
C220.035 (3)0.039 (2)0.029 (3)0.001 (2)0.006 (2)0.0011 (19)
C80.024 (2)0.033 (2)0.026 (2)0.0019 (19)0.0035 (19)0.0041 (19)
C180.044 (3)0.039 (2)0.026 (2)0.004 (2)0.007 (3)0.0013 (18)
C60.026 (3)0.029 (2)0.025 (2)0.0015 (18)0.005 (2)0.0056 (19)
C50.039 (3)0.043 (2)0.034 (3)0.000 (2)0.000 (2)0.001 (2)
C70.025 (3)0.040 (2)0.022 (2)0.0035 (18)0.0014 (19)0.0043 (18)
C210.033 (3)0.045 (2)0.026 (3)0.000 (2)0.007 (2)0.001 (2)
C90.037 (3)0.036 (2)0.034 (3)0.007 (2)0.002 (2)0.004 (2)
C20.050 (3)0.036 (2)0.042 (3)0.008 (2)0.011 (2)0.003 (2)
C120.028 (3)0.030 (2)0.036 (3)0.0008 (19)0.001 (2)0.002 (2)
C200.031 (3)0.040 (2)0.032 (3)0.0047 (19)0.001 (2)0.0019 (19)
C150.071 (4)0.049 (3)0.057 (4)0.010 (3)0.001 (3)0.021 (3)
C40.052 (3)0.047 (3)0.052 (4)0.003 (2)0.007 (3)0.020 (2)
C130.048 (3)0.041 (2)0.044 (3)0.008 (2)0.001 (2)0.006 (2)
C140.054 (4)0.041 (2)0.074 (4)0.012 (2)0.008 (3)0.001 (3)
C30.051 (3)0.035 (2)0.070 (4)0.013 (2)0.002 (3)0.011 (2)
Geometric parameters (Å, º) top
Ni1—O11.9922 (19)C11—H11B0.9700
Ni1—O51.998 (2)C19—C221.521 (4)
Ni1—N12.015 (2)C19—C211.531 (4)
Ni1—N22.028 (3)C19—C201.541 (4)
Ni1—O42.143 (2)C16—C151.367 (4)
Ni1—O72.170 (2)C16—H16A0.9300
N1—C71.280 (3)C10—C81.519 (4)
N1—C81.481 (3)C10—H10A0.9700
N2—C181.283 (3)C10—H10B0.9700
N2—C191.481 (3)C22—H22A0.9700
O7—C211.435 (3)C22—H22B0.9700
O7—H7B0.823 (10)C8—C91.543 (4)
O4—C111.434 (4)C18—H18A0.9300
O4—H4B0.813 (10)C6—C51.404 (4)
O1—C11.305 (3)C6—C71.441 (4)
O5—C121.311 (4)C5—C41.373 (4)
O3—C101.417 (4)C5—H5A0.9300
O3—H3A0.829 (10)C7—H7A0.9300
O8—C221.416 (4)C21—H21A0.9700
O8—H8A0.824 (10)C21—H21B0.9700
O2—C91.424 (4)C9—H9A0.9700
O2—H2A0.816 (10)C9—H9B0.9700
O6—C201.429 (4)C2—C31.374 (4)
O6—H6A0.821 (10)C2—H2B0.9300
O9—C231.361 (4)C12—C131.399 (4)
O9—H90.818 (10)C20—H20A0.9700
C23—H23A0.9600C20—H20B0.9700
C23—H23B0.9600C15—C141.409 (5)
C23—H23C0.9600C15—H15A0.9300
C1—C21.408 (4)C4—C31.385 (4)
C1—C61.421 (4)C4—H4A0.9300
C17—C121.393 (4)C13—C141.381 (4)
C17—C161.406 (4)C13—H13A0.9300
C17—C181.471 (4)C14—H14A0.9300
C11—C81.537 (4)C3—H3B0.9300
C11—H11A0.9700
O1—Ni1—O589.72 (9)C8—C10—H10B109.7
O1—Ni1—N190.92 (10)H10A—C10—H10B108.2
O5—Ni1—N198.84 (10)O8—C22—C19109.1 (3)
O1—Ni1—N295.34 (9)O8—C22—H22A109.9
O5—Ni1—N291.56 (10)C19—C22—H22A109.9
N1—Ni1—N2167.90 (12)O8—C22—H22B109.9
O1—Ni1—O4170.66 (9)C19—C22—H22B109.9
O5—Ni1—O487.67 (9)H22A—C22—H22B108.3
N1—Ni1—O480.64 (11)N1—C8—C10115.0 (3)
N2—Ni1—O493.69 (10)N1—C8—C11106.9 (3)
O1—Ni1—O794.71 (9)C10—C8—C11108.4 (3)
O5—Ni1—O7169.10 (10)N1—C8—C9107.3 (3)
N1—Ni1—O791.05 (11)C10—C8—C9110.0 (3)
N2—Ni1—O778.14 (11)C11—C8—C9109.1 (3)
O4—Ni1—O789.45 (10)N2—C18—C17126.6 (3)
C7—N1—C8118.9 (3)N2—C18—H18A116.7
C7—N1—Ni1124.7 (2)C17—C18—H18A116.7
C8—N1—Ni1116.40 (19)C5—C6—C1119.5 (3)
C18—N2—C19121.2 (3)C5—C6—C7116.1 (3)
C18—N2—Ni1122.2 (2)C1—C6—C7124.4 (3)
C19—N2—Ni1116.0 (2)C4—C5—C6122.5 (4)
C21—O7—Ni1110.8 (2)C4—C5—H5A118.8
C21—O7—H7B109 (2)C6—C5—H5A118.8
Ni1—O7—H7B123 (2)N1—C7—C6126.6 (3)
C11—O4—Ni1110.07 (19)N1—C7—H7A116.7
C11—O4—H4B108 (2)C6—C7—H7A116.7
Ni1—O4—H4B121 (2)O7—C21—C19108.6 (3)
C1—O1—Ni1127.3 (2)O7—C21—H21A110.0
C12—O5—Ni1124.8 (2)C19—C21—H21A110.0
C10—O3—H3A115 (3)O7—C21—H21B110.0
C22—O8—H8A113 (3)C19—C21—H21B110.0
C9—O2—H2A106 (3)H21A—C21—H21B108.4
C20—O6—H6A111 (3)O2—C9—C8113.2 (3)
C23—O9—H9108 (3)O2—C9—H9A108.9
O9—C23—H23A109.5C8—C9—H9A108.9
O9—C23—H23B109.5O2—C9—H9B108.9
H23A—C23—H23B109.5C8—C9—H9B108.9
O9—C23—H23C109.5H9A—C9—H9B107.8
H23A—C23—H23C109.5C3—C2—C1121.8 (4)
H23B—C23—H23C109.5C3—C2—H2B119.1
O1—C1—C2119.9 (3)C1—C2—H2B119.1
O1—C1—C6123.3 (3)O5—C12—C17123.6 (3)
C2—C1—C6116.8 (3)O5—C12—C13118.4 (4)
C12—C17—C16120.3 (3)C17—C12—C13117.9 (3)
C12—C17—C18124.8 (3)O6—C20—C19111.5 (3)
C16—C17—C18114.7 (4)O6—C20—H20A109.3
O4—C11—C8112.4 (3)C19—C20—H20A109.3
O4—C11—H11A109.1O6—C20—H20B109.3
C8—C11—H11A109.1C19—C20—H20B109.3
O4—C11—H11B109.1H20A—C20—H20B108.0
C8—C11—H11B109.1C16—C15—C14116.5 (4)
H11A—C11—H11B107.9C16—C15—H15A121.8
N2—C19—C22114.3 (3)C14—C15—H15A121.8
N2—C19—C21104.8 (3)C5—C4—C3117.9 (4)
C22—C19—C21109.8 (3)C5—C4—H4A121.1
N2—C19—C20109.3 (3)C3—C4—H4A121.1
C22—C19—C20109.7 (3)C14—C13—C12120.5 (4)
C21—C19—C20108.6 (3)C14—C13—H13A119.7
C15—C16—C17122.6 (4)C12—C13—H13A119.7
C15—C16—H16A118.7C13—C14—C15122.3 (4)
C17—C16—H16A118.7C13—C14—H14A118.9
O3—C10—C8109.8 (3)C15—C14—H14A118.9
O3—C10—H10A109.7C2—C3—C4121.6 (4)
C8—C10—H10A109.7C2—C3—H3B119.2
O3—C10—H10B109.7C4—C3—H3B119.2
O1—Ni1—N1—C714.5 (3)C20—C19—C22—O861.9 (3)
O5—Ni1—N1—C7104.4 (3)C7—N1—C8—C1029.8 (4)
N2—Ni1—N1—C7106.7 (5)Ni1—N1—C8—C10149.3 (2)
O4—Ni1—N1—C7169.5 (3)C7—N1—C8—C11150.2 (3)
O7—Ni1—N1—C780.2 (3)Ni1—N1—C8—C1128.9 (3)
O1—Ni1—N1—C8166.4 (2)C7—N1—C8—C992.9 (3)
O5—Ni1—N1—C876.6 (2)Ni1—N1—C8—C988.0 (3)
N2—Ni1—N1—C872.3 (5)O3—C10—C8—N149.7 (4)
O4—Ni1—N1—C89.6 (2)O3—C10—C8—C1169.9 (3)
O7—Ni1—N1—C898.8 (2)O3—C10—C8—C9170.9 (2)
O1—Ni1—N2—C18111.1 (3)O4—C11—C8—N140.6 (4)
O5—Ni1—N2—C1821.2 (3)O4—C11—C8—C10165.2 (3)
N1—Ni1—N2—C18128.1 (5)O4—C11—C8—C975.1 (3)
O4—Ni1—N2—C1866.5 (3)C19—N2—C18—C17179.0 (3)
O7—Ni1—N2—C18155.2 (3)Ni1—N2—C18—C178.9 (5)
O1—Ni1—N2—C1978.3 (2)C12—C17—C18—N28.3 (6)
O5—Ni1—N2—C19168.17 (19)C16—C17—C18—N2176.3 (3)
N1—Ni1—N2—C1942.5 (5)O1—C1—C6—C5179.3 (3)
O4—Ni1—N2—C19104.1 (2)C2—C1—C6—C50.8 (5)
O7—Ni1—N2—C1915.40 (19)O1—C1—C6—C72.8 (5)
O1—Ni1—O7—C21108.8 (2)C2—C1—C6—C7177.1 (3)
O5—Ni1—O7—C214.9 (6)C1—C6—C5—C40.3 (5)
N1—Ni1—O7—C21160.2 (2)C7—C6—C5—C4178.4 (3)
N2—Ni1—O7—C2114.3 (2)C8—N1—C7—C6174.6 (3)
O4—Ni1—O7—C2179.6 (2)Ni1—N1—C7—C66.4 (5)
O1—Ni1—O4—C1139.2 (7)C5—C6—C7—N1176.3 (3)
O5—Ni1—O4—C11113.1 (2)C1—C6—C7—N15.7 (5)
N1—Ni1—O4—C1113.7 (2)Ni1—O7—C21—C1939.6 (3)
N2—Ni1—O4—C11155.5 (2)N2—C19—C21—O750.3 (3)
O7—Ni1—O4—C1177.4 (2)C22—C19—C21—O7173.5 (2)
O5—Ni1—O1—C1116.5 (3)C20—C19—C21—O766.4 (3)
N1—Ni1—O1—C117.7 (3)N1—C8—C9—O255.7 (3)
N2—Ni1—O1—C1151.9 (3)C10—C8—C9—O270.0 (3)
O4—Ni1—O1—C142.8 (7)C11—C8—C9—O2171.3 (3)
O7—Ni1—O1—C173.4 (3)O1—C1—C2—C3179.2 (3)
O1—Ni1—O5—C12122.4 (2)C6—C1—C2—C31.0 (5)
N1—Ni1—O5—C12146.7 (2)Ni1—O5—C12—C1719.4 (4)
N2—Ni1—O5—C1227.1 (2)Ni1—O5—C12—C13162.8 (2)
O4—Ni1—O5—C1266.6 (2)C16—C17—C12—O5177.8 (3)
O7—Ni1—O5—C128.2 (6)C18—C17—C12—O52.7 (5)
Ni1—O1—C1—C2168.0 (2)C16—C17—C12—C130.1 (5)
Ni1—O1—C1—C612.2 (5)C18—C17—C12—C13175.0 (3)
Ni1—O4—C11—C833.7 (3)N2—C19—C20—O667.4 (3)
C18—N2—C19—C2210.7 (4)C22—C19—C20—O658.7 (3)
Ni1—N2—C19—C22160.0 (2)C21—C19—C20—O6178.8 (3)
C18—N2—C19—C21131.0 (3)C17—C16—C15—C140.2 (6)
Ni1—N2—C19—C2139.7 (3)C6—C5—C4—C31.3 (5)
C18—N2—C19—C20112.7 (3)O5—C12—C13—C14178.4 (3)
Ni1—N2—C19—C2076.6 (3)C17—C12—C13—C140.6 (5)
C12—C17—C16—C150.3 (6)C12—C13—C14—C150.7 (6)
C18—C17—C16—C15175.9 (3)C16—C15—C14—C130.3 (6)
N2—C19—C22—O8174.9 (3)C1—C2—C3—C40.0 (6)
C21—C19—C22—O857.5 (3)C5—C4—C3—C21.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5i0.83 (1)1.76 (1)2.587 (3)173 (4)
O7—H7B···O2i0.82 (1)2.02 (1)2.841 (4)177 (3)
O8—H8A···O1ii0.82 (1)1.80 (1)2.616 (3)174 (4)
O2—H2A···O3iii0.82 (1)1.90 (1)2.705 (3)172 (4)
O6—H6A···O8iv0.82 (1)1.94 (1)2.749 (4)171 (4)
O4—H4B···O90.81 (1)2.03 (1)2.831 (3)167 (3)
O9—H9···O6v0.82 (1)2.20 (2)2.931 (3)148 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x1/2, y, z+3/2; (v) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C11H14NO4)2]·CH4O
Mr539.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.1900 (3), 18.8378 (5), 22.4202 (8)
V3)4726.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.1 × 0.08 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.837, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
8161, 4329, 1833
Rint0.093
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.063, 0.82
No. of reflections4329
No. of parameters340
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.26

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and maXus (Mackay et al., 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O5i0.829 (10)1.763 (11)2.587 (3)173 (4)
O7—H7B···O2i0.823 (10)2.019 (11)2.841 (4)177 (3)
O8—H8A···O1ii0.824 (10)1.795 (11)2.616 (3)174 (4)
O2—H2A···O3iii0.816 (10)1.895 (12)2.705 (3)172 (4)
O6—H6A···O8iv0.821 (10)1.936 (12)2.749 (4)171 (4)
O4—H4B···O90.813 (10)2.032 (12)2.831 (3)167 (3)
O9—H9···O6v0.818 (10)2.20 (2)2.931 (3)148 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x1/2, y, z+3/2; (v) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds