Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Zn(C20H14N2O2)(C5H5N)], the ZnII atom is in a distorted square-pyramidal environment. In the crystal structure, inter­molecular C—H...O inter­actions inter­connect the mol­ecules into wave-like chains along the c axis. In addition, the crystal packing is further stabilized by weak C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807017618/ng2249sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807017618/ng2249Isup2.hkl
Contains datablock I

CCDC reference: 646602

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.104
  • Data-to-parameter ratio = 40.8

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 40.00 From the CIF: _reflns_number_total 11416 Count of symmetry unique reflns 6282 Completeness (_total/calc) 181.73% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 5134 Fraction of Friedel pairs measured 0.817 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL023_ALERT_1_A There is a mismatched ^ on line 93 \k^4^2^O,N,N',O']bis(pyridine-\kN)zinc(II) If you require a ^ then it should be escaped with a \, i.e. \^ Otherwise there must be a matching closing ~, e.g. ^12^C PUBL023_ALERT_1_A There is a mismatched ^ on line 274 \k^4^2^O,N,N',O']bis(pyridine-\kN)zinc(II) If you require a ^ then it should be escaped with a \, i.e. \^ Otherwise there must be a matching closing ~, e.g. ^12^C
2 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

Zinc, an element of strong interest in biology, medicine, materials and catalysis, plays important roles in various biological systems, such as neurotransmission, signal transduction and gene expression (Assaf & Chung, 1984; Berg & Shi, 1996). It is well known that zinc complexes with Schiff bases show very good activity against the leukaemic cell (Tarafder et al., 2002). Here, we report the crystal structure of the title ZnII complex, (I), with the 2,2'-{1,2-phenylenebis[nitrilomethylylide]}diphenol Schiff base.

The ZnII atom in (I) is five-coordinated by two O atoms and two N atoms in the basal plane, together with the N atom of the pyridine ring in the apical position, giving a distorted square-pyramidal geometry (Fig. 1 and Table 1). The ZnII ion is displaced from the basal plane (N1/N2/O2/O1) by 0.3975 (2) Å. The N3/C21–C25 pyridine ring is attached axially to Zn1 with the torsion angle O1—Zn1—N3—C25 = -3.93 (15)°. The bond lengths and angles in (I) have normal values (Allen et al., 1987).

An intramolecular C25—H25A···O1 interaction (Table 2 and Fig. 1) generates S(5) ring motifs (Bernstein et al., 1995). In the crystal structure, the molecules are linked by intermolecular C23—H23A···O2 interactions into wave-like chains along the c axis (Fig. 2). In addition, the crystal packing is further stabilized by weak intermolecular C—H···π interactions involving the Zn1/O1/C1/C6/C7/N1 ring (centroid Cg1) (Table 2).

Related literature top

For related literature, see: Allen et al. (1987); Assaf & Chung (1984); Berg & Shi (1996); Bernstein et al. (1995); Tarafder et al. (2002).

Experimental top

The title compound was synthesized as follows. To a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml) was added 2-hydroxybenzaldehyde (0.4 ml, 4 mmol). The mixture was refluxed with stirring for half an hour. Zinc chloride (0.272 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was stirred at

room temperature for 2 h, following which the yellow precipitate obtained was washed with ethanol (about 5 ml), dried and then washed in a copious amount of diethyl ether. This precipitate was dissolved in pyridine (15 ml), and after 9 d of slow evaporation of the pyridine at room temperature, yellow crystals of

(I) suitable for X-ray diffraction analysis were formed.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å and the Uiso(H) = 1.2Ueq(C).

Structure description top

Zinc, an element of strong interest in biology, medicine, materials and catalysis, plays important roles in various biological systems, such as neurotransmission, signal transduction and gene expression (Assaf & Chung, 1984; Berg & Shi, 1996). It is well known that zinc complexes with Schiff bases show very good activity against the leukaemic cell (Tarafder et al., 2002). Here, we report the crystal structure of the title ZnII complex, (I), with the 2,2'-{1,2-phenylenebis[nitrilomethylylide]}diphenol Schiff base.

The ZnII atom in (I) is five-coordinated by two O atoms and two N atoms in the basal plane, together with the N atom of the pyridine ring in the apical position, giving a distorted square-pyramidal geometry (Fig. 1 and Table 1). The ZnII ion is displaced from the basal plane (N1/N2/O2/O1) by 0.3975 (2) Å. The N3/C21–C25 pyridine ring is attached axially to Zn1 with the torsion angle O1—Zn1—N3—C25 = -3.93 (15)°. The bond lengths and angles in (I) have normal values (Allen et al., 1987).

An intramolecular C25—H25A···O1 interaction (Table 2 and Fig. 1) generates S(5) ring motifs (Bernstein et al., 1995). In the crystal structure, the molecules are linked by intermolecular C23—H23A···O2 interactions into wave-like chains along the c axis (Fig. 2). In addition, the crystal packing is further stabilized by weak intermolecular C—H···π interactions involving the Zn1/O1/C1/C6/C7/N1 ring (centroid Cg1) (Table 2).

For related literature, see: Allen et al. (1987); Assaf & Chung (1984); Berg & Shi (1996); Bernstein et al. (1995); Tarafder et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. The intermolecular C—H···O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
[2,2'-{1,2-Phenylenebis(nitrilomethylylidyne)}diphenolato- κ4O,N,N',O'](pyridine-κN)zinc(II) top
Crystal data top
[Zn(C20H14N2O2)(C5H5N)]F(000) = 944
Mr = 458.80Dx = 1.505 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9040 reflections
a = 17.8611 (3) Åθ = 2.1–40.0°
b = 11.9929 (3) ŵ = 1.24 mm1
c = 9.4946 (2) ÅT = 100 K
β = 95.540 (1)°Block, yellow
V = 2024.30 (7) Å30.53 × 0.38 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11416 independent reflections
Radiation source: fine-focus sealed tube9121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.33 pixels mm-1θmax = 40.0°, θmin = 2.1°
ω scansh = 3131
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1921
Tmin = 0.588, Tmax = 0.778l = 1716
31548 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + 1.0902P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
11416 reflectionsΔρmax = 0.87 e Å3
280 parametersΔρmin = 0.92 e Å3
2 restraintsAbsolute structure: Flack (1983), with 5258 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (7)
Crystal data top
[Zn(C20H14N2O2)(C5H5N)]V = 2024.30 (7) Å3
Mr = 458.80Z = 4
Monoclinic, CcMo Kα radiation
a = 17.8611 (3) ŵ = 1.24 mm1
b = 11.9929 (3) ÅT = 100 K
c = 9.4946 (2) Å0.53 × 0.38 × 0.21 mm
β = 95.540 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11416 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9121 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.778Rint = 0.047
31548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.87 e Å3
S = 1.07Δρmin = 0.92 e Å3
11416 reflectionsAbsolute structure: Flack (1983), with 5258 Friedel pairs
280 parametersAbsolute structure parameter: 0.014 (7)
2 restraints
Special details top

Experimental. The data were collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.137941 (15)0.276624 (17)0.931457 (18)0.01513 (4)
O10.05548 (8)0.26576 (14)1.05451 (15)0.0210 (3)
O20.22018 (8)0.28305 (14)1.08423 (15)0.0213 (3)
N10.06264 (9)0.35148 (15)0.77673 (16)0.0166 (3)
N20.21070 (8)0.35007 (15)0.79573 (15)0.0161 (3)
C10.01125 (10)0.30971 (18)1.04053 (19)0.0178 (3)
C20.05900 (11)0.29339 (19)1.1504 (2)0.0212 (4)
H2A0.04180.25021.22820.025*
C30.12951 (11)0.3392 (2)1.1455 (2)0.0245 (4)
H3A0.15870.32731.22000.029*
C40.15823 (12)0.4040 (2)1.0294 (2)0.0258 (4)
H4A0.20600.43531.02650.031*
C50.11409 (12)0.4202 (2)0.9195 (2)0.0224 (4)
H5A0.13280.46300.84230.027*
C60.04126 (12)0.3736 (2)0.9211 (2)0.0176 (4)
C70.00347 (10)0.39031 (18)0.79527 (19)0.0180 (3)
H7A0.02820.43180.72230.022*
C80.09499 (10)0.36759 (17)0.64817 (18)0.0167 (3)
C90.05405 (11)0.37665 (18)0.51553 (19)0.0189 (3)
H9A0.00180.37510.50790.023*
C100.09183 (12)0.38795 (18)0.3952 (2)0.0197 (3)
H10A0.06460.39500.30710.024*
C110.17024 (12)0.38874 (18)0.4054 (2)0.0200 (3)
H11A0.19500.39630.32400.024*
C120.21155 (11)0.37828 (18)0.53604 (19)0.0190 (3)
H12A0.26380.37840.54230.023*
C130.17443 (10)0.36752 (16)0.65840 (17)0.0157 (3)
C140.27789 (10)0.38710 (17)0.83114 (18)0.0174 (3)
H14A0.30150.42570.76290.021*
C150.31893 (12)0.3730 (2)0.9683 (2)0.0175 (4)
C160.39295 (12)0.4161 (2)0.9850 (2)0.0232 (4)
H16A0.41210.45040.90840.028*
C170.43724 (12)0.4087 (2)1.1108 (2)0.0246 (4)
H17A0.48590.43731.11930.030*
C180.40826 (11)0.35744 (19)1.2266 (2)0.0207 (3)
H18A0.43800.35161.31230.025*
C190.33618 (11)0.31565 (19)1.21453 (19)0.0201 (3)
H19A0.31830.28221.29300.024*
C200.28810 (10)0.32175 (17)1.08643 (18)0.0172 (3)
N30.13875 (8)0.11047 (15)0.86487 (16)0.0172 (3)
C210.18650 (11)0.07344 (18)0.7742 (2)0.0197 (3)
H21A0.21770.12470.73510.024*
C220.19123 (11)0.03757 (19)0.7364 (2)0.0218 (3)
H22A0.22590.06030.67520.026*
C230.14410 (12)0.11397 (18)0.7905 (2)0.0213 (3)
H23A0.14560.18880.76530.026*
C240.09411 (12)0.0766 (2)0.8840 (2)0.0230 (4)
H24A0.06190.12630.92310.028*
C250.09292 (11)0.03505 (19)0.9177 (2)0.0201 (3)
H25A0.05910.05950.97960.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01612 (7)0.01586 (9)0.01368 (7)0.00019 (10)0.00283 (5)0.00089 (9)
O10.0196 (6)0.0259 (8)0.0182 (6)0.0050 (5)0.0054 (5)0.0034 (5)
O20.0199 (6)0.0276 (8)0.0164 (5)0.0057 (5)0.0021 (4)0.0040 (5)
N10.0186 (6)0.0166 (8)0.0149 (6)0.0004 (5)0.0034 (5)0.0002 (5)
N20.0184 (6)0.0164 (7)0.0134 (6)0.0002 (5)0.0017 (4)0.0011 (5)
C10.0175 (7)0.0189 (9)0.0174 (7)0.0007 (6)0.0035 (5)0.0024 (6)
C20.0207 (8)0.0237 (10)0.0197 (7)0.0006 (7)0.0040 (6)0.0008 (7)
C30.0212 (8)0.0305 (12)0.0228 (8)0.0017 (7)0.0073 (6)0.0043 (8)
C40.0187 (8)0.0315 (12)0.0278 (9)0.0040 (7)0.0049 (7)0.0042 (8)
C50.0192 (8)0.0251 (11)0.0229 (9)0.0024 (7)0.0016 (7)0.0014 (8)
C60.0171 (8)0.0171 (9)0.0189 (8)0.0002 (6)0.0025 (6)0.0029 (7)
C70.0192 (7)0.0178 (9)0.0169 (7)0.0003 (6)0.0012 (6)0.0003 (6)
C80.0204 (7)0.0148 (8)0.0147 (7)0.0003 (6)0.0013 (5)0.0002 (6)
C90.0218 (8)0.0180 (9)0.0164 (7)0.0023 (6)0.0004 (6)0.0000 (6)
C100.0289 (9)0.0161 (9)0.0140 (7)0.0012 (7)0.0012 (6)0.0013 (6)
C110.0299 (9)0.0172 (9)0.0131 (7)0.0001 (7)0.0030 (6)0.0010 (6)
C120.0233 (8)0.0182 (9)0.0164 (7)0.0006 (6)0.0057 (6)0.0026 (6)
C130.0190 (7)0.0145 (8)0.0138 (6)0.0011 (6)0.0026 (5)0.0008 (5)
C140.0196 (7)0.0179 (9)0.0153 (7)0.0011 (6)0.0043 (5)0.0019 (6)
C150.0192 (8)0.0180 (10)0.0154 (7)0.0004 (7)0.0016 (6)0.0025 (6)
C160.0202 (8)0.0297 (12)0.0196 (8)0.0042 (7)0.0010 (7)0.0049 (8)
C170.0198 (8)0.0306 (12)0.0228 (8)0.0050 (7)0.0005 (6)0.0050 (8)
C180.0215 (8)0.0213 (10)0.0186 (7)0.0003 (7)0.0018 (6)0.0016 (7)
C190.0218 (8)0.0216 (10)0.0166 (7)0.0018 (7)0.0012 (6)0.0025 (7)
C200.0203 (7)0.0162 (9)0.0150 (7)0.0005 (6)0.0020 (5)0.0004 (6)
N30.0151 (6)0.0192 (8)0.0174 (6)0.0001 (5)0.0023 (5)0.0010 (5)
C210.0201 (7)0.0184 (9)0.0213 (8)0.0015 (6)0.0059 (6)0.0017 (7)
C220.0239 (8)0.0214 (10)0.0208 (8)0.0011 (7)0.0059 (6)0.0013 (7)
C230.0292 (9)0.0160 (9)0.0187 (7)0.0009 (7)0.0020 (6)0.0022 (6)
C240.0262 (9)0.0214 (10)0.0222 (8)0.0056 (7)0.0062 (7)0.0007 (7)
C250.0204 (8)0.0217 (10)0.0188 (7)0.0025 (6)0.0052 (6)0.0003 (7)
Geometric parameters (Å, º) top
Zn1—O21.9637 (14)C10—H10A0.9300
Zn1—O11.9707 (14)C11—C121.387 (3)
Zn1—N32.0910 (18)C11—H11A0.9300
Zn1—N12.0956 (16)C12—C131.398 (2)
Zn1—N22.1092 (15)C12—H12A0.9300
O1—C11.298 (2)C14—C151.441 (3)
O2—C201.297 (2)C14—H14A0.9300
N1—C71.297 (2)C15—C161.414 (3)
N1—C81.413 (2)C15—C201.435 (3)
N2—C141.293 (2)C16—C171.371 (3)
N2—C131.414 (2)C16—H16A0.9300
C1—C21.423 (3)C17—C181.402 (3)
C1—C61.429 (3)C17—H17A0.9300
C2—C31.371 (3)C18—C191.376 (3)
C2—H2A0.9300C18—H18A0.9300
C3—C41.405 (3)C19—C201.421 (3)
C3—H3A0.9300C19—H19A0.9300
C4—C51.380 (3)N3—C211.345 (2)
C4—H4A0.9300N3—C251.349 (3)
C5—C61.414 (3)C21—C221.383 (3)
C5—H5A0.9300C21—H21A0.9300
C6—C71.442 (3)C22—C231.377 (3)
C7—H7A0.9300C22—H22A0.9300
C8—C91.398 (3)C23—C241.392 (3)
C8—C131.413 (2)C23—H23A0.9300
C9—C101.388 (3)C24—C251.377 (3)
C9—H9A0.9300C24—H24A0.9300
C10—C111.395 (3)C25—H25A0.9300
O2—Zn1—O196.51 (6)C12—C11—C10120.33 (18)
O2—Zn1—N3103.55 (7)C12—C11—H11A119.8
O1—Zn1—N398.26 (6)C10—C11—H11A119.8
O2—Zn1—N1152.21 (7)C11—C12—C13119.86 (18)
O1—Zn1—N188.75 (6)C11—C12—H12A120.1
N3—Zn1—N1102.65 (6)C13—C12—H12A120.1
O2—Zn1—N288.50 (6)C12—C13—C8119.77 (16)
O1—Zn1—N2158.38 (7)C12—C13—N2124.61 (16)
N3—Zn1—N2100.99 (6)C8—C13—N2115.54 (14)
N1—Zn1—N277.55 (6)N2—C14—C15124.96 (17)
C1—O1—Zn1130.08 (13)N2—C14—H14A117.5
C20—O2—Zn1131.12 (12)C15—C14—H14A117.5
C7—N1—C8121.44 (16)C16—C15—C20119.59 (18)
C7—N1—Zn1126.14 (12)C16—C15—C14116.58 (18)
C8—N1—Zn1112.07 (12)C20—C15—C14123.80 (19)
C14—N2—C13121.32 (15)C17—C16—C15121.96 (19)
C14—N2—Zn1126.56 (12)C17—C16—H16A119.0
C13—N2—Zn1111.75 (11)C15—C16—H16A119.0
O1—C1—C2118.57 (18)C16—C17—C18119.09 (19)
O1—C1—C6124.69 (17)C16—C17—H17A120.5
C2—C1—C6116.73 (18)C18—C17—H17A120.5
C3—C2—C1122.2 (2)C19—C18—C17120.51 (18)
C3—C2—H2A118.9C19—C18—H18A119.7
C1—C2—H2A118.9C17—C18—H18A119.7
C2—C3—C4120.89 (18)C18—C19—C20122.40 (17)
C2—C3—H3A119.6C18—C19—H19A118.8
C4—C3—H3A119.6C20—C19—H19A118.8
C5—C4—C3118.62 (19)O2—C20—C19118.83 (16)
C5—C4—H4A120.7O2—C20—C15124.72 (17)
C3—C4—H4A120.7C19—C20—C15116.44 (17)
C4—C5—C6121.9 (2)C21—N3—C25117.51 (18)
C4—C5—H5A119.1C21—N3—Zn1122.12 (14)
C6—C5—H5A119.1C25—N3—Zn1120.30 (13)
C5—C6—C1119.63 (18)N3—C21—C22122.83 (19)
C5—C6—C7116.1 (2)N3—C21—H21A118.6
C1—C6—C7124.18 (18)C22—C21—H21A118.6
N1—C7—C6124.60 (18)C23—C22—C21119.27 (18)
N1—C7—H7A117.7C23—C22—H22A120.4
C6—C7—H7A117.7C21—C22—H22A120.4
C9—C8—C13119.77 (16)C22—C23—C24118.4 (2)
C9—C8—N1124.52 (16)C22—C23—H23A120.8
C13—C8—N1115.61 (15)C24—C23—H23A120.8
C10—C9—C8119.68 (18)C25—C24—C23119.12 (19)
C10—C9—H9A120.2C25—C24—H24A120.4
C8—C9—H9A120.2C23—C24—H24A120.4
C9—C10—C11120.59 (19)N3—C25—C24122.81 (17)
C9—C10—H10A119.7N3—C25—H25A118.6
C11—C10—H10A119.7C24—C25—H25A118.6
O2—Zn1—O1—C1142.18 (19)C8—C9—C10—C110.9 (3)
N3—Zn1—O1—C1113.06 (19)C9—C10—C11—C120.0 (3)
N1—Zn1—O1—C110.46 (19)C10—C11—C12—C130.4 (3)
N2—Zn1—O1—C139.7 (3)C11—C12—C13—C80.1 (3)
O1—Zn1—O2—C20157.39 (19)C11—C12—C13—N2176.26 (19)
N3—Zn1—O2—C20102.47 (19)C9—C8—C13—C121.0 (3)
N1—Zn1—O2—C2057.7 (3)N1—C8—C13—C12177.39 (18)
N2—Zn1—O2—C201.53 (19)C9—C8—C13—N2175.69 (18)
O2—Zn1—N1—C788.4 (2)N1—C8—C13—N20.7 (3)
O1—Zn1—N1—C713.18 (18)C14—N2—C13—C1229.3 (3)
N3—Zn1—N1—C7111.36 (18)Zn1—N2—C13—C12157.32 (16)
N2—Zn1—N1—C7149.98 (19)C14—N2—C13—C8154.23 (19)
O2—Zn1—N1—C884.83 (18)Zn1—N2—C13—C819.2 (2)
O1—Zn1—N1—C8173.55 (13)C13—N2—C14—C15180.0 (2)
N3—Zn1—N1—C875.36 (14)Zn1—N2—C14—C157.7 (3)
N2—Zn1—N1—C823.29 (13)N2—C14—C15—C16177.8 (2)
O2—Zn1—N2—C145.67 (18)N2—C14—C15—C204.2 (4)
O1—Zn1—N2—C1498.3 (2)C20—C15—C16—C171.2 (4)
N3—Zn1—N2—C14109.17 (18)C14—C15—C16—C17179.4 (2)
N1—Zn1—N2—C14150.13 (19)C15—C16—C17—C180.3 (4)
O2—Zn1—N2—C13178.67 (14)C16—C17—C18—C190.4 (4)
O1—Zn1—N2—C1374.7 (2)C17—C18—C19—C200.2 (3)
N3—Zn1—N2—C1377.82 (13)Zn1—O2—C20—C19179.71 (15)
N1—Zn1—N2—C1322.88 (13)Zn1—O2—C20—C150.8 (3)
Zn1—O1—C1—C2176.48 (15)C18—C19—C20—O2178.2 (2)
Zn1—O1—C1—C64.0 (3)C18—C19—C20—C150.7 (3)
O1—C1—C2—C3178.4 (2)C16—C15—C20—O2177.5 (2)
C6—C1—C2—C32.0 (3)C14—C15—C20—O20.5 (4)
C1—C2—C3—C40.8 (4)C16—C15—C20—C191.4 (3)
C2—C3—C4—C50.3 (4)C14—C15—C20—C19179.4 (2)
C3—C4—C5—C60.0 (4)O2—Zn1—N3—C2182.04 (15)
C4—C5—C6—C11.3 (4)O1—Zn1—N3—C21179.17 (15)
C4—C5—C6—C7175.6 (2)N1—Zn1—N3—C2188.61 (15)
O1—C1—C6—C5178.2 (2)N2—Zn1—N3—C219.07 (16)
C2—C1—C6—C52.3 (3)O2—Zn1—N3—C2594.86 (15)
O1—C1—C6—C75.1 (4)O1—Zn1—N3—C253.93 (15)
C2—C1—C6—C7174.4 (2)N1—Zn1—N3—C2594.50 (15)
C8—N1—C7—C6177.53 (19)N2—Zn1—N3—C25174.04 (14)
Zn1—N1—C7—C69.8 (3)C25—N3—C21—C221.4 (3)
C5—C6—C7—N1178.3 (2)Zn1—N3—C21—C22175.55 (16)
C1—C6—C7—N11.5 (4)N3—C21—C22—C231.6 (3)
C7—N1—C8—C930.6 (3)C21—C22—C23—C241.2 (3)
Zn1—N1—C8—C9155.77 (17)C22—C23—C24—C250.7 (3)
C7—N1—C8—C13153.21 (19)C21—N3—C25—C240.9 (3)
Zn1—N1—C8—C1320.4 (2)Zn1—N3—C25—C24176.16 (16)
C13—C8—C9—C101.4 (3)C23—C24—C25—N30.5 (3)
N1—C8—C9—C10177.44 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···O10.932.583.156 (3)121
C23—H23A···O2i0.932.543.211 (3)129
C18—H18A···Cg1ii0.932.873.537 (2)130
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C20H14N2O2)(C5H5N)]
Mr458.80
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)17.8611 (3), 11.9929 (3), 9.4946 (2)
β (°) 95.540 (1)
V3)2024.30 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.53 × 0.38 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.588, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
31548, 11416, 9121
Rint0.047
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.07
No. of reflections11416
No. of parameters280
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.92
Absolute structureFlack (1983), with 5258 Friedel pairs
Absolute structure parameter0.014 (7)

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Zn1—O21.9637 (14)Zn1—N12.0956 (16)
Zn1—O11.9707 (14)Zn1—N22.1092 (15)
Zn1—N32.0910 (18)
O2—Zn1—O196.51 (6)N3—Zn1—N1102.65 (6)
O2—Zn1—N3103.55 (7)O2—Zn1—N288.50 (6)
O1—Zn1—N398.26 (6)O1—Zn1—N2158.38 (7)
O2—Zn1—N1152.21 (7)N3—Zn1—N2100.99 (6)
O1—Zn1—N188.75 (6)N1—Zn1—N277.55 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···O10.932.583.156 (3)121
C23—H23A···O2i0.932.543.211 (3)129
C18—H18A···Cg1ii0.932.873.537 (2)130
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds