Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title monohydrated salt, [Cr(C2O4)(C3H10N2)2]Cl·H2O, contains two formula units. The Cr atom is chelated by the oxalate dianions in an octa­hedral geometry. Hydrogen bonds involving the N atoms of the ligands, the O atoms of the oxalate group, the chloride anion and the solvent water mol­ecule connect the components into a three-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041839/ng2312sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041839/ng2312Isup2.hkl
Contains datablock I

CCDC reference: 663551

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.027
  • wR factor = 0.071
  • Data-to-parameter ratio = 8.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT128_ALERT_4_C Non-standard setting of Space group Pc .... Pn PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C7 - C8 ... 1.55 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C15 - C16 ... 1.55 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H100 .. H201 .. 2.12 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact Cl1 .. C7 .. 3.19 Ang.
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 3084 Count of symmetry unique reflns 2561 Completeness (_total/calc) 120.42% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 523 Fraction of Friedel pairs measured 0.204 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cr1 (9) 3.29 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cr2 (9) 3.33 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The crystal structures of monomeric chromium(III) complexes Na[Cr(hm)(ox)2].3H2O (hm = histamine) and Na[Cr(PM)(ox)2].H2O (PM = pyridoxamine) (Sakagami et al., 1999), AsPh4[Cr(ox)(phen)].H2O and [NaCr(phen)(ox)2(H2O)].2H2O (phen = 1,10-phenanthroline) (Marinescu et al., 2000), AsPh4[Cr(bpm)(ox)2].H2O and Na[Cr(bpm)(ox)2].H2O (bpm = 2,2'-bipyrimidine) (De Munno et al., 1999), and PPh4[Cr(bipy)(ox)2].H2O (bipy = 2,2'-bipyridine) (Lescouëzec et al., 2003) contain two oxalato ligands and one neutral didentate terminal ligand. Among these examples, the complexes using the Na+ ion as balanced anions usually show beautiful one-, two- or three-dimensional supramolecular structures. The compound [Mn(4,4'-bipyridine-N,N'- dioxide)(H2O)4][Cr(bipy)(ox)2]2.8H2O comprises of [Cr(bipy)(ox)2]- anions and one-dimensional cationic chain [Mn(4,4'-bipyridine-N,N'- dioxide)(H2O)4]n2n+ (Bruda et al., 2001). The molecular structure of [Cr(en)2(ox)][Cr(en)(ox)2].2H2O (en = 1,2-ethylenediamine) consists of one [Cr(en)2(ox)]+ cation and one [Cr(en)(ox)2]- anion with one and two oxalato ligands, respectivley (Lethbridge et al., 1970). Herein we report a new monooxalato-containing chromium(III) complex [Cr(ox)(tn)2]Cl.H2O (I).

The crystal structure of (I) consists of two independent [Cr(tn)2(ox)]+ cations, two free Cl- as counteranions and two crystallization water molecules. (Figure 1). Each chromium atom in (I) is coordinated by four nitrogen atoms from two tn ligands and two oxalate oxygen atoms, yielding a distorted octahedral geometry. The four Cr—O bond distances (1.957 (2) to 1.994 (2) Å) are comparable to those in [Cr(en)2(ox)]+ unit of complex [Cr(en)2(ox)][Cr(en)(ox)2].2H2O. The Cr—N distances range from 2.063 (3) to 2.101 (3) Å for Cr1, and from 2.048 (3) to 2.093 (3) Å for Cr2. The bond angles between every adjacent two bonds around Cr atom are almost all close to 90 ° except O4—Cr1—O1 (82.30 (9) °) and O5—Cr2—O8 (82.47 (10) °), which leads to the distortion of coordination environment from the ideal octahedron. The ox ligands exhibit slightly deviation from planarity and the tn ligands show the typical chair-like conformation. The nearest Cr1···Cr2 separation is 6.061 Å.

There exist affluent hydrogen bonds in (I) (Figure 2). Firstly, the adjacent the adjacent two [Cr1(tn)2(ox)]+ units are linked by three N—H···O (N4—H4D···O3 [x + 1/2, -y + 2, z + 1/2], N1—H1D···O3 [x + 1/2, -y + 2, z + 1/2] and N2—H2A···O2 [x + 1/2, -y + 2, z + 1/2]) hydrogen bonds. Similarly, two [Cr2(tn)2(ox)]+ units are linked with two strong N—H···O (N5—H5A···O6 [x - 1/2, -y + 1, z - 1/2] and N7—H7A···O7 [x - 1/2, -y + 1, z - 1/2]) hydrogen bonds. Secondly, there are also three N—H···O (N1—H1A···O7 [x - 1, y, z], N3—H3A···O7 [x - 1, y, z], N6—H6A···O1 [x + 1, y, z]) hydrogen bonds between the nearest [Cr1(tn)2(ox)]+ and [Cr2(tn)2(ox)]+ units. Through all these N—H···O hydrogen bonds and seven N—H··· Cl hydrogen bonds, the two [Cr(tn)2(ox)]+ cationic units form two-dimensional layer-like structures. Finally, the layers form a three-dimensional network structure through hydrogen bond series N3···O2W···O1W [x - 1/2, -y + 1, z - 1/2]···O5 and two Owater···Cl hydrogen bonds.

Related literature top

For bis(oxalato)chromates, see: Bruda et al. (2001); De Munno et al. (1999); Lescouëzec et al. (2003); Sakagami et al. (1999). For mono(oxalato)chromates, see: Marinescu et al. (2000). For a chromium complex with an oxalate group in both the cation and anion, see: Lethbridge et al. (1970). For the synthesis of a precursor to the title compound, see: Pedersen (1970).

Experimental top

To a stirred aqueous solution (45 ml) of cis-[Cr(tn)2Cl2]Cl (Pedersen, 1970) (2.4 g, 7.8 mmol) were slowly added H2C2O4.2H2O (1.2 g, 9.5 mmol) in 40 ml water. The solution was filtered and evaporated at room temperature. Orange crystal formed after about two weeks. Yield: 20%.

Refinement top

The coordinates of the H atoms of the water molecules were found from difference Fourier maps. H atoms bound to C and N atoms were also visible in difference maps and were placed using the HFIX commands in SHELXL97. All H atoms were allowed for as riding atoms (C—H 0.97 Å, N—H 0.90 Å, O—H 0.85 Å) with the constraint U(H) = 1.2Ueq(carrier) for all other H atoms. The Flack parameter refined to 0.017 (15) from 526 Friedel pairs (Flack, 1983).

Structure description top

The crystal structures of monomeric chromium(III) complexes Na[Cr(hm)(ox)2].3H2O (hm = histamine) and Na[Cr(PM)(ox)2].H2O (PM = pyridoxamine) (Sakagami et al., 1999), AsPh4[Cr(ox)(phen)].H2O and [NaCr(phen)(ox)2(H2O)].2H2O (phen = 1,10-phenanthroline) (Marinescu et al., 2000), AsPh4[Cr(bpm)(ox)2].H2O and Na[Cr(bpm)(ox)2].H2O (bpm = 2,2'-bipyrimidine) (De Munno et al., 1999), and PPh4[Cr(bipy)(ox)2].H2O (bipy = 2,2'-bipyridine) (Lescouëzec et al., 2003) contain two oxalato ligands and one neutral didentate terminal ligand. Among these examples, the complexes using the Na+ ion as balanced anions usually show beautiful one-, two- or three-dimensional supramolecular structures. The compound [Mn(4,4'-bipyridine-N,N'- dioxide)(H2O)4][Cr(bipy)(ox)2]2.8H2O comprises of [Cr(bipy)(ox)2]- anions and one-dimensional cationic chain [Mn(4,4'-bipyridine-N,N'- dioxide)(H2O)4]n2n+ (Bruda et al., 2001). The molecular structure of [Cr(en)2(ox)][Cr(en)(ox)2].2H2O (en = 1,2-ethylenediamine) consists of one [Cr(en)2(ox)]+ cation and one [Cr(en)(ox)2]- anion with one and two oxalato ligands, respectivley (Lethbridge et al., 1970). Herein we report a new monooxalato-containing chromium(III) complex [Cr(ox)(tn)2]Cl.H2O (I).

The crystal structure of (I) consists of two independent [Cr(tn)2(ox)]+ cations, two free Cl- as counteranions and two crystallization water molecules. (Figure 1). Each chromium atom in (I) is coordinated by four nitrogen atoms from two tn ligands and two oxalate oxygen atoms, yielding a distorted octahedral geometry. The four Cr—O bond distances (1.957 (2) to 1.994 (2) Å) are comparable to those in [Cr(en)2(ox)]+ unit of complex [Cr(en)2(ox)][Cr(en)(ox)2].2H2O. The Cr—N distances range from 2.063 (3) to 2.101 (3) Å for Cr1, and from 2.048 (3) to 2.093 (3) Å for Cr2. The bond angles between every adjacent two bonds around Cr atom are almost all close to 90 ° except O4—Cr1—O1 (82.30 (9) °) and O5—Cr2—O8 (82.47 (10) °), which leads to the distortion of coordination environment from the ideal octahedron. The ox ligands exhibit slightly deviation from planarity and the tn ligands show the typical chair-like conformation. The nearest Cr1···Cr2 separation is 6.061 Å.

There exist affluent hydrogen bonds in (I) (Figure 2). Firstly, the adjacent the adjacent two [Cr1(tn)2(ox)]+ units are linked by three N—H···O (N4—H4D···O3 [x + 1/2, -y + 2, z + 1/2], N1—H1D···O3 [x + 1/2, -y + 2, z + 1/2] and N2—H2A···O2 [x + 1/2, -y + 2, z + 1/2]) hydrogen bonds. Similarly, two [Cr2(tn)2(ox)]+ units are linked with two strong N—H···O (N5—H5A···O6 [x - 1/2, -y + 1, z - 1/2] and N7—H7A···O7 [x - 1/2, -y + 1, z - 1/2]) hydrogen bonds. Secondly, there are also three N—H···O (N1—H1A···O7 [x - 1, y, z], N3—H3A···O7 [x - 1, y, z], N6—H6A···O1 [x + 1, y, z]) hydrogen bonds between the nearest [Cr1(tn)2(ox)]+ and [Cr2(tn)2(ox)]+ units. Through all these N—H···O hydrogen bonds and seven N—H··· Cl hydrogen bonds, the two [Cr(tn)2(ox)]+ cationic units form two-dimensional layer-like structures. Finally, the layers form a three-dimensional network structure through hydrogen bond series N3···O2W···O1W [x - 1/2, -y + 1, z - 1/2]···O5 and two Owater···Cl hydrogen bonds.

For bis(oxalato)chromates, see: Bruda et al. (2001); De Munno et al. (1999); Lescouëzec et al. (2003); Sakagami et al. (1999). For mono(oxalato)chromates, see: Marinescu et al. (2000). For a chromium complex with an oxalate group in both the cation and anion, see: Lethbridge et al. (1970). For the synthesis of a precursor to the title compound, see: Pedersen (1970).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted.
[Figure 2] Fig. 2. The hydrogen-bonded sheet structure present in (I) along the b axis. H atoms bonded to C atoms have been omitted.
(Oxalato-κ2O,O')bis(propane-1,3-diamine- κ2N,N')chromium(III) chloride monohydrate top
Crystal data top
[Cr(C2O4)(C3H10N2)2]Cl·H2OF(000) = 716
Mr = 341.74Dx = 1.567 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 25 reflections
a = 8.9532 (17) Åθ = 10.5–15.4°
b = 12.038 (2) ŵ = 1.00 mm1
c = 13.645 (3) ÅT = 293 K
β = 99.973 (14)°Block, orange
V = 1448.5 (5) Å30.30 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker P4
diffractometer
3056 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 141
Tmin = 0.742, Tmax = 0.905l = 1616
3397 measured reflections3 standard reflections every 97 reflections
3084 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.052P)2 + 0.2592P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.45 e Å3
3084 reflectionsΔρmin = 0.34 e Å3
348 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0164 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 526 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.017 (15)
Crystal data top
[Cr(C2O4)(C3H10N2)2]Cl·H2OV = 1448.5 (5) Å3
Mr = 341.74Z = 4
Monoclinic, PnMo Kα radiation
a = 8.9532 (17) ŵ = 1.00 mm1
b = 12.038 (2) ÅT = 293 K
c = 13.645 (3) Å0.30 × 0.25 × 0.10 mm
β = 99.973 (14)°
Data collection top
Bruker P4
diffractometer
3056 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.742, Tmax = 0.9053 standard reflections every 97 reflections
3397 measured reflections intensity decay: none
3084 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.45 e Å3
S = 1.00Δρmin = 0.34 e Å3
3084 reflectionsAbsolute structure: Flack (1983), with 526 Friedel pairs
348 parametersAbsolute structure parameter: 0.017 (15)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.11216 (5)0.95504 (3)0.50724 (3)0.02451 (13)
Cr20.91647 (5)0.49199 (4)0.36494 (3)0.02758 (13)
Cl10.72903 (10)0.17592 (7)0.40994 (7)0.0437 (2)
Cl20.72668 (12)0.69845 (7)0.10465 (7)0.0501 (2)
O81.1124 (3)0.56581 (19)0.42017 (17)0.0377 (5)
O40.0934 (3)1.05364 (16)0.39174 (16)0.0315 (5)
O10.0788 (3)0.89196 (18)0.43131 (16)0.0311 (4)
O30.0479 (3)1.0854 (2)0.24315 (17)0.0447 (6)
N40.3109 (3)1.0355 (2)0.56628 (19)0.0302 (6)
H4A0.28641.10450.58310.036*
H4D0.35071.00030.62300.036*
O61.0014 (4)0.5508 (3)0.65332 (19)0.0585 (8)
O20.2401 (3)0.9151 (2)0.28784 (18)0.0416 (6)
O50.8982 (3)0.48382 (19)0.50579 (16)0.0372 (5)
C70.0216 (4)1.0350 (3)0.3227 (2)0.0326 (7)
N70.9481 (4)0.4989 (2)0.2183 (2)0.0388 (7)
H7A0.87910.45410.18220.047*
H7B0.92800.56860.19620.047*
N10.1263 (3)0.8508 (2)0.63199 (18)0.0321 (5)
H1A0.16930.78630.61840.038*
H1D0.18830.88280.68320.038*
N50.7049 (3)0.4228 (2)0.3303 (2)0.0343 (6)
H5A0.67250.43230.26460.041*
H5D0.71450.34920.34110.041*
N81.0256 (3)0.3378 (2)0.3778 (2)0.0337 (6)
H8A1.04940.32170.44300.040*
H8B0.95790.28660.35020.040*
C161.0020 (5)0.5343 (3)0.5649 (2)0.0386 (8)
N30.2297 (3)0.8394 (2)0.43456 (18)0.0313 (5)
H3A0.26350.78520.47820.038*
H3D0.16300.80830.38530.038*
O71.2405 (3)0.6304 (2)0.5638 (2)0.0460 (6)
N60.8089 (3)0.6469 (2)0.3501 (2)0.0353 (6)
H6A0.87910.69920.37130.042*
H6D0.77560.65910.28490.042*
N20.0082 (3)1.0630 (2)0.58323 (19)0.0332 (6)
H2A0.05741.09350.63340.040*
H2D0.04441.11840.54140.040*
C40.3594 (4)0.8806 (3)0.3915 (2)0.0375 (7)
H4B0.32330.93400.33960.045*
H4C0.40460.81900.36130.045*
C50.4799 (4)0.9351 (3)0.4691 (3)0.0417 (8)
H5B0.50500.88530.52540.050*
H5C0.57090.94590.44070.050*
C80.1270 (4)0.9398 (3)0.3463 (2)0.0303 (6)
C110.6798 (5)0.6637 (3)0.4033 (3)0.0442 (8)
H11A0.64550.74010.39500.053*
H11B0.71310.65040.47380.053*
C10.0201 (4)0.8257 (3)0.6641 (2)0.0367 (7)
H1B0.00430.76930.71560.044*
H1C0.09070.79620.60810.044*
C90.5841 (4)0.4639 (3)0.3831 (3)0.0432 (8)
H9A0.61530.45180.45400.052*
H9B0.49240.42130.36150.052*
C121.1642 (4)0.3234 (3)0.3342 (3)0.0438 (8)
H12A1.20000.24760.34500.053*
H12B1.24260.37240.36780.053*
C60.4317 (4)1.0457 (3)0.5058 (3)0.0393 (8)
H6B0.51911.08140.54530.047*
H6C0.39611.09300.44900.047*
C20.0870 (4)0.9273 (3)0.7031 (3)0.0413 (8)
H2B0.01250.95920.75560.050*
H2C0.17390.90520.73220.050*
C30.1370 (4)1.0163 (3)0.6254 (3)0.0383 (7)
H3B0.21040.98470.57200.046*
H3C0.18661.07570.65550.046*
C100.5496 (5)0.5868 (3)0.3646 (3)0.0497 (9)
H10A0.52010.59860.29360.060*
H10B0.46370.60660.39570.060*
C141.1000 (5)0.4677 (3)0.1975 (3)0.0495 (9)
H14A1.17610.51510.23590.059*
H14B1.10260.47970.12760.059*
C151.1322 (4)0.5803 (2)0.5151 (3)0.0368 (7)
C131.1372 (6)0.3483 (3)0.2232 (3)0.0527 (10)
H13A1.22740.32790.19690.063*
H13B1.05460.30210.19060.063*
O2W0.0565 (4)0.7737 (3)0.2347 (2)0.0611 (8)
O1W0.7699 (6)0.2955 (3)0.6197 (3)0.0797 (11)
H1000.71260.26990.56850.26 (7)*
H1010.82910.34530.60440.14 (3)*
H2000.02760.77100.19480.10 (2)*
H2010.12530.75800.20110.067 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0265 (2)0.0242 (2)0.0218 (2)0.00091 (18)0.00145 (16)0.00035 (17)
Cr20.0303 (2)0.0263 (2)0.0242 (2)0.0022 (2)0.00081 (18)0.00103 (16)
Cl10.0445 (4)0.0343 (4)0.0525 (5)0.0006 (4)0.0088 (4)0.0070 (3)
Cl20.0647 (6)0.0367 (4)0.0416 (4)0.0017 (4)0.0112 (4)0.0025 (3)
O80.0386 (13)0.0371 (11)0.0346 (12)0.0069 (11)0.0010 (10)0.0013 (9)
O40.0356 (12)0.0309 (10)0.0255 (10)0.0042 (9)0.0018 (9)0.0028 (8)
O10.0329 (11)0.0302 (9)0.0284 (9)0.0042 (9)0.0002 (9)0.0004 (8)
O30.0547 (15)0.0454 (13)0.0288 (11)0.0061 (12)0.0068 (11)0.0104 (10)
N40.0295 (14)0.0301 (13)0.0290 (13)0.0015 (11)0.0002 (11)0.0013 (10)
O60.071 (2)0.0729 (19)0.0276 (12)0.0007 (16)0.0035 (13)0.0113 (11)
O20.0380 (14)0.0455 (13)0.0372 (12)0.0049 (11)0.0047 (11)0.0032 (10)
O50.0426 (14)0.0399 (11)0.0275 (11)0.0033 (11)0.0013 (10)0.0037 (9)
C70.0361 (18)0.0323 (15)0.0284 (15)0.0022 (13)0.0027 (14)0.0010 (12)
N70.0513 (19)0.0346 (14)0.0296 (14)0.0042 (13)0.0042 (13)0.0025 (10)
N10.0376 (14)0.0307 (12)0.0271 (12)0.0004 (11)0.0036 (11)0.0003 (10)
N50.0342 (15)0.0298 (12)0.0353 (13)0.0013 (12)0.0045 (11)0.0033 (10)
N80.0343 (13)0.0307 (12)0.0344 (13)0.0013 (12)0.0011 (11)0.0044 (10)
C160.047 (2)0.0335 (15)0.0320 (17)0.0050 (15)0.0020 (15)0.0018 (13)
N30.0369 (14)0.0280 (11)0.0287 (12)0.0016 (12)0.0053 (11)0.0004 (10)
O70.0457 (14)0.0331 (12)0.0506 (13)0.0035 (11)0.0155 (12)0.0003 (10)
N60.0403 (15)0.0284 (12)0.0351 (13)0.0018 (11)0.0006 (12)0.0004 (10)
N20.0369 (15)0.0298 (12)0.0322 (13)0.0016 (11)0.0040 (12)0.0004 (10)
C40.0375 (17)0.0385 (16)0.0389 (16)0.0003 (14)0.0134 (14)0.0021 (13)
C50.0332 (18)0.0469 (18)0.0454 (18)0.0006 (16)0.0078 (15)0.0000 (15)
C80.0313 (16)0.0316 (13)0.0266 (14)0.0004 (13)0.0016 (13)0.0035 (11)
C110.049 (2)0.0338 (16)0.0510 (19)0.0076 (16)0.0115 (17)0.0059 (14)
C10.0423 (18)0.0338 (15)0.0348 (15)0.0048 (14)0.0089 (15)0.0045 (13)
C90.0368 (19)0.047 (2)0.0461 (19)0.0057 (16)0.0089 (16)0.0002 (15)
C120.0383 (18)0.0419 (18)0.0520 (19)0.0068 (16)0.0099 (16)0.0086 (15)
C60.0373 (18)0.0417 (18)0.0394 (17)0.0108 (15)0.0082 (15)0.0026 (13)
C20.0440 (19)0.0444 (18)0.0372 (17)0.0018 (16)0.0119 (16)0.0037 (14)
C30.0377 (18)0.0414 (17)0.0373 (17)0.0040 (15)0.0101 (15)0.0009 (13)
C100.0367 (18)0.051 (2)0.060 (2)0.0076 (17)0.0059 (17)0.0041 (18)
C140.061 (3)0.048 (2)0.043 (2)0.0012 (19)0.0209 (19)0.0090 (16)
C150.0379 (18)0.0253 (13)0.0420 (18)0.0022 (14)0.0076 (15)0.0009 (14)
C130.067 (3)0.045 (2)0.052 (2)0.0142 (19)0.027 (2)0.0023 (17)
O2W0.0577 (18)0.081 (2)0.0442 (14)0.0030 (16)0.0067 (14)0.0099 (14)
O1W0.118 (3)0.0555 (18)0.077 (2)0.015 (2)0.048 (2)0.0022 (16)
Geometric parameters (Å, º) top
Cr1—O41.957 (2)N6—H6A0.9000
Cr1—O11.990 (2)N6—H6D0.9000
Cr1—N42.063 (3)N2—C31.486 (5)
Cr1—N22.077 (3)N2—H2A0.9000
Cr1—N32.095 (3)N2—H2D0.9000
Cr1—N12.101 (3)C4—C51.523 (5)
Cr2—O51.959 (2)C4—H4B0.9700
Cr2—O81.994 (2)C4—H4C0.9700
Cr2—N52.048 (3)C5—C61.511 (5)
Cr2—N72.070 (3)C5—H5B0.9700
Cr2—N82.091 (3)C5—H5C0.9700
Cr2—N62.093 (3)C11—C101.511 (6)
O8—C151.288 (4)C11—H11A0.9700
O4—C71.289 (4)C11—H11B0.9700
O1—C81.299 (4)C1—C21.500 (5)
O3—C71.230 (4)C1—H1B0.9700
N4—C61.475 (4)C1—H1C0.9700
N4—H4A0.9000C9—C101.524 (5)
N4—H4D0.9000C9—H9A0.9700
O6—C161.224 (4)C9—H9B0.9700
O2—C81.213 (4)C12—C131.521 (5)
O5—C161.274 (5)C12—H12A0.9700
C7—C81.554 (5)C12—H12B0.9700
N7—C141.484 (6)C6—H6B0.9700
N7—H7A0.9000C6—H6C0.9700
N7—H7B0.9000C2—C31.518 (5)
N1—C11.483 (4)C2—H2B0.9700
N1—H1A0.9000C2—H2C0.9700
N1—H1D0.9000C3—H3B0.9700
N5—C91.484 (5)C3—H3C0.9700
N5—H5A0.9000C10—H10A0.9700
N5—H5D0.9000C10—H10B0.9700
N8—C121.476 (5)C14—C131.503 (5)
N8—H8A0.9000C14—H14A0.9700
N8—H8B0.9000C14—H14B0.9700
C16—C151.550 (5)C13—H13A0.9700
N3—C41.475 (4)C13—H13B0.9700
N3—H3A0.9000O2W—H2000.8498
N3—H3D0.9000O2W—H2010.8506
O7—C151.234 (4)O1W—H1000.8500
N6—C111.481 (5)O1W—H1010.8500
O4—Cr1—O182.29 (9)Cr1—N2—H2A107.9
O4—Cr1—N488.73 (10)C3—N2—H2D107.9
O1—Cr1—N4170.97 (10)Cr1—N2—H2D107.9
O4—Cr1—N292.45 (10)H2A—N2—H2D107.2
O1—Cr1—N291.44 (10)N3—C4—C5112.4 (3)
N4—Cr1—N289.91 (11)N3—C4—H4B109.1
O4—Cr1—N390.12 (10)C5—C4—H4B109.1
O1—Cr1—N387.51 (10)N3—C4—H4C109.1
N4—Cr1—N391.54 (11)C5—C4—H4C109.1
N2—Cr1—N3177.08 (11)H4B—C4—H4C107.9
O4—Cr1—N1178.36 (11)C6—C5—C4113.7 (3)
O1—Cr1—N196.87 (10)C6—C5—H5B108.8
N4—Cr1—N192.13 (11)C4—C5—H5B108.8
N2—Cr1—N186.15 (10)C6—C5—H5C108.8
N3—Cr1—N191.26 (10)C4—C5—H5C108.8
O5—Cr2—O882.47 (10)H5B—C5—H5C107.7
O5—Cr2—N588.59 (11)O2—C8—O1126.1 (3)
O8—Cr2—N5170.49 (11)O2—C8—C7120.8 (3)
O5—Cr2—N7176.91 (14)O1—C8—C7113.1 (3)
O8—Cr2—N795.09 (12)N6—C11—C10111.5 (3)
N5—Cr2—N793.95 (13)N6—C11—H11A109.3
O5—Cr2—N889.44 (11)C10—C11—H11A109.3
O8—Cr2—N889.79 (11)N6—C11—H11B109.3
N5—Cr2—N893.36 (11)C10—C11—H11B109.3
N7—Cr2—N888.65 (11)H11A—C11—H11B108.0
O5—Cr2—N691.39 (11)N1—C1—C2111.4 (3)
O8—Cr2—N689.94 (11)N1—C1—H1B109.3
N5—Cr2—N687.05 (11)C2—C1—H1B109.3
N7—Cr2—N690.50 (11)N1—C1—H1C109.3
N8—Cr2—N6179.09 (12)C2—C1—H1C109.3
C15—O8—Cr2113.5 (2)H1B—C1—H1C108.0
C7—O4—Cr1115.4 (2)N5—C9—C10112.8 (3)
C8—O1—Cr1114.7 (2)N5—C9—H9A109.0
C6—N4—Cr1119.1 (2)C10—C9—H9A109.0
C6—N4—H4A107.5N5—C9—H9B109.0
Cr1—N4—H4A107.5C10—C9—H9B109.0
C6—N4—H4D107.5H9A—C9—H9B107.8
Cr1—N4—H4D107.5N8—C12—C13112.3 (3)
H4A—N4—H4D107.0N8—C12—H12A109.2
C16—O5—Cr2114.9 (2)C13—C12—H12A109.2
O3—C7—O4124.5 (3)N8—C12—H12B109.2
O3—C7—C8121.1 (3)C13—C12—H12B109.2
O4—C7—C8114.4 (3)H12A—C12—H12B107.9
C14—N7—Cr2117.2 (2)N4—C6—C5113.0 (3)
C14—N7—H7A108.0N4—C6—H6B109.0
Cr2—N7—H7A108.0C5—C6—H6B109.0
C14—N7—H7B108.0N4—C6—H6C109.0
Cr2—N7—H7B108.0C5—C6—H6C109.0
H7A—N7—H7B107.2H6B—C6—H6C107.8
C1—N1—Cr1115.4 (2)C1—C2—C3114.6 (3)
C1—N1—H1A108.4C1—C2—H2B108.6
Cr1—N1—H1A108.4C3—C2—H2B108.6
C1—N1—H1D108.4C1—C2—H2C108.6
Cr1—N1—H1D108.4C3—C2—H2C108.6
H1A—N1—H1D107.5H2B—C2—H2C107.6
C9—N5—Cr2118.3 (2)N2—C3—C2112.5 (3)
C9—N5—H5A107.7N2—C3—H3B109.1
Cr2—N5—H5A107.7C2—C3—H3B109.1
C9—N5—H5D107.7N2—C3—H3C109.1
Cr2—N5—H5D107.7C2—C3—H3C109.1
H5A—N5—H5D107.1H3B—C3—H3C107.8
C12—N8—Cr2118.9 (2)C11—C10—C9114.5 (3)
C12—N8—H8A107.6C11—C10—H10A108.6
Cr2—N8—H8A107.6C9—C10—H10A108.6
C12—N8—H8B107.6C11—C10—H10B108.6
Cr2—N8—H8B107.6C9—C10—H10B108.6
H8A—N8—H8B107.0H10A—C10—H10B107.6
O6—C16—O5125.1 (4)N7—C14—C13111.8 (3)
O6—C16—C15120.4 (3)N7—C14—H14A109.3
O5—C16—C15114.4 (3)C13—C14—H14A109.3
C4—N3—Cr1117.36 (19)N7—C14—H14B109.3
C4—N3—H3A108.0C13—C14—H14B109.3
Cr1—N3—H3A108.0H14A—C14—H14B107.9
C4—N3—H3D108.0O7—C15—O8124.5 (4)
Cr1—N3—H3D108.0O7—C15—C16121.3 (3)
H3A—N3—H3D107.2O8—C15—C16114.2 (3)
C11—N6—Cr2117.4 (2)C14—C13—C12114.3 (3)
C11—N6—H6A108.0C14—C13—H13A108.7
Cr2—N6—H6A108.0C12—C13—H13A108.7
C11—N6—H6D108.0C14—C13—H13B108.7
Cr2—N6—H6D108.0C12—C13—H13B108.7
H6A—N6—H6D107.2H13A—C13—H13B107.6
C3—N2—Cr1117.5 (2)H200—O2W—H201106.9
C3—N2—H2A107.9H100—O1W—H101111.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl2i0.902.463.353 (4)172
N4—H4D···O3ii0.902.022.913 (4)175
N7—H7A···O7iii0.902.122.994 (5)164
N7—H7B···Cl20.902.543.323 (4)145
N1—H1A···O7iv0.902.163.047 (4)170
N1—H1D···O3ii0.902.393.141 (5)141
N5—H5A···O6iii0.901.972.780 (4)149
N5—H5D···Cl10.902.283.160 (4)165
N8—H8A···Cl2v0.902.503.329 (3)154
N8—H8B···Cl10.902.693.383 (4)135
N3—H3A···O7iv0.902.233.064 (4)155
N3—H3D···O2W0.902.153.000 (4)157
N6—H6A···O1vi0.902.473.248 (4)145
N6—H6D···Cl20.902.473.360 (3)171
N2—H2A···O2ii0.902.533.363 (4)154
N2—H2D···Cl1vii0.902.563.323 (3)143
O1W—H100···Cl10.852.473.169 (4)140
O1W—H101···O50.852.293.082 (5)154
O2W—H200···Cl2iv0.852.493.298 (4)160
O2W—H201···O1Wiii0.851.952.800 (4)173
Symmetry codes: (i) x1/2, y+2, z+1/2; (ii) x+1/2, y+2, z+1/2; (iii) x1/2, y+1, z1/2; (iv) x1, y, z; (v) x+1/2, y+1, z+1/2; (vi) x+1, y, z; (vii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cr(C2O4)(C3H10N2)2]Cl·H2O
Mr341.74
Crystal system, space groupMonoclinic, Pn
Temperature (K)293
a, b, c (Å)8.9532 (17), 12.038 (2), 13.645 (3)
β (°) 99.973 (14)
V3)1448.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerBruker P4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.742, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
3397, 3084, 3056
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.00
No. of reflections3084
No. of parameters348
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.34
Absolute structureFlack (1983), with 526 Friedel pairs
Absolute structure parameter0.017 (15)

Computer programs: XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) and XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl2i0.9002.4603.353 (4)171.46
N4—H4D···O3ii0.9002.0152.913 (4)174.93
N7—H7A···O7iii0.9002.1192.994 (5)163.89
N7—H7B···Cl20.9002.5443.323 (4)145.27
N1—H1A···O7iv0.9002.1563.047 (4)169.98
N1—H1D···O3ii0.9002.3933.141 (5)140.69
N5—H5A···O6iii0.9001.9722.780 (4)148.59
N5—H5D···Cl10.9002.2833.160 (4)164.74
N8—H8A···Cl2v0.9002.4963.329 (3)154.18
N8—H8B···Cl10.9002.6873.383 (4)134.91
N3—H3A···O7iv0.9002.2273.064 (4)154.48
N3—H3D···O2W0.9002.1503.000 (4)157.17
N6—H6A···O1vi0.9002.4683.248 (4)145.22
N6—H6D···Cl20.9002.4693.360 (3)170.93
N2—H2A···O2ii0.9002.5333.363 (4)153.58
N2—H2D···Cl1vii0.9002.5603.323 (3)143.00
O1W—H100···Cl10.8502.4693.169 (4)140.19
O1W—H101···O50.8502.2943.082 (5)154.18
O2W—H200···Cl2iv0.8502.4863.298 (4)160.12
O2W—H201···O1Wiii0.8501.9542.800 (4)172.82
Symmetry codes: (i) x1/2, y+2, z+1/2; (ii) x+1/2, y+2, z+1/2; (iii) x1/2, y+1, z1/2; (iv) x1, y, z; (v) x+1/2, y+1, z+1/2; (vi) x+1, y, z; (vii) x1, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds