Download citation
Download citation
link to html
In the title compound, [Pd(C15H11N3)(C2H3N)](PF6)2, the Pd atom is four-coordinated by a tridentate chelating 2,2′:6′,2′′-terpyridine ligand and an acetonitrile ligand in a square-planar geometry. The cations and hexa­fluorido­phosphate anions are connected together via anion–π inter­actions [P—F...π = 3.063 (5) and 3.076 (6) Å] and C—H...F hydrogen bonds to form alternating layers along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703070X/ng2287sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703070X/ng2287Isup2.hkl
Contains datablock I

CCDC reference: 657512

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.045
  • wR factor = 0.142
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P2 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.09
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Pd1 (2) 2.40
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The 2,2':6',2''-terpyridine complexes of palladium(II) and platinum(II) have the metal centers in a square-planar geometry (Angle et al., 2006; Onoda et al., 2003; Roszak et al., 1996). The title compound also displays square-planar coordination, with four N atoms from terpy and acetonitrile molecule (Fig. 1). The crystal structure comprises alternating layers of cations and anions as represented in Fig. 2. The compound packs by an anion–π interaction (P1—F2···Cg1 3.063 (5) Å [Cg1 is the centroid of the ring system Pd1, N1, C5, C6, N2; P2—F12···Cg2 3.076 (6) Å, Cg2 is the centroid of the ring system Pd1, N2, C10, C11, N3] and hydrogen bonds involving hexafluorophosphate anions (C—H···F). Non-classical hydrogen bonds that connect cations, anions and coordinated acetonitrile molecules are detailed in Table 2.

Related literature top

For literature on the 2,2':6',2''-terpyridine complexes of palladium(II) and platinum(II), see: Angle et al. (2006); Onoda et al. (2003); Roszak et al. (1996).

Experimental top

(2,2':6',2''-Terpyridyl-κ3N)dinitratopalladium (46.4 mg, 0.10 mmol) was dissolved in water (5 ml), and a tenfold excess of potassium hexafluorophosphate was added, which resulted in the immediate deposition deep yellow microcrystals. The crystals were filtered, washed with a minimum amount of cold water and dried under vacuum (quantative yield of 59.6 mg). Crystals were obtained by the vapor diffusion of diethyl ether into a 2 mM solution in acetonitrile.

Refinement top

The aromatic H atoms were constrained to an ideal geometry, with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C). The methyl H atoms were rotated to fit the electron density, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). The largest peak and deepest hole on the final difference Fourier map corresponds to 0.84 and -0.61 e.Å-3, and were located 1.14 and 0.42Å from the F12 and F10 atoms.

Structure description top

The 2,2':6',2''-terpyridine complexes of palladium(II) and platinum(II) have the metal centers in a square-planar geometry (Angle et al., 2006; Onoda et al., 2003; Roszak et al., 1996). The title compound also displays square-planar coordination, with four N atoms from terpy and acetonitrile molecule (Fig. 1). The crystal structure comprises alternating layers of cations and anions as represented in Fig. 2. The compound packs by an anion–π interaction (P1—F2···Cg1 3.063 (5) Å [Cg1 is the centroid of the ring system Pd1, N1, C5, C6, N2; P2—F12···Cg2 3.076 (6) Å, Cg2 is the centroid of the ring system Pd1, N2, C10, C11, N3] and hydrogen bonds involving hexafluorophosphate anions (C—H···F). Non-classical hydrogen bonds that connect cations, anions and coordinated acetonitrile molecules are detailed in Table 2.

For literature on the 2,2':6',2''-terpyridine complexes of palladium(II) and platinum(II), see: Angle et al. (2006); Onoda et al. (2003); Roszak et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title compound (I), showing 30% probability displacement ellipsoids and the atom numbering scheme.
(Acetonitrile-κN)(2,2':6',2''-terpyridyl-κ3N)palladium(II)] bis(hexafluorophosphate) top
Crystal data top
[Pd(C15H11N3)(C2H3N)](PF6)2F(000) = 1312
Mr = 670.66Dx = 1.976 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8518 reflections
a = 13.1073 (3) Åθ = 2.2–28.3°
b = 11.8840 (3) ŵ = 1.08 mm1
c = 14.6085 (4) ÅT = 273 K
β = 97.810 (1)°Block, yellow
V = 2254.42 (10) Å30.30 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
5449 independent reflections
Radiation source: sealed tube4503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1517
Tmin = 0.738, Tmax = 0.797k = 1515
16715 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0789P)2 + 2.9852P]
where P = (Fo2 + 2Fc2)/3
5449 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Pd(C15H11N3)(C2H3N)](PF6)2V = 2254.42 (10) Å3
Mr = 670.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1073 (3) ŵ = 1.08 mm1
b = 11.8840 (3) ÅT = 273 K
c = 14.6085 (4) Å0.30 × 0.24 × 0.22 mm
β = 97.810 (1)°
Data collection top
Bruker SMART
diffractometer
5449 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4503 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.797Rint = 0.017
16715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.06Δρmax = 0.84 e Å3
5449 reflectionsΔρmin = 0.61 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.76117 (2)0.28974 (2)0.599820 (18)0.04089 (12)
N10.6996 (2)0.3828 (3)0.6946 (2)0.0479 (7)
N20.7149 (2)0.1693 (3)0.6726 (2)0.0426 (6)
N30.8072 (2)0.1568 (3)0.5289 (2)0.0444 (6)
N40.8108 (3)0.4156 (3)0.5235 (2)0.0527 (8)
C10.6934 (3)0.4957 (4)0.6996 (3)0.0570 (10)
H10.72110.53930.65620.068*
C20.6472 (4)0.5483 (5)0.7672 (4)0.0691 (12)
H20.64330.62630.76920.083*
C30.6070 (4)0.4841 (5)0.8313 (3)0.0695 (13)
H30.57650.51870.87790.083*
C40.6115 (3)0.3684 (5)0.8272 (3)0.0617 (11)
H40.58330.32410.86990.074*
C50.6589 (3)0.3196 (4)0.7584 (3)0.0498 (8)
C60.6679 (3)0.1969 (4)0.7459 (3)0.0489 (9)
C70.6330 (4)0.1121 (4)0.7987 (3)0.0622 (11)
H70.59980.12860.84940.075*
C80.6495 (4)0.0009 (4)0.7734 (3)0.0691 (13)
H80.62650.05740.80790.083*
C90.6985 (4)0.0243 (4)0.6990 (3)0.0615 (11)
H90.70950.09880.68320.074*
C100.7317 (3)0.0635 (3)0.6473 (3)0.0475 (8)
C110.7857 (3)0.0558 (3)0.5664 (3)0.0468 (8)
C120.8143 (4)0.0446 (4)0.5296 (3)0.0594 (10)
H120.80010.11270.55670.071*
C130.8644 (4)0.0430 (4)0.4523 (4)0.0664 (12)
H130.88370.10980.42630.080*
C140.8852 (4)0.0591 (4)0.4143 (3)0.0648 (11)
H140.91850.06190.36210.078*
C150.8562 (3)0.1575 (4)0.4544 (3)0.0533 (9)
H150.87130.22610.42870.064*
C160.8393 (3)0.4869 (4)0.4829 (3)0.0554 (9)
C170.8762 (4)0.5793 (4)0.4315 (4)0.0729 (13)
H17A0.82090.63120.41370.109*
H17B0.90110.55060.37720.109*
H17C0.93100.61740.46950.109*
P10.42931 (10)0.28021 (9)0.51579 (8)0.0546 (3)
F10.3845 (4)0.4019 (3)0.5203 (3)0.1248 (16)
F20.4705 (4)0.2847 (4)0.6212 (3)0.1263 (17)
F30.4664 (6)0.1569 (4)0.5074 (4)0.177 (3)
F40.3944 (6)0.2746 (5)0.4096 (3)0.158 (3)
F50.5332 (4)0.3245 (6)0.4898 (4)0.158 (2)
F60.3290 (4)0.2329 (6)0.5489 (5)0.160 (2)
P20.02951 (11)0.19057 (12)0.77715 (10)0.0668 (3)
F70.1387 (4)0.2137 (5)0.7471 (4)0.142 (2)
F80.0705 (5)0.0699 (4)0.8046 (5)0.169 (2)
F90.0789 (4)0.1664 (6)0.8057 (4)0.162 (2)
F100.0074 (9)0.3078 (6)0.7566 (6)0.237 (5)
F110.0641 (5)0.2300 (6)0.8785 (4)0.156 (2)
F120.0095 (4)0.1471 (8)0.6798 (4)0.222 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04320 (18)0.04512 (18)0.03571 (17)0.00289 (10)0.01025 (11)0.00267 (10)
N10.0457 (16)0.0548 (18)0.0442 (16)0.0007 (13)0.0104 (13)0.0044 (14)
N20.0403 (15)0.0500 (16)0.0381 (15)0.0042 (12)0.0075 (11)0.0078 (12)
N30.0465 (16)0.0477 (16)0.0404 (15)0.0032 (13)0.0104 (12)0.0006 (12)
N40.060 (2)0.0489 (18)0.0509 (18)0.0043 (15)0.0158 (15)0.0032 (14)
C10.059 (2)0.055 (2)0.059 (2)0.0008 (18)0.0123 (19)0.0036 (19)
C20.074 (3)0.066 (3)0.068 (3)0.007 (2)0.014 (2)0.016 (2)
C30.062 (3)0.087 (3)0.062 (3)0.003 (2)0.017 (2)0.025 (2)
C40.052 (2)0.089 (3)0.046 (2)0.004 (2)0.0154 (17)0.007 (2)
C50.045 (2)0.064 (2)0.0416 (19)0.0035 (17)0.0073 (15)0.0025 (17)
C60.045 (2)0.065 (2)0.0379 (18)0.0058 (16)0.0086 (15)0.0039 (16)
C70.062 (3)0.082 (3)0.046 (2)0.011 (2)0.0207 (18)0.011 (2)
C80.080 (3)0.071 (3)0.059 (3)0.016 (2)0.018 (2)0.019 (2)
C90.073 (3)0.054 (2)0.059 (2)0.012 (2)0.014 (2)0.0103 (19)
C100.051 (2)0.050 (2)0.0421 (18)0.0074 (16)0.0079 (15)0.0032 (15)
C110.049 (2)0.0482 (19)0.0426 (18)0.0057 (15)0.0057 (15)0.0004 (15)
C120.066 (3)0.049 (2)0.063 (3)0.0027 (19)0.009 (2)0.0033 (19)
C130.070 (3)0.061 (3)0.071 (3)0.004 (2)0.021 (2)0.014 (2)
C140.066 (3)0.077 (3)0.056 (2)0.001 (2)0.025 (2)0.009 (2)
C150.053 (2)0.061 (2)0.049 (2)0.0060 (18)0.0181 (17)0.0010 (18)
C160.063 (2)0.051 (2)0.055 (2)0.0025 (18)0.0167 (18)0.0043 (18)
C170.083 (3)0.065 (3)0.074 (3)0.013 (2)0.022 (2)0.016 (2)
P10.0650 (7)0.0540 (6)0.0473 (6)0.0014 (5)0.0168 (5)0.0016 (4)
F10.197 (5)0.083 (2)0.103 (3)0.043 (3)0.051 (3)0.006 (2)
F20.132 (4)0.175 (5)0.067 (2)0.031 (3)0.001 (2)0.009 (2)
F30.344 (9)0.075 (3)0.137 (4)0.073 (4)0.126 (5)0.025 (3)
F40.256 (7)0.143 (5)0.063 (2)0.043 (4)0.019 (3)0.013 (2)
F50.137 (4)0.197 (5)0.158 (5)0.049 (4)0.092 (4)0.011 (4)
F60.095 (3)0.179 (5)0.214 (6)0.044 (3)0.054 (4)0.012 (5)
P20.0668 (8)0.0756 (8)0.0582 (7)0.0143 (6)0.0093 (6)0.0119 (6)
F70.114 (4)0.171 (6)0.150 (5)0.014 (3)0.050 (3)0.007 (3)
F80.164 (5)0.096 (3)0.247 (7)0.030 (3)0.030 (4)0.008 (4)
F90.095 (3)0.249 (6)0.153 (4)0.027 (4)0.058 (3)0.093 (5)
F100.367 (12)0.145 (5)0.225 (8)0.141 (7)0.138 (8)0.061 (5)
F110.146 (4)0.230 (6)0.087 (3)0.021 (4)0.004 (3)0.046 (4)
F120.126 (4)0.430 (12)0.100 (3)0.089 (6)0.015 (3)0.124 (6)
Geometric parameters (Å, º) top
Pd1—N12.023 (3)C9—H90.9300
Pd1—N21.929 (3)C10—C111.461 (6)
Pd1—N32.026 (3)C11—C121.381 (6)
Pd1—N42.025 (3)C12—C131.381 (7)
N1—C11.346 (5)C12—H120.9300
N1—C51.362 (5)C13—C141.377 (7)
N2—C101.338 (5)C13—H130.9300
N2—C61.346 (5)C14—C151.383 (6)
N3—C151.337 (5)C14—H140.9300
N3—C111.365 (5)C15—H150.9300
N4—C161.126 (5)C16—C171.451 (6)
C1—C21.377 (6)C17—H17A0.9600
C1—H10.9300C17—H17B0.9600
C2—C31.367 (8)C17—H17C0.9600
C2—H20.9300P1—F31.554 (4)
C3—C41.379 (7)P1—F51.555 (4)
C3—H30.9300P1—F41.558 (5)
C4—C51.379 (6)P1—F21.561 (4)
C4—H40.9300P1—F61.566 (5)
C5—C61.477 (6)P1—F11.566 (4)
C6—C71.384 (6)P2—F101.491 (6)
C7—C81.397 (7)P2—F121.533 (5)
C7—H70.9300P2—F91.561 (5)
C8—C91.369 (7)P2—F111.561 (5)
C8—H80.9300P2—F81.565 (5)
C9—C101.391 (5)P2—F71.578 (5)
N2—Pd1—N181.0 (1)C11—C12—C13119.4 (4)
N2—Pd1—N4179.6 (1)C11—C12—H12120.3
N1—Pd1—N499.2 (1)C13—C12—H12120.3
N2—Pd1—N380.9 (1)C14—C13—C12118.9 (4)
N1—Pd1—N3161.9 (1)C14—C13—H13120.5
N4—Pd1—N398.9 (1)C12—C13—H13120.5
C1—N1—C5118.7 (4)C13—C14—C15119.6 (4)
C1—N1—Pd1127.9 (3)C13—C14—H14120.2
C5—N1—Pd1113.4 (3)C15—C14—H14120.2
C10—N2—C6123.9 (3)N3—C15—C14122.0 (4)
C10—N2—Pd1118.0 (2)N3—C15—H15119.0
C6—N2—Pd1118.0 (3)C14—C15—H15119.0
C15—N3—C11118.7 (3)N4—C16—C17179.5 (5)
C15—N3—Pd1128.4 (3)C16—C17—H17A109.5
C11—N3—Pd1112.9 (2)C16—C17—H17B109.5
C16—N4—Pd1178.3 (4)H17A—C17—H17B109.5
N1—C1—C2121.8 (4)C16—C17—H17C109.5
N1—C1—H1119.1H17A—C17—H17C109.5
C2—C1—H1119.1H17B—C17—H17C109.5
C3—C2—C1119.1 (5)F3—P1—F590.3 (4)
C3—C2—H2120.4F3—P1—F486.2 (3)
C1—C2—H2120.4F5—P1—F485.4 (4)
C2—C3—C4120.2 (4)F3—P1—F292.3 (3)
C2—C3—H3119.9F5—P1—F291.8 (3)
C4—C3—H3119.9F4—P1—F2176.8 (4)
C3—C4—C5118.5 (5)F3—P1—F688.3 (4)
C3—C4—H4120.7F5—P1—F6175.8 (4)
C5—C4—H4120.7F4—P1—F698.5 (4)
N1—C5—C4121.6 (4)F2—P1—F684.3 (3)
N1—C5—C6114.5 (3)F3—P1—F1176.0 (4)
C4—C5—C6123.8 (4)F5—P1—F192.5 (3)
N2—C6—C7119.2 (4)F4—P1—F191.2 (3)
N2—C6—C5113.1 (3)F2—P1—F190.5 (3)
C7—C6—C5127.7 (4)F6—P1—F189.0 (3)
C6—C7—C8117.8 (4)F10—P2—F1294.0 (5)
C6—C7—H7121.1F10—P2—F986.8 (5)
C8—C7—H7121.1F12—P2—F989.1 (3)
C9—C8—C7121.5 (4)F10—P2—F1187.4 (5)
C9—C8—H8119.2F12—P2—F11176.4 (5)
C7—C8—H8119.2F9—P2—F1187.7 (3)
C8—C9—C10118.8 (4)F10—P2—F8176.7 (5)
C8—C9—H9120.6F12—P2—F889.3 (4)
C10—C9—H9120.6F9—P2—F893.2 (4)
N2—C10—C9118.7 (4)F11—P2—F889.2 (4)
N2—C10—C11113.5 (3)F10—P2—F793.6 (5)
C9—C10—C11127.8 (4)F12—P2—F790.1 (4)
N3—C11—C12121.5 (4)F9—P2—F7179.1 (3)
N3—C11—C10114.8 (3)F11—P2—F793.1 (3)
C12—C11—C10123.8 (4)F8—P2—F786.4 (3)
N2—Pd1—N1—C1178.6 (4)Pd1—N2—C6—C50.3 (4)
N4—Pd1—N1—C11.7 (4)N1—C5—C6—N20.3 (5)
N3—Pd1—N1—C1178.3 (4)C4—C5—C6—N2178.4 (4)
N2—Pd1—N1—C50.0 (3)N1—C5—C6—C7179.3 (4)
N4—Pd1—N1—C5179.7 (3)C4—C5—C6—C70.6 (7)
N3—Pd1—N1—C50.3 (6)N2—C6—C7—C80.5 (7)
N1—Pd1—N2—C10179.9 (3)C5—C6—C7—C8179.5 (4)
N3—Pd1—N2—C100.0 (3)C6—C7—C8—C90.1 (8)
N1—Pd1—N2—C60.1 (3)C7—C8—C9—C100.6 (8)
N3—Pd1—N2—C6180.0 (3)C6—N2—C10—C90.2 (6)
N2—Pd1—N3—C15179.3 (4)Pd1—N2—C10—C9179.8 (3)
N1—Pd1—N3—C15179.7 (4)C6—N2—C10—C11179.1 (3)
N4—Pd1—N3—C150.3 (4)Pd1—N2—C10—C110.9 (5)
N2—Pd1—N3—C111.0 (3)C8—C9—C10—N20.4 (7)
N1—Pd1—N3—C111.3 (6)C8—C9—C10—C11179.6 (4)
N4—Pd1—N3—C11178.7 (3)C15—N3—C11—C120.8 (6)
C5—N1—C1—C20.0 (7)Pd1—N3—C11—C12177.7 (3)
Pd1—N1—C1—C2178.6 (3)C15—N3—C11—C10179.8 (4)
N1—C1—C2—C30.4 (8)Pd1—N3—C11—C101.7 (4)
C1—C2—C3—C41.0 (8)N2—C10—C11—N31.7 (5)
C2—C3—C4—C51.2 (8)C9—C10—C11—N3179.1 (4)
C1—N1—C5—C40.2 (6)N2—C10—C11—C12177.7 (4)
Pd1—N1—C5—C4178.6 (3)C9—C10—C11—C121.5 (7)
C1—N1—C5—C6178.9 (4)N3—C11—C12—C131.2 (7)
Pd1—N1—C5—C60.2 (4)C10—C11—C12—C13179.4 (4)
C3—C4—C5—N10.8 (7)C11—C12—C13—C140.6 (8)
C3—C4—C5—C6179.4 (4)C12—C13—C14—C150.3 (8)
C10—N2—C6—C70.7 (6)C11—N3—C15—C140.2 (6)
Pd1—N2—C6—C7179.4 (3)Pd1—N3—C15—C14178.4 (3)
C10—N2—C6—C5179.8 (3)C13—C14—C15—N30.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F9i0.932.373.213 (6)151
C14—H14···F10i0.932.473.268 (9)143
C13—H13···F12ii0.932.453.142 (7)131
C7—H7···F5iii0.932.403.326 (7)173
C3—H3···F3iv0.932.473.363 (7)162
P1—F2···Cg1?2.953.062 (5)122 (1)
P2—F12···Cg2v?2.973.075 (6)122 (1)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C15H11N3)(C2H3N)](PF6)2
Mr670.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)13.1073 (3), 11.8840 (3), 14.6085 (4)
β (°) 97.810 (1)
V3)2254.42 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.738, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
16715, 5449, 4503
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.142, 1.06
No. of reflections5449
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Pd1—N12.023 (3)Pd1—N32.026 (3)
Pd1—N21.929 (3)Pd1—N42.025 (3)
N2—Pd1—N181.0 (1)N2—Pd1—N380.9 (1)
N2—Pd1—N4179.6 (1)N1—Pd1—N3161.9 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F9i0.932.373.213 (6)151
C14—H14···F10i0.932.473.268 (9)143
C13—H13···F12ii0.932.453.142 (7)131
C7—H7···F5iii0.932.403.326 (7)173
C3—H3···F3iv0.932.473.363 (7)162
P1—F2···Cg1?2.953.062 (5)122.3 (3)
P2—F12···Cg2v?2.973.075 (6)121.7 (3)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds