Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The Cu atom in the title salt, [Cu(C10H8N2)3](BF4)2, has an elongated octa­hedral coordination geometry. Three F atoms of one anion are disordered over two positions with a site occupancy ratio of 3:2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037002/ng2301sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037002/ng2301Isup2.hkl
Contains datablock I

CCDC reference: 660042

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in solvent or counterion
  • R factor = 0.061
  • wR factor = 0.160
  • Data-to-parameter ratio = 11.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 23.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structure of tris(2,2'-bipyridine)copper diperchlorate (Anderson, 1972; Liu et al., 1991; Majumdar et al., 1998; Pavlishchuk et al., 1999) and tris(2,2'-bipyridine)copper bis(tetraphenylborate) (Murphy et al., 2006) have been reported previously. We have reported the bis(hexafluoridophosphorate) salt (Wang et al., 2007), and continue our work with the bis(tetrafluoridoborate) salt.

The geometry of the copper atom is an elongated octahedron as the structure has four nearly identical Cu–N bonds and two somewhat longer ones that are trans to each other. The three 2,2'-bipyridine rings are bent, with dihedral angles of 11.2 (3)° (between C1 to C5 and N1 ring and C6 to C10 N2 ring), 31.0 (3)° (between C11 to C15 and N3 ring and C16 to C20 N4 ring) and 14.6 (3)° (between C21 to C25 and N5 ring and C26 to C30 N6 ring).

Related literature top

For the diperchlorate salt, see: Anderson (1972); Liu et al. (1991); Majumdar et al. (1998) and Pavlishchuk et al. (1999). For the bis(tetraphenylborate) salt, see Murphy et al. (2006) and for the bis(hexafluoridophosphorate) salt, see Wang et al. (2007).

Experimental top

The compound was obtained by refluxing Cu(NO3)2.3H2O (0.121 g, 0.5 mmol) and 2,2'-bipyridine (0.234 g, 1.5 mmol) in a mixture of 80 ml e thanol and 20 ml water for 1 h in the presence of excess NaBF4. The mixture was concentrated to nearly 5 ml. The blue product was recrystallized from a 3/1 methanol water mixture and the pure compound isolated in 90% yield. CH&N elemental analysis. Calculated for C30H24CuN6F12P2: C 51.06, H 3.43, N 11.91%; found: C 51.04, H 3.49, N 11.86%.

Refinement top

The non-hydrogen atoms were refined anisotropically, whereas the H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). F5, F6 and F7 atoms of one tetrafluoridoborate anion are refined over two sites with 0.60 (2): 0.40 (2) site occupancy factors.

Structure description top

The crystal structure of tris(2,2'-bipyridine)copper diperchlorate (Anderson, 1972; Liu et al., 1991; Majumdar et al., 1998; Pavlishchuk et al., 1999) and tris(2,2'-bipyridine)copper bis(tetraphenylborate) (Murphy et al., 2006) have been reported previously. We have reported the bis(hexafluoridophosphorate) salt (Wang et al., 2007), and continue our work with the bis(tetrafluoridoborate) salt.

The geometry of the copper atom is an elongated octahedron as the structure has four nearly identical Cu–N bonds and two somewhat longer ones that are trans to each other. The three 2,2'-bipyridine rings are bent, with dihedral angles of 11.2 (3)° (between C1 to C5 and N1 ring and C6 to C10 N2 ring), 31.0 (3)° (between C11 to C15 and N3 ring and C16 to C20 N4 ring) and 14.6 (3)° (between C21 to C25 and N5 ring and C26 to C30 N6 ring).

For the diperchlorate salt, see: Anderson (1972); Liu et al. (1991); Majumdar et al. (1998) and Pavlishchuk et al. (1999). For the bis(tetraphenylborate) salt, see Murphy et al. (2006) and for the bis(hexafluoridophosphorate) salt, see Wang et al. (2007).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular plot, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and the H atoms are shown as small spheres of arbitrary radii.
Tris(2,2'-bipyridine-κ2N,N')copper(II) bis(tetrafluoridoborate) top
Crystal data top
[Cu(C10H8N2)3](BF4)2Z = 2
Mr = 705.71F(000) = 714
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.911 (2) ÅCell parameters from 6691 reflections
b = 10.851 (2) Åθ = 3.0–27.5°
c = 18.482 (4) ŵ = 0.79 mm1
α = 100.88 (3)°T = 291 K
β = 90.26 (2)°Block, blue
γ = 98.08 (3)°0.20 × 0.12 × 0.10 mm
V = 1541.8 (6) Å3
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
5276 independent reflections
Radiation source: Rigaku rotating anode4853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 14.6199 pixels mm-1θmax = 25.0°, θmin = 3.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1211
Tmin = 0.858, Tmax = 0.925l = 2120
13060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0929P)2 + 0.8259P]
where P = (Fo2 + 2Fc2)/3
5276 reflections(Δ/σ)max = 0.001
452 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Cu(C10H8N2)3](BF4)2γ = 98.08 (3)°
Mr = 705.71V = 1541.8 (6) Å3
Triclinic, P1Z = 2
a = 7.911 (2) ÅMo Kα radiation
b = 10.851 (2) ŵ = 0.79 mm1
c = 18.482 (4) ÅT = 291 K
α = 100.88 (3)°0.20 × 0.12 × 0.10 mm
β = 90.26 (2)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
5276 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4853 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.925Rint = 0.095
13060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.07Δρmax = 0.62 e Å3
5276 reflectionsΔρmin = 0.77 e Å3
452 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.49537 (4)0.26462 (3)0.260441 (19)0.04188 (18)
B10.2081 (7)0.8226 (4)0.0862 (3)0.0713 (13)
B20.2989 (5)0.2751 (4)0.5691 (2)0.0572 (10)
C10.5758 (5)0.1204 (3)0.37557 (18)0.0532 (8)
C20.6673 (6)0.0615 (4)0.4203 (2)0.0726 (12)
H20.62030.01490.43280.087*
C30.8288 (7)0.1186 (5)0.4456 (2)0.0807 (13)
H30.89210.08050.47540.097*
C40.8971 (6)0.2322 (5)0.4268 (2)0.0715 (11)
H41.00580.27190.44360.086*
C50.7991 (5)0.2847 (4)0.3825 (2)0.0637 (9)
H50.84330.36180.37010.076*
C60.4003 (5)0.0685 (3)0.34619 (18)0.0543 (8)
C70.2992 (7)0.0319 (4)0.3697 (2)0.0774 (12)
H70.34260.07210.40440.093*
C80.1369 (7)0.0708 (5)0.3416 (3)0.0882 (15)
H80.06830.13670.35760.106*
C90.0756 (6)0.0124 (4)0.2897 (3)0.0788 (13)
H90.03500.03810.27010.095*
C100.1788 (5)0.0845 (4)0.2669 (2)0.0642 (9)
H100.13690.12360.23130.077*
C110.2700 (4)0.4602 (3)0.26873 (18)0.0466 (7)
C120.1730 (5)0.5511 (4)0.3006 (2)0.0668 (10)
H120.11690.59450.27130.080*
C130.1602 (6)0.5772 (4)0.3762 (2)0.0747 (12)
H130.09490.63790.39840.090*
C140.2444 (5)0.5126 (4)0.4179 (2)0.0650 (10)
H140.23680.52870.46890.078*
C150.3399 (4)0.4240 (3)0.38420 (18)0.0519 (8)
H150.39720.38080.41310.062*
C160.2887 (4)0.4245 (3)0.18751 (18)0.0464 (7)
C170.2861 (5)0.5112 (4)0.1416 (2)0.0602 (9)
H170.26940.59420.16020.072*
C180.3090 (6)0.4708 (4)0.0674 (2)0.0727 (11)
H180.30970.52730.03520.087*
C190.3305 (5)0.3482 (4)0.0413 (2)0.0692 (11)
H190.34370.31930.00880.083*
C200.3323 (5)0.2684 (4)0.0904 (2)0.0611 (9)
H200.34800.18480.07250.073*
C210.7564 (4)0.3415 (4)0.16426 (18)0.0511 (8)
C220.8481 (5)0.4169 (5)0.1212 (2)0.0709 (11)
H220.90150.38020.07950.085*
C230.8595 (6)0.5468 (5)0.1406 (3)0.0787 (13)
H230.92010.59870.11200.094*
C240.7813 (6)0.5986 (4)0.2022 (3)0.0747 (12)
H240.79090.68620.21670.090*
C250.6873 (5)0.5201 (3)0.2430 (2)0.0582 (9)
H250.63400.55600.28490.070*
C260.7395 (4)0.2022 (4)0.14967 (17)0.0507 (8)
C270.8424 (5)0.1326 (5)0.1022 (2)0.0754 (12)
H270.92840.17340.07730.090*
C280.8152 (7)0.0010 (5)0.0924 (3)0.0868 (14)
H280.88220.04730.06060.104*
C290.6890 (6)0.0562 (4)0.1299 (2)0.0748 (12)
H290.66870.14410.12410.090*
C300.5918 (5)0.0179 (3)0.1767 (2)0.0598 (9)
H300.50530.02200.20170.072*
F10.2206 (7)0.8026 (3)0.15562 (17)0.1338 (15)
F20.0550 (4)0.7601 (3)0.05207 (18)0.1028 (10)
F30.3345 (5)0.7722 (4)0.0444 (2)0.1279 (13)
F40.2193 (4)0.9489 (2)0.08575 (18)0.0921 (8)
F50.4322 (11)0.2699 (7)0.6125 (7)0.113 (4)0.60 (2)
F60.312 (2)0.2132 (10)0.5016 (4)0.141 (6)0.60 (2)
F80.2847 (5)0.3995 (3)0.5705 (2)0.1150 (11)
F70.1557 (11)0.2347 (11)0.5970 (10)0.160 (7)0.60 (2)
N10.6436 (4)0.2301 (3)0.35638 (15)0.0523 (7)
N20.3391 (4)0.1247 (3)0.29465 (16)0.0521 (7)
N30.3538 (3)0.3971 (2)0.31056 (14)0.0451 (6)
N40.3126 (4)0.3045 (3)0.16283 (15)0.0516 (7)
N50.6716 (3)0.3931 (3)0.22333 (14)0.0468 (6)
N60.6162 (3)0.1444 (3)0.18753 (14)0.0467 (6)
F5'0.4303 (17)0.2429 (13)0.5288 (12)0.134 (7)0.40 (2)
F6'0.167 (2)0.1857 (13)0.5369 (11)0.138 (8)0.40 (2)
F7'0.316 (3)0.2394 (10)0.6360 (4)0.128 (9)0.40 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0510 (3)0.0333 (2)0.0445 (3)0.00823 (16)0.01055 (16)0.01354 (16)
B10.096 (3)0.044 (2)0.073 (3)0.012 (2)0.005 (3)0.008 (2)
B20.055 (2)0.056 (2)0.063 (3)0.0074 (18)0.0015 (19)0.0168 (19)
C10.081 (2)0.0435 (17)0.0424 (17)0.0206 (16)0.0174 (16)0.0167 (14)
C20.103 (3)0.064 (2)0.067 (2)0.034 (2)0.019 (2)0.036 (2)
C30.100 (3)0.093 (3)0.066 (3)0.046 (3)0.006 (2)0.032 (2)
C40.072 (2)0.088 (3)0.061 (2)0.024 (2)0.0003 (19)0.023 (2)
C50.071 (2)0.063 (2)0.059 (2)0.0103 (19)0.0011 (18)0.0181 (18)
C60.083 (2)0.0375 (16)0.0451 (17)0.0098 (16)0.0228 (16)0.0129 (13)
C70.115 (4)0.055 (2)0.068 (3)0.003 (2)0.023 (2)0.0326 (19)
C80.109 (4)0.064 (3)0.087 (3)0.017 (3)0.027 (3)0.022 (2)
C90.078 (3)0.065 (3)0.083 (3)0.014 (2)0.015 (2)0.003 (2)
C100.069 (2)0.053 (2)0.068 (2)0.0019 (18)0.0092 (19)0.0074 (17)
C110.0481 (16)0.0438 (17)0.0495 (17)0.0097 (13)0.0006 (13)0.0106 (14)
C120.074 (2)0.062 (2)0.069 (2)0.0321 (19)0.0023 (19)0.0069 (19)
C130.083 (3)0.071 (3)0.071 (3)0.036 (2)0.010 (2)0.002 (2)
C140.080 (2)0.061 (2)0.053 (2)0.017 (2)0.0138 (18)0.0059 (17)
C150.0611 (19)0.0512 (19)0.0445 (17)0.0114 (15)0.0068 (15)0.0091 (14)
C160.0474 (16)0.0443 (17)0.0488 (17)0.0084 (13)0.0015 (13)0.0112 (13)
C170.073 (2)0.051 (2)0.062 (2)0.0183 (17)0.0029 (18)0.0205 (16)
C180.093 (3)0.077 (3)0.058 (2)0.019 (2)0.001 (2)0.033 (2)
C190.081 (3)0.080 (3)0.047 (2)0.013 (2)0.0019 (18)0.0147 (19)
C200.080 (2)0.052 (2)0.0491 (19)0.0117 (18)0.0048 (17)0.0046 (16)
C210.0464 (16)0.066 (2)0.0421 (16)0.0014 (15)0.0028 (13)0.0187 (15)
C220.063 (2)0.090 (3)0.061 (2)0.013 (2)0.0065 (18)0.032 (2)
C230.075 (3)0.087 (3)0.078 (3)0.020 (2)0.004 (2)0.049 (3)
C240.074 (3)0.056 (2)0.096 (3)0.0113 (19)0.018 (2)0.033 (2)
C250.060 (2)0.0474 (19)0.067 (2)0.0014 (15)0.0043 (17)0.0173 (16)
C260.0502 (17)0.065 (2)0.0389 (16)0.0119 (15)0.0017 (13)0.0117 (14)
C270.064 (2)0.103 (4)0.060 (2)0.021 (2)0.0202 (19)0.014 (2)
C280.094 (3)0.092 (4)0.075 (3)0.043 (3)0.017 (2)0.004 (3)
C290.101 (3)0.059 (2)0.066 (2)0.032 (2)0.006 (2)0.0024 (19)
C300.078 (2)0.0463 (19)0.057 (2)0.0190 (17)0.0064 (18)0.0067 (16)
F10.258 (5)0.0714 (19)0.0760 (19)0.036 (2)0.022 (2)0.0164 (15)
F20.103 (2)0.094 (2)0.105 (2)0.0224 (17)0.0018 (17)0.0294 (17)
F30.118 (3)0.106 (3)0.162 (3)0.048 (2)0.024 (2)0.006 (2)
F40.110 (2)0.0504 (13)0.119 (2)0.0081 (13)0.0053 (17)0.0272 (14)
F50.099 (5)0.083 (4)0.160 (9)0.015 (3)0.059 (5)0.029 (4)
F60.228 (17)0.131 (8)0.069 (4)0.072 (10)0.017 (6)0.005 (4)
F80.160 (3)0.0683 (18)0.127 (3)0.0292 (19)0.006 (2)0.0337 (17)
F70.088 (5)0.144 (8)0.277 (18)0.016 (5)0.080 (9)0.114 (9)
N10.0717 (18)0.0419 (14)0.0486 (15)0.0124 (13)0.0089 (13)0.0185 (12)
N20.0644 (17)0.0405 (14)0.0538 (16)0.0104 (13)0.0135 (13)0.0125 (12)
N30.0511 (14)0.0392 (13)0.0465 (14)0.0067 (11)0.0038 (11)0.0120 (11)
N40.0642 (17)0.0432 (15)0.0487 (15)0.0112 (13)0.0019 (13)0.0096 (12)
N50.0517 (14)0.0453 (15)0.0451 (14)0.0034 (12)0.0015 (11)0.0156 (11)
N60.0523 (14)0.0466 (15)0.0426 (14)0.0109 (12)0.0047 (11)0.0096 (11)
F5'0.090 (7)0.138 (9)0.160 (17)0.014 (6)0.058 (9)0.001 (8)
F6'0.132 (12)0.125 (10)0.152 (14)0.037 (8)0.069 (11)0.054 (10)
F7'0.26 (3)0.068 (6)0.056 (4)0.037 (9)0.016 (7)0.010 (4)
Geometric parameters (Å, º) top
Cu1—N22.019 (3)C11—C161.491 (4)
Cu1—N62.032 (3)C12—C131.379 (6)
Cu1—N32.034 (3)C12—H120.9300
Cu1—N52.044 (3)C13—C141.364 (6)
Cu1—N12.239 (3)C13—H130.9300
Cu1—N42.445 (3)C14—C151.365 (5)
B1—F11.346 (6)C14—H140.9300
B1—F41.362 (5)C15—N31.345 (4)
B1—F31.378 (6)C15—H150.9300
B1—F21.388 (6)C16—N41.336 (4)
B2—F71.301 (7)C16—C171.382 (5)
B2—F61.312 (8)C17—C181.381 (6)
B2—F5'1.330 (10)C17—H170.9300
B2—F51.336 (7)C18—C191.361 (6)
B2—F81.366 (5)C18—H180.9300
B2—F6'1.370 (11)C19—C201.369 (6)
B2—F7'1.376 (9)C19—H190.9300
C1—N11.346 (4)C20—N41.338 (5)
C1—C21.392 (5)C20—H200.9300
C1—C61.482 (5)C21—N51.355 (4)
C2—C31.377 (7)C21—C221.383 (5)
C2—H20.9300C21—C261.471 (5)
C3—C41.381 (7)C22—C231.378 (7)
C3—H30.9300C22—H220.9300
C4—C51.375 (6)C23—C241.362 (7)
C4—H40.9300C23—H230.9300
C5—N11.334 (5)C24—C251.385 (6)
C5—H50.9300C24—H240.9300
C6—N21.346 (5)C25—N51.345 (4)
C6—C71.397 (5)C25—H250.9300
C7—C81.362 (7)C26—N61.354 (4)
C7—H70.9300C26—C271.390 (5)
C8—C91.366 (7)C27—C281.390 (7)
C8—H80.9300C27—H270.9300
C9—C101.371 (6)C28—C291.363 (7)
C9—H90.9300C28—H280.9300
C10—N21.347 (5)C29—C301.379 (6)
C10—H100.9300C29—H290.9300
C11—N31.351 (4)C30—N61.335 (5)
C11—C121.381 (5)C30—H300.9300
N2—Cu1—N694.42 (11)C13—C12—C11119.5 (4)
N2—Cu1—N391.40 (11)C13—C12—H12120.3
N6—Cu1—N3165.91 (11)C11—C12—H12120.3
N2—Cu1—N5173.96 (11)C14—C13—C12119.1 (4)
N6—Cu1—N580.24 (11)C14—C13—H13120.4
N3—Cu1—N594.44 (11)C12—C13—H13120.4
N2—Cu1—N177.41 (12)C13—C14—C15119.5 (4)
N6—Cu1—N192.18 (11)C13—C14—H14120.3
N3—Cu1—N1101.62 (11)C15—C14—H14120.3
N5—Cu1—N199.84 (11)N3—C15—C14122.3 (3)
N2—Cu1—N499.54 (12)N3—C15—H15118.9
N6—Cu1—N492.01 (10)C14—C15—H15118.9
N3—Cu1—N474.35 (10)N4—C16—C17122.7 (3)
N5—Cu1—N483.56 (10)N4—C16—C11115.4 (3)
N1—Cu1—N4175.00 (10)C17—C16—C11121.9 (3)
F1—B1—F4110.8 (4)C18—C17—C16118.0 (4)
F1—B1—F3110.2 (5)C18—C17—H17121.0
F4—B1—F3109.9 (5)C16—C17—H17121.0
F1—B1—F2110.8 (5)C19—C18—C17119.9 (4)
F4—B1—F2109.4 (4)C19—C18—H18120.1
F3—B1—F2105.6 (4)C17—C18—H18120.1
F7—B2—F6111.1 (8)C18—C19—C20118.5 (4)
F7—B2—F5'146.0 (9)C18—C19—H19120.8
F6—B2—F5'46.2 (6)C20—C19—H19120.8
F7—B2—F5111.1 (7)N4—C20—C19123.3 (4)
F6—B2—F5112.0 (7)N4—C20—H20118.3
F5'—B2—F569.5 (8)C19—C20—H20118.3
F7—B2—F8102.1 (5)N5—C21—C22121.1 (4)
F6—B2—F8111.6 (5)N5—C21—C26115.0 (3)
F5'—B2—F8109.9 (7)C22—C21—C26123.9 (4)
F5—B2—F8108.5 (5)C23—C22—C21119.3 (4)
F7—B2—F6'50.8 (7)C23—C22—H22120.3
F6—B2—F6'60.3 (8)C21—C22—H22120.3
F5'—B2—F6'102.3 (10)C24—C23—C22119.4 (4)
F5—B2—F6'132.7 (8)C24—C23—H23120.3
F8—B2—F6'117.7 (8)C22—C23—H23120.3
F7—B2—F7'65.3 (9)C23—C24—C25119.7 (4)
F6—B2—F7'130.9 (6)C23—C24—H24120.2
F5'—B2—F7'107.9 (10)C25—C24—H24120.2
F5—B2—F7'45.8 (7)N5—C25—C24121.4 (4)
F8—B2—F7'117.0 (5)N5—C25—H25119.3
F6'—B2—F7'100.7 (9)C24—C25—H25119.3
N1—C1—C2121.1 (4)N6—C26—C27121.2 (4)
N1—C1—C6115.7 (3)N6—C26—C21114.9 (3)
C2—C1—C6123.3 (3)C27—C26—C21123.9 (4)
C3—C2—C1118.7 (4)C28—C27—C26119.1 (4)
C3—C2—H2120.7C28—C27—H27120.4
C1—C2—H2120.7C26—C27—H27120.4
C2—C3—C4120.1 (4)C29—C28—C27119.1 (4)
C2—C3—H3119.9C29—C28—H28120.4
C4—C3—H3119.9C27—C28—H28120.4
C5—C4—C3117.9 (4)C28—C29—C30119.1 (4)
C5—C4—H4121.1C28—C29—H29120.4
C3—C4—H4121.1C30—C29—H29120.4
N1—C5—C4123.0 (4)N6—C30—C29122.9 (4)
N1—C5—H5118.5N6—C30—H30118.5
C4—C5—H5118.5C29—C30—H30118.5
N2—C6—C7120.1 (4)C5—N1—C1119.2 (3)
N2—C6—C1116.2 (3)C5—N1—Cu1128.7 (2)
C7—C6—C1123.6 (4)C1—N1—Cu1110.2 (2)
C8—C7—C6119.8 (4)C6—N2—C10119.4 (3)
C8—C7—H7120.1C6—N2—Cu1118.0 (2)
C6—C7—H7120.1C10—N2—Cu1122.6 (3)
C7—C8—C9119.5 (4)C15—N3—C11118.6 (3)
C7—C8—H8120.2C15—N3—Cu1122.2 (2)
C9—C8—H8120.2C11—N3—Cu1119.2 (2)
C8—C9—C10119.3 (4)C16—N4—C20117.6 (3)
C8—C9—H9120.3C16—N4—Cu1102.3 (2)
C10—C9—H9120.3C20—N4—Cu1125.5 (2)
N2—C10—C9121.8 (4)C25—N5—C21118.9 (3)
N2—C10—H10119.1C25—N5—Cu1126.4 (2)
C9—C10—H10119.1C21—N5—Cu1113.6 (2)
N3—C11—C12121.0 (3)C30—N6—C26118.5 (3)
N3—C11—C16115.9 (3)C30—N6—Cu1126.8 (2)
C12—C11—C16123.1 (3)C26—N6—Cu1114.6 (2)

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)3](BF4)2
Mr705.71
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.911 (2), 10.851 (2), 18.482 (4)
α, β, γ (°)100.88 (3), 90.26 (2), 98.08 (3)
V3)1541.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerRigaku Mercury CCD area-detector
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.858, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
13060, 5276, 4853
Rint0.095
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.160, 1.07
No. of reflections5276
No. of parameters452
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.77

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N22.019 (3)Cu1—N52.044 (3)
Cu1—N62.032 (3)Cu1—N12.239 (3)
Cu1—N32.034 (3)Cu1—N42.445 (3)
N2—Cu1—N694.42 (11)N3—Cu1—N1101.62 (11)
N2—Cu1—N391.40 (11)N5—Cu1—N199.84 (11)
N6—Cu1—N3165.91 (11)N2—Cu1—N499.54 (12)
N2—Cu1—N5173.96 (11)N6—Cu1—N492.01 (10)
N6—Cu1—N580.24 (11)N3—Cu1—N474.35 (10)
N3—Cu1—N594.44 (11)N5—Cu1—N483.56 (10)
N2—Cu1—N177.41 (12)N1—Cu1—N4175.00 (10)
N6—Cu1—N192.18 (11)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds