Download citation
Download citation
link to html
The title compound, [Ag(C8H10NO3S)(H2O)2], shows a T-shaped coordination; the 2-amino-4,5-dimethyl­benzene­sulfonate monoanion binds through the amino group. The mol­ecules are linked together through O—H...O and N—H...O hydrogen bonds into a layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022052/ng2266sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022052/ng2266Isup2.hkl
Contains datablock I

CCDC reference: 650614

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.097
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (1) 0.91 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Metal sulfonates are a class of compounds showing interesting structures and properties (May & Shimizu, 2005; Gao et al., 2005); however, the sulfonate unit itself typically exists as a non-coordinating anion (Liu et al., 2006). Indeed, in a majority of metal complexes with sulfonate counterions, the sulfonate group cannot displace water from the coordination sphere of the metal ion. This feature is also found in the present silver derivative of 2-amino-4,5-dimethylbenzenesulfonic acid.

The silvera tom in (I) is coordinated by the amino group instead; it is also linked to two water molecules in a T–shaped environment (Fig. 1). The molecules are linked through O—H···O and N—H···O hydrogen bonds (Table 2) to form a two-dimensional supramolecular structure (Fig. 2).

Related literature top

For studies on metal sulfonates, see: May & Shimizu (2005); Gao et al. (2005); Liu et al. (2006).

Experimental top

To a mixture of 2-amino-4,5-dimethylbenzenesulfonic acid (0.5 mmol) and sodium hydroxide 0.5 mmol) in water was added silver nitrate (0.5 mmol). The precipitate that formed was dissolved by ammonium hydroxide. Colorless crystals were obtained from the filtrate after being set aside, away from light, after a week (33% yield).

Refinement top

H atoms bonded to N atom were located in a difference map and refined freely, and with Uiso(H) = 1.2Ueq(N). H atoms bonded to C atom were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85 Å; their temperature factors were tied to those of parent atoms by a factor of 1.2.

Structure description top

Metal sulfonates are a class of compounds showing interesting structures and properties (May & Shimizu, 2005; Gao et al., 2005); however, the sulfonate unit itself typically exists as a non-coordinating anion (Liu et al., 2006). Indeed, in a majority of metal complexes with sulfonate counterions, the sulfonate group cannot displace water from the coordination sphere of the metal ion. This feature is also found in the present silver derivative of 2-amino-4,5-dimethylbenzenesulfonic acid.

The silvera tom in (I) is coordinated by the amino group instead; it is also linked to two water molecules in a T–shaped environment (Fig. 1). The molecules are linked through O—H···O and N—H···O hydrogen bonds (Table 2) to form a two-dimensional supramolecular structure (Fig. 2).

For studies on metal sulfonates, see: May & Shimizu (2005); Gao et al. (2005); Liu et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of the two-dimensional H-bonding structure of (I). H atoms bonded to C atoms have been omitted.
(2-Amino-4,5-dimethylbenzenesulfonato-κN)diaquasilver(I) top
Crystal data top
[Ag(C8H10NO3S)(H2O)2]F(000) = 688
Mr = 344.13Dx = 1.859 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2881 reflections
a = 12.0636 (6) Åθ = 1.7–28.2°
b = 9.8642 (5) ŵ = 1.81 mm1
c = 10.3509 (6) ÅT = 293 K
β = 93.263 (1)°Block, colorless
V = 1229.74 (11) Å30.33 × 0.27 × 0.25 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2881 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
(SAINT; Bruker, 1998)
h = 1216
Tmin = 0.542, Tmax = 0.637k = 1210
7355 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0556P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2881 reflectionsΔρmax = 0.81 e Å3
166 parametersΔρmin = 0.67 e Å3
7 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0241 (14)
Crystal data top
[Ag(C8H10NO3S)(H2O)2]V = 1229.74 (11) Å3
Mr = 344.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0636 (6) ŵ = 1.81 mm1
b = 9.8642 (5) ÅT = 293 K
c = 10.3509 (6) Å0.33 × 0.27 × 0.25 mm
β = 93.263 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2881 independent reflections
Absorption correction: multi-scan
(SAINT; Bruker, 1998)
2381 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.637Rint = 0.074
7355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0367 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.81 e Å3
2881 reflectionsΔρmin = 0.67 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7014 (2)0.5742 (2)0.2547 (2)0.0302 (5)
C20.5932 (2)0.5483 (3)0.2888 (3)0.0378 (6)
H20.58210.50690.36770.045*
C30.5019 (2)0.5827 (3)0.2082 (3)0.0414 (7)
C40.5188 (2)0.6492 (3)0.0924 (3)0.0408 (6)
C50.6275 (2)0.6730 (3)0.0580 (3)0.0386 (6)
H50.63860.71670.01990.046*
C60.7194 (2)0.6339 (3)0.1355 (2)0.0311 (5)
C70.3854 (3)0.5482 (5)0.2461 (4)0.0643 (10)
H7A0.34450.63040.25800.096*
H7B0.38950.49740.32530.096*
H7C0.34840.49510.17890.096*
C80.4235 (3)0.6948 (4)0.0021 (4)0.0580 (9)
H8A0.45200.73490.07380.087*
H8B0.37970.76040.04500.087*
H8C0.37800.61810.02250.087*
N10.8264 (2)0.6491 (3)0.0889 (2)0.0391 (5)
H2A0.829 (3)0.717 (4)0.040 (4)0.059*
H1A0.8871 (19)0.639 (4)0.126 (3)0.059*
O10.86923 (19)0.4162 (2)0.3114 (2)0.0460 (5)
O20.76622 (16)0.5008 (2)0.48734 (17)0.0433 (5)
O30.88482 (17)0.6513 (2)0.3724 (2)0.0467 (5)
S10.81314 (5)0.53146 (7)0.36498 (6)0.02929 (17)
Ag10.887415 (18)0.42546 (3)0.07922 (2)0.04829 (14)
O1W0.8839 (2)0.2714 (3)0.0647 (3)0.0591 (6)
HW110.836 (2)0.210 (3)0.039 (4)0.089*
HW120.9488 (15)0.234 (4)0.073 (4)0.089*
O2W0.8922 (2)0.5559 (3)0.2436 (3)0.0587 (6)
HW210.9604 (15)0.558 (4)0.266 (5)0.088*
HW220.872 (3)0.6373 (18)0.226 (4)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (12)0.0315 (13)0.0256 (11)0.0003 (10)0.0005 (9)0.0019 (9)
C20.0360 (14)0.0489 (17)0.0288 (13)0.0049 (12)0.0041 (10)0.0018 (11)
C30.0324 (13)0.0505 (18)0.0413 (15)0.0021 (12)0.0004 (11)0.0114 (13)
C40.0403 (15)0.0389 (16)0.0418 (15)0.0055 (12)0.0088 (11)0.0053 (12)
C50.0478 (15)0.0347 (14)0.0325 (13)0.0012 (11)0.0036 (11)0.0061 (11)
C60.0348 (12)0.0298 (13)0.0287 (12)0.0014 (10)0.0023 (9)0.0006 (10)
C70.0345 (16)0.099 (3)0.059 (2)0.0115 (17)0.0026 (14)0.016 (2)
C80.0491 (17)0.053 (2)0.069 (2)0.0071 (15)0.0193 (15)0.0019 (17)
N10.0382 (12)0.0436 (15)0.0363 (12)0.0022 (11)0.0089 (10)0.0063 (10)
O10.0530 (13)0.0471 (13)0.0378 (11)0.0164 (9)0.0015 (9)0.0060 (9)
O20.0433 (10)0.0616 (14)0.0251 (9)0.0013 (10)0.0040 (8)0.0036 (9)
O30.0452 (11)0.0460 (13)0.0472 (11)0.0137 (9)0.0125 (8)0.0066 (10)
S10.0311 (3)0.0332 (3)0.0235 (3)0.0006 (2)0.0007 (2)0.0003 (2)
Ag10.04155 (18)0.0547 (2)0.04816 (19)0.00171 (9)0.00134 (11)0.00677 (10)
O1W0.0624 (14)0.0517 (14)0.0621 (14)0.0034 (12)0.0073 (12)0.0065 (12)
O2W0.0590 (15)0.0646 (16)0.0526 (14)0.0003 (12)0.0043 (11)0.0009 (12)
Geometric parameters (Å, º) top
C1—C21.395 (4)C8—H8A0.9600
C1—C61.396 (4)C8—H8B0.9600
C1—S11.767 (3)C8—H8C0.9600
C2—C31.386 (4)N1—H2A0.85 (4)
C2—H20.9300N1—H1A0.814 (19)
C3—C41.392 (4)O1—S11.450 (2)
C3—C71.519 (4)O2—S11.4484 (18)
C4—C51.398 (4)O3—S11.464 (2)
C4—C81.509 (4)Ag1—O1W2.130 (3)
C5—C61.386 (4)Ag1—O2W2.136 (3)
C5—H50.9300Ag1—N12.930 (3)
C6—N11.411 (3)O1W—HW110.87 (3)
C7—H7A0.9600O1W—HW120.866 (10)
C7—H7B0.9600O2W—HW210.866 (10)
C7—H7C0.9600O2W—HW220.864 (10)
C2—C1—C6119.7 (2)C4—C8—H8A109.5
C2—C1—S1118.9 (2)C4—C8—H8B109.5
C6—C1—S1121.4 (2)H8A—C8—H8B109.5
C3—C2—C1121.8 (3)C4—C8—H8C109.5
C3—C2—H2119.1H8A—C8—H8C109.5
C1—C2—H2119.1H8B—C8—H8C109.5
C2—C3—C4118.9 (3)C6—N1—H2A111 (3)
C2—C3—C7120.4 (3)C6—N1—H1A130 (3)
C4—C3—C7120.7 (3)H2A—N1—H1A109 (4)
C3—C4—C5119.0 (2)O2—S1—O1112.63 (13)
C3—C4—C8122.0 (3)O2—S1—O3112.46 (13)
C5—C4—C8119.0 (3)O1—S1—O3111.48 (14)
C6—C5—C4122.5 (3)O2—S1—C1107.04 (12)
C6—C5—H5118.8O1—S1—C1107.20 (12)
C4—C5—H5118.8O3—S1—C1105.53 (12)
C5—C6—C1118.0 (2)O1W—Ag1—O2W171.50 (10)
C5—C6—N1119.4 (2)O1W—Ag1—N196.09 (9)
C1—C6—N1122.5 (2)O2W—Ag1—N192.22 (9)
C3—C7—H7A109.5Ag1—O1W—HW11109 (3)
C3—C7—H7B109.5Ag1—O1W—HW12109 (3)
H7A—C7—H7B109.5HW11—O1W—HW12108 (2)
C3—C7—H7C109.5Ag1—O2W—HW21107 (3)
H7A—C7—H7C109.5Ag1—O2W—HW22112 (3)
H7B—C7—H7C109.5HW21—O2W—HW22109 (2)
C6—C1—C2—C31.3 (4)C4—C5—C6—N1173.8 (3)
S1—C1—C2—C3178.3 (2)C2—C1—C6—C53.9 (4)
C1—C2—C3—C42.4 (4)S1—C1—C6—C5175.7 (2)
C1—C2—C3—C7177.7 (3)C2—C1—C6—N1172.8 (3)
C2—C3—C4—C53.3 (4)S1—C1—C6—N17.7 (4)
C7—C3—C4—C5176.8 (3)C2—C1—S1—O211.9 (3)
C2—C3—C4—C8177.6 (3)C6—C1—S1—O2167.6 (2)
C7—C3—C4—C82.4 (5)C2—C1—S1—O1109.1 (2)
C3—C4—C5—C60.6 (4)C6—C1—S1—O171.3 (2)
C8—C4—C5—C6179.8 (3)C2—C1—S1—O3131.9 (2)
C4—C5—C6—C13.0 (4)C6—C1—S1—O347.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O3i0.87 (1)2.21 (1)3.067 (3)170 (4)
O1W—HW11···O2ii0.87 (3)2.29 (2)3.119 (3)159 (4)
O2W—HW21···O1iii0.87 (1)2.15 (1)3.013 (3)174 (4)
O2W—HW22···O3iv0.86 (1)2.32 (2)3.131 (3)157 (4)
N1—H2A···O3iv0.85 (4)2.29 (4)3.095 (3)158 (3)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y+1, z; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(C8H10NO3S)(H2O)2]
Mr344.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.0636 (6), 9.8642 (5), 10.3509 (6)
β (°) 93.263 (1)
V3)1229.74 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.33 × 0.27 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SAINT; Bruker, 1998)
Tmin, Tmax0.542, 0.637
No. of measured, independent and
observed [I > 2σ(I)] reflections
7355, 2881, 2381
Rint0.074
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections2881
No. of parameters166
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.67

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Ag1—O1W2.130 (3)Ag1—N12.930 (3)
Ag1—O2W2.136 (3)
O1W—Ag1—O2W171.50 (10)O2W—Ag1—N192.22 (9)
O1W—Ag1—N196.09 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O3i0.866 (10)2.210 (12)3.067 (3)170 (4)
O1W—HW11···O2ii0.87 (3)2.294 (19)3.119 (3)159 (4)
O2W—HW21···O1iii0.866 (10)2.151 (12)3.013 (3)174 (4)
O2W—HW22···O3iv0.864 (10)2.32 (2)3.131 (3)157 (4)
N1—H2A···O3iv0.85 (4)2.29 (4)3.095 (3)158 (3)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y+1, z; (iv) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds