Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, ΛLΛL-[AgCo2(C3H5NO2S)2(C2H8N2)4](ClO4)3·5H2O, the AgI atom, which lies on a twofold rotation axis, is linearly coordinated by two thiol­ate S atoms from two ΛL-[Co(C3H5NO2S)(C2H8N2)2]+ octa­hedral units, forming an S-bridged CoIII–AgI–CoIII trinuclear unit. The compound has two uncoordinated carboxyl­ate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020442/ng2256sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020442/ng2256Isup2.hkl
Contains datablock I

CCDC reference: 650619

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in solvent or counterion
  • R factor = 0.023
  • wR factor = 0.060
  • Data-to-parameter ratio = 7.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.29 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 200 Ang. PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O7 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O9 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O12 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O13 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O14 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for O8 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for O10 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 40.00 Perc. PLAT313_ALERT_2_C Oxygen with three covalent bonds (rare) ........ O10 PLAT313_ALERT_2_C Oxygen with three covalent bonds (rare) ........ O12 PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C6 .. 2.97 Ang.
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 2346 Count of symmetry unique reflns 2346 Completeness (_total/calc) 100.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 17 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 12 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Thiolato groups coordinated to a metal center possess relatively strong Lewis basicity, which allows them to bind with a second metal center (Konno, 2004). Previously, Konno et al. (2001) reported ΛL-[Co(L-cys-N,S)(en)2]+ (L-cys = L-cysteinate, en = ethylenediamine) reacts with AgNO3 to give an S-bridged (CoIIIAgI)n coordination polymer, {ΛL-[Ag{Co(L-cys-N,S)(en)2}](NO3)2}n.H2O (II). In this compound, the ΛL-[Co(L-cys-N,S)(en)2]+ unit binds with two AgI atoms through sulfur and with another AgI atom through a carboxylate group, to give a sheet-like structure. In this paper, we report on the structure of ΛLΛL-[Ag{Co(L-cys-N,S)(en)2}2](ClO4)3.5H2O (I), which was obtained by the 2:1 reaction of ΛL-[Co(L-cys-N,S)(en)2]+ with AgClO4.

The cation is composed of two octahedral [Co(L-cys-N,S)(en)2]+ units that are linked by an AgI atom through the S atoms to form a linear-type S-bridged CoIIIAgICoIII trinuclear structure in [Ag{Co(L-cys-N,S)(en)2}2]3+ (Fig. 1). The AgI atom, which is locate on a twofold axis, adopts an almost linear coordination geometry, unlike an angular geometry found in (II) (S—Ag—S = 149.62 (7) °). Furthermore, the Ag—S bonds in (I) are appreciably shorter than those in (II) (Ag—S = 2.501 (3), 2.511 (3) Å). These differences are ascribed to the fact that the AgI center in (II) is coordinated by a carboxylate group (Ag—O = 2.598 (1), 2.490 (8) Å), besides two thiolato groups. Other bond distances and angles in (I) are similar to those in (II) (Table 1). The two [Co(L-cys-N,S)(en)2]+ units in (I) have an Λ configuration because of the configuration of the mononuclear ΛL-[Co(L-cys-N,S)(en)2]+ reactant. The L-cys N,S-chelate ring adopts a λ conformation; the two en N,N-chelate rings adopt δ and λ conformations.

The cation is connected with to four adjacent cations through N–H···O hydrogen bonds between coordinated amine groups and non-coordinated carboxylate groups to give a sheet-like structure (Fig. 2). The sheets are further linked through the perchlorate anions and water molecules through hydrogen bonds.

Related literature top

For related literature, see: Konno (2004); Konno et al. (2001).

Experimental top

Treatment of ΛL-[Co(L-Hcys-N,S)(en)2](ClO4)2 with a mixture of 0.5 molar equiv. of AgClO4 and 0.5 equiv. of NaOH in water at room temperature gave a red solution, from which red crystals (I) were isolated by adding an aqueous solution of NaClO4.

Refinement top

H atoms bonded to C and N atoms were placed at calculated positions [C—H = 0.97 (methylene) and 0.98 (methine) Å, and N—H = 0.90 Å] and refined as riding with Uiso(H) = 1.2Ueq (C,N). H atoms of water molecules were found in a difference Fourier map and were refined with restrained geometrical parameters [O—H = 0.85 (2) Å, H···H = 1.38 (2) Å, and Uiso = 1.5Ueq(O)]. One H atom of one water molecule is disordered over two positions (H23/H24), which were refined with site occupancies of 0.5. Atom H26 of a water molecule was refined with a restrained geometrical parameter to form an ideal hydrogen bond [H26···O2v = 2.00 (5) Å; symmetry code: (v) -x + 1/2, y + 1/2, -z + 1]. One perchrolate anion is disordered over two positions (O7—O10 and O11—O14), which were refined with site occupancies of 0.5. Atoms O7, O8, O9 and O10, disordered on a twofold axis of the Cl2, were refined with site occupancies of 0.5.

Structure description top

Thiolato groups coordinated to a metal center possess relatively strong Lewis basicity, which allows them to bind with a second metal center (Konno, 2004). Previously, Konno et al. (2001) reported ΛL-[Co(L-cys-N,S)(en)2]+ (L-cys = L-cysteinate, en = ethylenediamine) reacts with AgNO3 to give an S-bridged (CoIIIAgI)n coordination polymer, {ΛL-[Ag{Co(L-cys-N,S)(en)2}](NO3)2}n.H2O (II). In this compound, the ΛL-[Co(L-cys-N,S)(en)2]+ unit binds with two AgI atoms through sulfur and with another AgI atom through a carboxylate group, to give a sheet-like structure. In this paper, we report on the structure of ΛLΛL-[Ag{Co(L-cys-N,S)(en)2}2](ClO4)3.5H2O (I), which was obtained by the 2:1 reaction of ΛL-[Co(L-cys-N,S)(en)2]+ with AgClO4.

The cation is composed of two octahedral [Co(L-cys-N,S)(en)2]+ units that are linked by an AgI atom through the S atoms to form a linear-type S-bridged CoIIIAgICoIII trinuclear structure in [Ag{Co(L-cys-N,S)(en)2}2]3+ (Fig. 1). The AgI atom, which is locate on a twofold axis, adopts an almost linear coordination geometry, unlike an angular geometry found in (II) (S—Ag—S = 149.62 (7) °). Furthermore, the Ag—S bonds in (I) are appreciably shorter than those in (II) (Ag—S = 2.501 (3), 2.511 (3) Å). These differences are ascribed to the fact that the AgI center in (II) is coordinated by a carboxylate group (Ag—O = 2.598 (1), 2.490 (8) Å), besides two thiolato groups. Other bond distances and angles in (I) are similar to those in (II) (Table 1). The two [Co(L-cys-N,S)(en)2]+ units in (I) have an Λ configuration because of the configuration of the mononuclear ΛL-[Co(L-cys-N,S)(en)2]+ reactant. The L-cys N,S-chelate ring adopts a λ conformation; the two en N,N-chelate rings adopt δ and λ conformations.

The cation is connected with to four adjacent cations through N–H···O hydrogen bonds between coordinated amine groups and non-coordinated carboxylate groups to give a sheet-like structure (Fig. 2). The sheets are further linked through the perchlorate anions and water molecules through hydrogen bonds.

For related literature, see: Konno (2004); Konno et al. (2001).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. Both of the disordered components of ClO4- anions are shown. The suffixes A correspond to symmetry code (- x, y, - z). H atoms of water molecules have been omitted.
[Figure 2] Fig. 2. A view of the two-dimensional sheet like structure in (I). Dashed lines indicate N–H···O hydrogen bonds. Perchlorate anions and water molecules have been omitted.
ΛLΛL—Bis(µ-L-cysteinato)- 1:2κ3S:N,S;1:3κ3S:N,S- tetrakis(ethylenediamine)-2κ4N,N';3κ4N,N'- dicobalt(III)silver(I) tris(perchlorate) pentahydrate top
Crystal data top
[AgCo2(C3H5NO2S)2(C2H8N2)4](ClO4)3·5H2OF(000) = 1116
Mr = 1092.86Dx = 1.898 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2yCell parameters from 25 reflections
a = 16.542 (2) Åθ = 14.6–15.0°
b = 9.050 (2) ŵ = 1.77 mm1
c = 13.728 (2) ÅT = 296 K
β = 111.507 (10)°Rod, dark red
V = 1912.0 (6) Å30.40 × 0.18 × 0.18 mm
Z = 2
Data collection top
Rigaku AFC-7S
diffractometer
2219 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω–2θ scansh = 021
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.537, Tmax = 0.741l = 1716
2426 measured reflections3 standard reflections every 150 reflections
2346 independent reflections intensity decay: 14.4%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.6577P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.37 e Å3
2346 reflectionsΔρmin = 0.25 e Å3
322 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.0150 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (18)
Crystal data top
[AgCo2(C3H5NO2S)2(C2H8N2)4](ClO4)3·5H2OV = 1912.0 (6) Å3
Mr = 1092.86Z = 2
Monoclinic, C2Mo Kα radiation
a = 16.542 (2) ŵ = 1.77 mm1
b = 9.050 (2) ÅT = 296 K
c = 13.728 (2) Å0.40 × 0.18 × 0.18 mm
β = 111.507 (10)°
Data collection top
Rigaku AFC-7S
diffractometer
2219 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.537, Tmax = 0.7413 standard reflections every 150 reflections
2426 measured reflections intensity decay: 14.4%
2346 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.25 e Å3
2346 reflectionsAbsolute structure: Flack (1983)
322 parametersAbsolute structure parameter: 0.001 (18)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.00000.31917 (5)0.00000.04457 (14)
Co10.21020 (3)0.48714 (5)0.22914 (3)0.02666 (12)
S10.14873 (5)0.30161 (10)0.11542 (6)0.03258 (19)
O10.0811 (2)0.0540 (4)0.3873 (3)0.0581 (9)
O20.22302 (18)0.1037 (4)0.4561 (2)0.0458 (7)
N10.2271 (2)0.6004 (4)0.1154 (2)0.0395 (7)
H10.17980.59120.05640.047*
H20.23400.69670.13270.047*
N20.3263 (2)0.4071 (4)0.2530 (3)0.0396 (7)
H30.35760.40390.32220.048*
H40.32160.31450.22770.048*
N30.09835 (19)0.5808 (4)0.2088 (3)0.0383 (7)
H50.07830.62680.14630.046*
H60.05950.51120.20890.046*
N40.2594 (2)0.6494 (4)0.3304 (2)0.0364 (6)
H70.27650.61410.39610.044*
H80.30610.68780.32070.044*
N50.1989 (2)0.3614 (3)0.3410 (2)0.0322 (6)
H90.25150.32380.37870.039*
H100.18250.41860.38420.039*
C10.1504 (3)0.1644 (4)0.2126 (3)0.0372 (8)
H110.10510.09190.18130.045*
H120.20590.11350.23690.045*
C20.1364 (2)0.2377 (4)0.3044 (3)0.0317 (7)
H130.07710.27710.28100.038*
C30.1481 (2)0.1233 (4)0.3914 (3)0.0361 (8)
C40.3050 (3)0.5450 (7)0.0968 (4)0.0573 (13)
H140.28970.46030.05020.069*
H150.32800.62160.06480.069*
C50.3707 (3)0.5023 (7)0.2000 (4)0.0551 (12)
H160.41810.44870.19040.066*
H170.39430.58960.24170.066*
C60.1082 (3)0.6900 (5)0.2938 (4)0.0477 (10)
H180.06100.76100.27160.057*
H190.10780.64020.35620.057*
C70.1931 (3)0.7657 (4)0.3154 (4)0.0456 (10)
H200.19000.82900.25710.055*
H210.20780.82610.37790.055*
Cl10.00000.86644 (15)0.00000.0397 (3)
O30.0194 (6)0.8851 (10)0.1120 (5)0.070 (2)0.50
O40.0409 (7)0.7347 (13)0.0117 (9)0.112 (4)0.50
O50.0919 (4)0.8481 (10)0.0499 (6)0.067 (2)0.50
O60.0282 (5)0.9912 (12)0.0383 (7)0.079 (2)0.50
Cl20.37527 (6)0.98034 (14)0.19897 (9)0.0495 (2)
O70.3094 (11)0.898 (2)0.2056 (16)0.115 (6)0.50
O80.3534 (12)1.1056 (13)0.1333 (12)0.121 (6)0.50
O90.4166 (17)1.056 (3)0.2960 (10)0.168 (10)0.50
O100.4352 (8)0.8937 (16)0.1788 (16)0.097 (6)0.50
O110.2889 (9)0.919 (2)0.1446 (11)0.084 (4)0.50
O120.3949 (13)1.028 (5)0.1154 (12)0.218 (17)0.50
O130.3750 (11)1.080 (2)0.2633 (16)0.159 (10)0.50
O140.4421 (13)0.887 (2)0.248 (2)0.193 (13)0.50
O150.4028 (2)0.3330 (6)0.4736 (3)0.0604 (9)
H220.403 (4)0.389 (6)0.524 (4)0.091*
H230.419 (11)0.247 (6)0.497 (7)0.091*0.50
H240.454 (3)0.309 (17)0.482 (8)0.091*0.50
O160.1116 (4)0.4563 (10)0.4944 (4)0.115 (2)
H250.083 (6)0.438 (14)0.534 (6)0.173*
H260.156 (4)0.510 (12)0.530 (7)0.173*
O170.0413 (7)0.2037 (15)0.5497 (11)0.096 (3)0.50
H270.013 (3)0.20 (2)0.538 (15)0.144*0.50
H280.053 (12)0.131 (15)0.517 (16)0.144*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0396 (2)0.0497 (3)0.0313 (2)0.0000.00251 (16)0.000
Co10.0272 (2)0.0267 (2)0.0234 (2)0.00172 (18)0.00598 (16)0.00014 (18)
S10.0351 (4)0.0334 (4)0.0248 (4)0.0001 (4)0.0058 (3)0.0024 (4)
O10.0459 (17)0.067 (2)0.064 (2)0.0068 (15)0.0227 (15)0.0198 (17)
O20.0473 (15)0.0469 (16)0.0363 (13)0.0033 (14)0.0072 (11)0.0092 (13)
N10.0432 (16)0.0415 (17)0.0322 (14)0.0023 (15)0.0119 (13)0.0047 (14)
N20.0345 (15)0.0474 (19)0.0366 (16)0.0048 (14)0.0124 (13)0.0015 (15)
N30.0332 (15)0.0337 (15)0.0421 (17)0.0054 (13)0.0068 (13)0.0008 (14)
N40.0412 (16)0.0320 (15)0.0321 (14)0.0028 (13)0.0086 (12)0.0044 (13)
N50.0379 (15)0.0315 (15)0.0264 (13)0.0027 (12)0.0109 (12)0.0027 (11)
C10.044 (2)0.0312 (18)0.0295 (17)0.0022 (16)0.0056 (15)0.0003 (15)
C20.0305 (17)0.0318 (17)0.0316 (17)0.0029 (14)0.0100 (14)0.0057 (14)
C30.0417 (18)0.031 (2)0.0365 (17)0.0003 (16)0.0159 (15)0.0012 (15)
C40.062 (3)0.072 (3)0.050 (2)0.008 (2)0.035 (2)0.016 (2)
C50.038 (2)0.074 (3)0.060 (3)0.001 (2)0.0259 (19)0.007 (3)
C60.048 (2)0.042 (2)0.054 (3)0.0119 (19)0.019 (2)0.0067 (19)
C70.059 (3)0.0250 (17)0.050 (2)0.0016 (16)0.016 (2)0.0096 (16)
Cl10.0393 (6)0.0405 (7)0.0334 (6)0.0000.0064 (5)0.000
O30.093 (5)0.078 (5)0.034 (3)0.023 (5)0.017 (3)0.007 (3)
O40.117 (9)0.099 (7)0.088 (7)0.074 (6)0.002 (6)0.025 (6)
O50.038 (3)0.080 (6)0.069 (4)0.008 (4)0.002 (3)0.008 (4)
O60.073 (5)0.083 (6)0.090 (6)0.017 (5)0.039 (4)0.026 (6)
Cl20.0404 (5)0.0508 (6)0.0594 (6)0.0013 (5)0.0209 (4)0.0041 (5)
O70.107 (13)0.077 (8)0.215 (19)0.032 (9)0.120 (14)0.020 (13)
O80.185 (17)0.056 (6)0.096 (10)0.015 (7)0.021 (9)0.039 (6)
O90.25 (2)0.159 (18)0.050 (6)0.088 (18)0.008 (11)0.023 (8)
O100.060 (7)0.075 (7)0.174 (16)0.003 (6)0.063 (10)0.041 (10)
O110.054 (5)0.083 (8)0.108 (9)0.021 (5)0.021 (6)0.006 (8)
O120.135 (15)0.45 (5)0.067 (7)0.13 (2)0.039 (9)0.004 (18)
O130.097 (9)0.140 (13)0.173 (19)0.042 (9)0.028 (10)0.103 (14)
O140.112 (12)0.132 (15)0.26 (3)0.089 (11)0.015 (15)0.002 (18)
O150.062 (2)0.076 (3)0.0410 (16)0.007 (2)0.0156 (15)0.0118 (19)
O160.104 (4)0.169 (7)0.089 (3)0.027 (4)0.054 (3)0.029 (4)
O170.083 (6)0.113 (9)0.109 (9)0.020 (6)0.054 (6)0.028 (7)
Geometric parameters (Å, º) top
Ag1—S1i2.3938 (9)C2—H130.9800
Ag1—S12.3938 (9)C4—C51.486 (7)
Co1—N31.960 (3)C4—H140.9700
Co1—N21.964 (3)C4—H150.9700
Co1—N11.972 (3)C5—H160.9700
Co1—N51.975 (3)C5—H170.9700
Co1—N41.980 (3)C6—C71.492 (6)
Co1—S12.2642 (10)C6—H180.9700
S1—C11.815 (4)C6—H190.9700
O1—C31.256 (5)C7—H200.9700
O2—C31.245 (5)C7—H210.9700
N1—C41.490 (5)Cl1—O61.396 (8)
N1—H10.9000Cl1—O41.409 (8)
N1—H20.9000Cl1—O51.430 (6)
N2—C51.486 (6)Cl1—O31.462 (6)
N2—H30.9000Cl2—O131.264 (15)
N2—H40.9000Cl2—O71.351 (14)
N3—C61.492 (5)Cl2—O141.359 (16)
N3—H50.9000Cl2—O101.370 (11)
N3—H60.9000Cl2—O121.372 (15)
N4—C71.479 (5)Cl2—O81.410 (10)
N4—H70.9000Cl2—O91.430 (15)
N4—H80.9000Cl2—O111.459 (14)
N5—C21.482 (5)O15—H220.85 (5)
N5—H90.9000O15—H230.84 (2)
N5—H100.9000O15—H240.84 (2)
C1—C21.516 (5)O16—H250.85 (9)
C1—H110.9700O16—H260.86 (10)
C1—H120.9700O17—H270.85 (2)
C2—C31.538 (5)O17—H280.85 (2)
S1i—Ag1—S1172.38 (5)N5—C2—C1108.2 (3)
N3—Co1—N2175.89 (16)N5—C2—C3111.8 (3)
N3—Co1—N193.59 (14)C1—C2—C3109.7 (3)
N2—Co1—N184.87 (14)N5—C2—H13109.0
N3—Co1—N590.38 (13)C1—C2—H13109.0
N2—Co1—N591.31 (14)C3—C2—H13109.0
N1—Co1—N5175.53 (14)O2—C3—O1126.4 (4)
N3—Co1—N484.43 (14)O2—C3—C2117.3 (3)
N2—Co1—N491.80 (14)O1—C3—C2116.3 (3)
N1—Co1—N491.68 (15)C5—C4—N1107.5 (4)
N5—Co1—N490.76 (13)C5—C4—H14110.2
N3—Co1—S193.46 (10)N1—C4—H14110.2
N2—Co1—S190.35 (11)C5—C4—H15110.2
N1—Co1—S189.86 (11)N1—C4—H15110.2
N5—Co1—S187.84 (9)H14—C4—H15108.5
N4—Co1—S1177.46 (10)N2—C5—C4107.3 (4)
C1—S1—Co196.81 (12)N2—C5—H16110.3
C1—S1—Ag1105.49 (13)C4—C5—H16110.3
Co1—S1—Ag1120.00 (4)N2—C5—H17110.3
C4—N1—Co1110.1 (3)C4—C5—H17110.3
C4—N1—H1109.6H16—C5—H17108.5
Co1—N1—H1109.6C7—C6—N3106.6 (3)
C4—N1—H2109.6C7—C6—H18110.4
Co1—N1—H2109.6N3—C6—H18110.4
H1—N1—H2108.2C7—C6—H19110.4
C5—N2—Co1109.5 (3)N3—C6—H19110.4
C5—N2—H3109.8H18—C6—H19108.6
Co1—N2—H3109.8N4—C7—C6107.2 (3)
C5—N2—H4109.8N4—C7—H20110.3
Co1—N2—H4109.8C6—C7—H20110.3
H3—N2—H4108.2N4—C7—H21110.3
C6—N3—Co1110.4 (2)C6—C7—H21110.3
C6—N3—H5109.6H20—C7—H21108.5
Co1—N3—H5109.6O6—Cl1—O4113.6 (7)
C6—N3—H6109.6O6—Cl1—O5110.9 (5)
Co1—N3—H6109.6O4—Cl1—O5108.5 (6)
H5—N3—H6108.1O6—Cl1—O3109.1 (5)
C7—N4—Co1109.7 (2)O4—Cl1—O3106.8 (6)
C7—N4—H7109.7O5—Cl1—O3107.5 (5)
Co1—N4—H7109.7O13—Cl2—O14107.9 (13)
C7—N4—H8109.7O7—Cl2—O10111.0 (10)
Co1—N4—H8109.7O13—Cl2—O12115 (2)
H7—N4—H8108.2O14—Cl2—O12102.4 (17)
C2—N5—Co1115.1 (2)O7—Cl2—O8117.5 (11)
C2—N5—H9108.5O10—Cl2—O8111.5 (10)
Co1—N5—H9108.5O7—Cl2—O9108.9 (12)
C2—N5—H10108.5O10—Cl2—O9109.2 (13)
Co1—N5—H10108.5O8—Cl2—O997.6 (11)
H9—N5—H10107.5O13—Cl2—O11112.1 (11)
C2—C1—S1110.2 (3)O14—Cl2—O11118.9 (13)
C2—C1—H11109.6O12—Cl2—O11100.4 (9)
S1—C1—H11109.6H22—O15—H23109 (4)
C2—C1—H12109.6H22—O15—H24109 (4)
S1—C1—H12109.6H25—O16—H26108 (9)
H11—C1—H12108.1H27—O17—H28108 (4)
N3—Co1—S1—C198.88 (17)N1—Co1—N4—C779.2 (3)
N2—Co1—S1—C182.67 (17)N5—Co1—N4—C7104.6 (3)
N1—Co1—S1—C1167.53 (16)N3—Co1—N5—C275.3 (3)
N5—Co1—S1—C18.63 (16)N2—Co1—N5—C2108.4 (3)
N3—Co1—S1—Ag113.43 (11)N4—Co1—N5—C2159.7 (2)
N2—Co1—S1—Ag1165.03 (11)S1—Co1—N5—C218.1 (2)
N1—Co1—S1—Ag180.16 (11)Co1—S1—C1—C234.0 (3)
N5—Co1—S1—Ag1103.68 (10)Ag1—S1—C1—C289.7 (3)
N3—Co1—N1—C4173.1 (3)Co1—N5—C2—C144.4 (3)
N2—Co1—N1—C410.7 (3)Co1—N5—C2—C3165.4 (2)
N4—Co1—N1—C4102.4 (3)S1—C1—C2—N551.5 (3)
S1—Co1—N1—C479.7 (3)S1—C1—C2—C3173.7 (3)
N1—Co1—N2—C516.7 (3)N5—C2—C3—O232.8 (5)
N5—Co1—N2—C5165.6 (3)C1—C2—C3—O287.2 (4)
N4—Co1—N2—C574.8 (3)N5—C2—C3—O1150.2 (4)
S1—Co1—N2—C5106.5 (3)C1—C2—C3—O189.7 (4)
N1—Co1—N3—C6105.3 (3)Co1—N1—C4—C535.7 (5)
N5—Co1—N3—C676.8 (3)Co1—N2—C5—C440.6 (5)
N4—Co1—N3—C614.0 (3)N1—C4—C5—N249.3 (6)
S1—Co1—N3—C6164.6 (3)Co1—N3—C6—C738.9 (4)
N3—Co1—N4—C714.3 (3)Co1—N4—C7—C639.3 (4)
N2—Co1—N4—C7164.1 (3)N3—C6—C7—N450.3 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O12ii0.902.303.14 (2)155
N1—H2···O110.902.193.034 (19)157
N1—H2···O70.902.233.066 (18)155
N2—H3···O150.902.042.899 (5)160
N2—H4···O13iii0.902.283.057 (19)144
N3—H5···O40.902.253.146 (13)174
N3—H6···O10iv0.902.213.083 (12)162
N4—H7···O2v0.902.032.868 (4)155
N4—H8···O70.902.493.117 (16)128
N4—H8···O17v0.902.503.138 (13)128
N5—H9···O150.902.363.201 (5)155
N5—H10···O160.902.253.079 (6)152
O15—H22···O1v0.85 (5)1.89 (3)2.711 (5)162 (7)
O15—H24···O15vi0.84 (2)2.23 (5)3.027 (8)158 (12)
O16—H25···O170.85 (9)2.27 (11)2.794 (15)120 (10)
O16—H26···O2v0.86 (10)2.12 (4)2.891 (7)149 (7)
O17—H27···O1vii0.85 (2)2.2 (2)2.822 (12)126 (19)
O17—H28···O10.85 (2)2.12 (12)2.884 (12)149 (19)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x, y1, z; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[AgCo2(C3H5NO2S)2(C2H8N2)4](ClO4)3·5H2O
Mr1092.86
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)16.542 (2), 9.050 (2), 13.728 (2)
β (°) 111.507 (10)
V3)1912.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.40 × 0.18 × 0.18
Data collection
DiffractometerRigaku AFC-7S
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.537, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
2426, 2346, 2219
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.05
No. of reflections2346
No. of parameters322
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.25
Absolute structureFlack (1983)
Absolute structure parameter0.001 (18)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ag1—S12.3938 (9)Co1—N51.975 (3)
Co1—N31.960 (3)Co1—N41.980 (3)
Co1—N21.964 (3)Co1—S12.2642 (10)
Co1—N11.972 (3)
S1i—Ag1—S1172.38 (5)N1—Co1—N5175.53 (14)
N3—Co1—N2175.89 (16)N4—Co1—S1177.46 (10)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O12ii0.902.303.14 (2)155.4
N1—H2···O110.902.193.034 (19)156.9
N1—H2···O70.902.233.066 (18)155.1
N2—H3···O150.902.042.899 (5)160.1
N2—H4···O13iii0.902.283.057 (19)144.2
N3—H5···O40.902.253.146 (13)174.1
N3—H6···O10iv0.902.213.083 (12)161.9
N4—H7···O2v0.902.032.868 (4)154.7
N4—H8···O70.902.493.117 (16)127.5
N4—H8···O17v0.902.503.138 (13)127.9
N5—H9···O150.902.363.201 (5)155.4
N5—H10···O160.902.253.079 (6)152.2
O15—H22···O1v0.85 (5)1.89 (3)2.711 (5)162 (7)
O16—H26···O2v0.86 (10)2.12 (4)2.891 (7)149 (7)
O17—H27···O1vi0.85 (2)2.2 (2)2.822 (12)126 (19)
O17—H28···O10.85 (2)2.12 (12)2.884 (12)149 (19)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x, y1, z; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds