organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3133-o3134

Dibenzo[b,f][1,4]thia­zepin-11-yl-di­ethyl-amine

aChemistry Department, Menarini Ricerche S.p.A., Via dei Sette Santi 3, I-50131 Firenze, Italy, bICS, Université de Strasbourg, Strasbourg, France, and cDipartimento Energetica "Sergio Stecco", University of Firenze, Via S. Marta 3, I-50139 Firenze, Italy
*Correspondence e-mail: paolapaoli@unifi.it

(Received 4 October 2012; accepted 9 October 2012; online 13 October 2012)

In the title compound, C17H18N2S, the thia­zepine ring adopts a boat conformation and the dihedral angle between the benzene rings is 75.92 (5)°, resulting in a butterfly-like conformation. In the crystal, mol­ecules are connected via weak Caromatic—H⋯N contacts involving the imine N atom as acceptor and through a quite short C—H⋯π inter­action. The resulting mol­ecular chains propagate along the c-axis direction.

Related literature

For `privileged structures', that is `structures able to provide high affinity ligands for more than one type of receptor', see: Evans et al. (1988[Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whittle, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235-2246.]); Patchett & Nargund (2000[Patchett, A. A. & Nargund, R. P. (2000). Annu. Rep. Med. Chem. 35, 289-298.]); Fedi et al. (2008[Fedi, V., Guidi, A. & Altamura, M. (2008). Mini Rev. Med. Chem. 8, 1464-1484.]). For the clinical use of dibenzothia­zepine derivatives, see: Ganesh et al. (2011[Ganesh, D. M., Yogesh, M. K., Ashok, K., Dharmendra, S., Kisan, M. K. & Suresh, B. M. (2011). Indian J. Chem. 50B, 1196-, 1201.]); Pettersson et al. (2009[Pettersson, H., Bulow, A., Ek, F., Jensen, J., Ottesen, L. K., Fejzic, A., Ma, J.-N., Del Tredici, A. L., Currier, E. A., Gardell, L. R., Tabatabaei, A., Craig, D., McFarland, K., Ott, T. R., Piu, F., Burstein, E. S. & Olsson, R. (2009). J. Med. Chem. 52, 1975-1982.]); Riedel et al. (2007[Riedel, M., Mueller, N., Strassnig, M., Spellman, I., Severus, E. & Moeller, H.-J. (2007). Neuropsyc. Dis. Treat. 3, 219-235.]); Warawa et al. (2001[Warawa, E. J., Migler, B. M., Ohnmacht, C. J., Needles, A. L., Gatos, G. C., Mclaren, F. M., Nelson, C. L. & Kirkland, K. M. (2001). J. Med. Chem. 44, 372-389.]). For structure–property relationships in (6,7,6)-tricyclic ring systems, see: Ravikumar & Sridhar (2005[Ravikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245-o3248.]); Altamura et al. (2008[Altamura, M., Dapporto, P., Guidi, A., Harmat, N., Jerry, L., Libralesso, E., Paoli, P. & Rossi, P. (2008). New J. Chem. 32, 1617-1627.], 2009[Altamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219-2231.], 2011[Altamura, M., Guidi, A., Jerry, L., Paoli, P. & Rossi, P. (2011). CrystEngComm, 13, 2310-2317.]). For geometrical data and descriptors, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, edited by E. L. Eliel and N. Allinger. New York: John Wiley & Sons.]); Bertolasi et al. (1982[Bertolasi, V., Ferretti, V., Gilli, G. & Borea, P. A. (1982). Cryst. Struct. Commun. 11, 1481-1486.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2S

  • Mr = 282.40

  • Monoclinic, P 21 /c

  • a = 12.0137 (2) Å

  • b = 8.2257 (1) Å

  • c = 15.0513 (2) Å

  • β = 102.952 (1)°

  • V = 1449.54 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.89 mm−1

  • T = 150 K

  • 0.20 × 0.18 × 0.03 mm

Data collection
  • Oxford Diffraction XcaliburPX diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.722, Tmax = 0.945

  • 6173 measured reflections

  • 2364 independent reflections

  • 1837 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.05

  • 2364 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N1i 0.95 2.70 3.576 (2) 154
C4—H4⋯Cgi 0.95 2.81 3.5759 (18) 139
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Many antidepressant drugs have a tricyclic structure with two aromatic rings fused to a central seven membered ring, on which one or more heteroatoms can be present. In this context, dibenzothiazepines are a class of heterocyclic scaffolds containing nitrogen and sulfur which belong to the class of the so-called "privileged structures", i.e. structures "able to provide high affinity ligands for more than one type of receptor" (Evans et al. 1988; Patchett & Nargund 2000; Fedi et al. 2008). In fact the dibenzothiazepine skeleton has a broad spectrum of medical applications; its derivatives are used to treat schizophrenia and also find applications as neuroleptics, antidepressants, antihistaminic, just to name a few (Ganesh et al. 2011; Pettersson et al. 2009; Riedel et al. 2007; Warawa et al. 2001). Within our programme research concerning the structural elucidation of tricyclic molecules in order to gain further insights into structure–property relationships (Altamura et al., 2008; Altamura et al., 2009; Altamura et al., 2011) we investigated the crystal and molecular structure of the title compound. The overall shape of the tricyclic skeleton is controlled both by the conformation of the central seven-membered ring and the relative arrangement of the aromatic rings bound to it. The central thiazepine ring adopts the usual boat conformation, with C1, C2, C8 and C9 as the basal plane, the S atom as the bow and the N1—C7 bond as the stern. The deviation from a pure boat conformation is quite small as can be seen from the asymmetry index ΔCs which is 3.97°; the bow angle is 51.04 (8)° and the stern angle is 41.89 (8)°(Duax et al. 1976; Bertolasi et al. 1982; Ravikumar & Sridhar, 2005). Finally, the dihedral angle between the benzene rings is 104.08 (5)°. As a consequence the dibenzothiazepine tricyclic skeleton assumes an overall butterfly-like shape (Fig. 1). The N2—C7 bond is shorter than an usual N—C single bond [1.368 (2) Å compared to 1.416 Å (Allen et al. 1987)] and the sum of the bond angles about N2 is 358°; consequently, N2 has a partial sp2 character. Molecular chains, which propagate along the c axis, are formed through intermolecular interactions (Fig. 2): a weak C—Haromatic···N contact which involves the imine nitrogen atom as acceptor and a quite short C—H···π interaction (Table 1).

Related literature top

For `privileged structures', see: Evans et al. (1988); Patchett & Nargund (2000); Fedi et al. (2008). For the clinical use of dibenzothiazepine derivatives, see: Ganesh et al. (2011); Pettersson et al. (2009); Riedel et al. (2007); Warawa et al. (2001). For structure–property relationships in (6,7,6)-tricyclic ring systems, see: Ravikumar & Sridhar (2005); Altamura et al. (2008, 2009, 2011). For geometrical data and descriptors, see: Duax et al. (1976); Bertolasi et al. (1982); Allen et al. (1987).

Experimental top

The synthesis of the title compound started from the commercially available tricyclic lactam (dibenzo[b,f][1,4]thiazepin-11(10H)-one) (0.89 g, 3.91 mmol), that was dissolved into 10 ml of phosphorus oxychloride and refluxed for two hours under nitrogen atmosphere. After removal of excess POCl3 under vacuum, the corresponding iminochloride (11-chlorodibenzo[b,f][1,4]thiazepine) was obtained as a yellow oil, that was dissolved in 20 ml of anhydrous toluene. An excess of diethylamine (20 ml, 191 mmol) was added and the mixture refluxed until complete conversion (monitored by HPLC; about 6 h were needed for complete conversion). After removal of the solvent in vacuo and purification by flash chromatography (eluent: gradient CH2Cl2/cyclohexane from 50:50 to 100% CH2Cl2), dibenzo[b,f][1,4]thiazepin-11-yl-diethyl-amine was obtained as a yellow oil (0.66 g, 60% yield), which became a white solid on standing at room temperature for several days. Crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of a water/DMSO solution of dibenzo[b,f][1,4]thiazepin-11-yl-diethyl-amine.

Refinement top

All the H atoms were positioned with idealized geometry using a riding model and refined with Uiso(H) 1.2 times Ueq(C) (1.5 for methyl H atoms).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b-axis. Intermolecular H-bonding interactions are shown as dashed lines.
Dibenzo[b,f][1,4]thiazepin-11-yl-diethyl-amine top
Crystal data top
C17H18N2SF(000) = 600
Mr = 282.40Dx = 1.294 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 12.0137 (2) ÅCell parameters from 3716 reflections
b = 8.2257 (1) Åθ = 3.8–64.6°
c = 15.0513 (2) ŵ = 1.89 mm1
β = 102.952 (1)°T = 150 K
V = 1449.54 (4) Å3Platelet, colourless
Z = 40.20 × 0.18 × 0.03 mm
Data collection top
Oxford Diffraction XcaliburPX
diffractometer
2364 independent reflections
Radiation source: Enhance (Cu) X-ray Source1837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.1241 pixels mm-1θmax = 64.7°, θmin = 3.8°
ω scansh = 1311
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 99
Tmin = 0.722, Tmax = 0.945l = 1617
6173 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
2364 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H18N2SV = 1449.54 (4) Å3
Mr = 282.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.0137 (2) ŵ = 1.89 mm1
b = 8.2257 (1) ÅT = 150 K
c = 15.0513 (2) Å0.20 × 0.18 × 0.03 mm
β = 102.952 (1)°
Data collection top
Oxford Diffraction XcaliburPX
diffractometer
2364 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1837 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.945Rint = 0.019
6173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2364 reflectionsΔρmin = 0.26 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.83045 (3)0.13292 (5)0.85602 (3)0.01958 (15)
N10.67962 (11)0.44375 (17)0.84814 (9)0.0179 (3)
N20.51660 (11)0.33602 (17)0.87760 (9)0.0181 (3)
C10.69759 (13)0.2400 (2)0.97172 (11)0.0177 (4)
C20.78691 (14)0.1378 (2)0.96160 (11)0.0175 (4)
C30.84541 (14)0.0447 (2)1.03477 (11)0.0198 (4)
H30.90470.02641.02680.024*
C40.81731 (14)0.0556 (2)1.11916 (11)0.0211 (4)
H40.85640.00891.16870.025*
C50.73182 (14)0.1613 (2)1.13056 (11)0.0211 (4)
H50.71370.17151.18860.025*
C60.67280 (13)0.2522 (2)1.05782 (11)0.0197 (4)
H60.61430.32411.06660.024*
C70.63322 (13)0.3418 (2)0.89419 (11)0.0169 (4)
C80.79782 (14)0.4649 (2)0.85930 (11)0.0188 (4)
C90.87701 (14)0.3391 (2)0.85923 (11)0.0188 (4)
C100.99058 (14)0.3727 (2)0.85997 (11)0.0237 (4)
H101.04300.28610.86040.028*
C111.02769 (15)0.5322 (2)0.86002 (12)0.0290 (5)
H111.10510.55510.85960.035*
C120.95124 (15)0.6578 (2)0.86075 (12)0.0280 (5)
H120.97670.76730.86180.034*
C130.83815 (14)0.6251 (2)0.86002 (11)0.0218 (4)
H130.78670.71280.86000.026*
C140.45010 (14)0.2064 (2)0.90866 (11)0.0200 (4)
H14A0.50320.12370.94210.024*
H14B0.40140.15290.85480.024*
C150.37461 (15)0.2692 (2)0.97035 (12)0.0252 (4)
H15A0.33240.17820.98910.038*
H15B0.32060.34930.93710.038*
H15C0.42240.32031.02450.038*
C160.45022 (14)0.4423 (2)0.80635 (11)0.0188 (4)
H16A0.48650.55100.81120.023*
H16B0.37230.45550.81700.023*
C170.44140 (14)0.3772 (2)0.71044 (11)0.0209 (4)
H17A0.39650.45270.66610.031*
H17B0.40390.27070.70460.031*
H17C0.51810.36620.69880.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0205 (2)0.0207 (3)0.0190 (2)0.00074 (18)0.00747 (17)0.00055 (18)
N10.0153 (7)0.0199 (8)0.0191 (7)0.0019 (6)0.0049 (6)0.0011 (6)
N20.0153 (7)0.0197 (8)0.0196 (8)0.0014 (6)0.0042 (6)0.0016 (6)
C10.0148 (8)0.0195 (9)0.0187 (9)0.0059 (7)0.0034 (7)0.0009 (7)
C20.0163 (9)0.0188 (9)0.0177 (9)0.0058 (7)0.0041 (7)0.0019 (7)
C30.0170 (9)0.0189 (10)0.0232 (9)0.0023 (7)0.0041 (7)0.0009 (8)
C40.0190 (10)0.0234 (10)0.0190 (9)0.0051 (8)0.0003 (7)0.0029 (8)
C50.0192 (9)0.0286 (10)0.0156 (9)0.0079 (8)0.0043 (7)0.0029 (7)
C60.0154 (9)0.0233 (10)0.0202 (9)0.0046 (8)0.0035 (7)0.0041 (7)
C70.0172 (9)0.0175 (9)0.0162 (8)0.0000 (7)0.0043 (7)0.0041 (7)
C80.0177 (9)0.0232 (10)0.0150 (8)0.0038 (7)0.0023 (7)0.0002 (7)
C90.0190 (9)0.0230 (10)0.0144 (8)0.0041 (7)0.0037 (7)0.0013 (7)
C100.0171 (9)0.0309 (11)0.0230 (9)0.0009 (8)0.0044 (7)0.0037 (8)
C110.0164 (9)0.0389 (12)0.0312 (11)0.0071 (9)0.0044 (8)0.0044 (9)
C120.0235 (10)0.0276 (11)0.0316 (11)0.0108 (8)0.0035 (8)0.0012 (9)
C130.0201 (9)0.0207 (10)0.0247 (10)0.0018 (8)0.0055 (8)0.0008 (8)
C140.0177 (9)0.0208 (10)0.0211 (9)0.0025 (8)0.0039 (7)0.0011 (8)
C150.0229 (10)0.0295 (11)0.0250 (9)0.0061 (8)0.0090 (8)0.0001 (8)
C160.0159 (9)0.0172 (9)0.0233 (9)0.0016 (7)0.0046 (7)0.0018 (7)
C170.0182 (9)0.0224 (10)0.0214 (9)0.0024 (8)0.0031 (7)0.0020 (7)
Geometric parameters (Å, º) top
S1—C21.7814 (16)C9—C101.390 (2)
S1—C91.7831 (18)C10—C111.385 (3)
N1—C71.291 (2)C10—H100.9500
N1—C81.403 (2)C11—C121.384 (3)
N2—C71.368 (2)C11—H110.9500
N2—C141.470 (2)C12—C131.383 (2)
N2—C161.472 (2)C12—H120.9500
C1—C61.397 (2)C13—H130.9500
C1—C21.398 (2)C14—C151.526 (2)
C1—C71.502 (2)C14—H14A0.9900
C2—C31.395 (2)C14—H14B0.9900
C3—C41.388 (2)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.385 (2)C15—H15C0.9800
C4—H40.9500C16—C171.521 (2)
C5—C61.383 (2)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—H60.9500C17—H17A0.9800
C8—C131.403 (2)C17—H17B0.9800
C8—C91.406 (2)C17—H17C0.9800
C2—S1—C996.16 (8)C9—C10—H10119.9
C7—N1—C8124.28 (14)C12—C11—C10119.53 (17)
C7—N2—C14125.08 (14)C12—C11—H11120.2
C7—N2—C16118.54 (14)C10—C11—H11120.2
C14—N2—C16114.71 (13)C13—C12—C11120.46 (17)
C6—C1—C2118.19 (15)C13—C12—H12119.8
C6—C1—C7120.08 (15)C11—C12—H12119.8
C2—C1—C7121.64 (14)C12—C13—C8121.32 (17)
C3—C2—C1120.48 (15)C12—C13—H13119.3
C3—C2—S1119.67 (13)C8—C13—H13119.3
C1—C2—S1119.79 (13)N2—C14—C15112.82 (14)
C4—C3—C2120.26 (16)N2—C14—H14A109.0
C4—C3—H3119.9C15—C14—H14A109.0
C2—C3—H3119.9N2—C14—H14B109.0
C5—C4—C3119.52 (16)C15—C14—H14B109.0
C5—C4—H4120.2H14A—C14—H14B107.8
C3—C4—H4120.2C14—C15—H15A109.5
C6—C5—C4120.27 (15)C14—C15—H15B109.5
C6—C5—H5119.9H15A—C15—H15B109.5
C4—C5—H5119.9C14—C15—H15C109.5
C5—C6—C1121.19 (16)H15A—C15—H15C109.5
C5—C6—H6119.4H15B—C15—H15C109.5
C1—C6—H6119.4N2—C16—C17113.16 (14)
N1—C7—N2118.19 (15)N2—C16—H16A108.9
N1—C7—C1124.74 (14)C17—C16—H16A108.9
N2—C7—C1116.77 (14)N2—C16—H16B108.9
N1—C8—C13117.10 (16)C17—C16—H16B108.9
N1—C8—C9125.17 (16)H16A—C16—H16B107.8
C13—C8—C9117.30 (15)C16—C17—H17A109.5
C10—C9—C8121.12 (16)C16—C17—H17B109.5
C10—C9—S1119.41 (14)H17A—C17—H17B109.5
C8—C9—S1119.46 (13)C16—C17—H17C109.5
C11—C10—C9120.26 (17)H17A—C17—H17C109.5
C11—C10—H10119.9H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.952.703.576 (2)154
C4—H4···Cgi0.952.813.5759 (18)139
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2S
Mr282.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.0137 (2), 8.2257 (1), 15.0513 (2)
β (°) 102.952 (1)
V3)1449.54 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.89
Crystal size (mm)0.20 × 0.18 × 0.03
Data collection
DiffractometerOxford Diffraction XcaliburPX
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.722, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
6173, 2364, 1837
Rint0.019
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.05
No. of reflections2364
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.952.703.576 (2)154
C4—H4···Cgi0.952.813.5759 (18)139
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the CRIST (Centro di Cristallografia Strutturale, University of Firenze) where the data collection was performed.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltamura, M., Dapporto, P., Guidi, A., Harmat, N., Jerry, L., Libralesso, E., Paoli, P. & Rossi, P. (2008). New J. Chem. 32, 1617–1627.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltamura, M., Fedi, V., Giannotti, D., Paoli, P. & Rossi, P. (2009). New J. Chem. 33, 2219–2231.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltamura, M., Guidi, A., Jerry, L., Paoli, P. & Rossi, P. (2011). CrystEngComm, 13, 2310–2317.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBertolasi, V., Ferretti, V., Gilli, G. & Borea, P. A. (1982). Cryst. Struct. Commun. 11, 1481–1486.  CAS Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, edited by E. L. Eliel and N. Allinger. New York: John Wiley & Sons.  Google Scholar
First citationEvans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whittle, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235–2246.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFedi, V., Guidi, A. & Altamura, M. (2008). Mini Rev. Med. Chem. 8, 1464–1484.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGanesh, D. M., Yogesh, M. K., Ashok, K., Dharmendra, S., Kisan, M. K. & Suresh, B. M. (2011). Indian J. Chem. 50B, 1196–, 1201.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPatchett, A. A. & Nargund, R. P. (2000). Annu. Rep. Med. Chem. 35, 289–298.  Web of Science CrossRef CAS Google Scholar
First citationPettersson, H., Bulow, A., Ek, F., Jensen, J., Ottesen, L. K., Fejzic, A., Ma, J.-N., Del Tredici, A. L., Currier, E. A., Gardell, L. R., Tabatabaei, A., Craig, D., McFarland, K., Ott, T. R., Piu, F., Burstein, E. S. & Olsson, R. (2009). J. Med. Chem. 52, 1975–1982.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRavikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245–o3248.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiedel, M., Mueller, N., Strassnig, M., Spellman, I., Severus, E. & Moeller, H.-J. (2007). Neuropsyc. Dis. Treat. 3, 219–235.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarawa, E. J., Migler, B. M., Ohnmacht, C. J., Needles, A. L., Gatos, G. C., Mclaren, F. M., Nelson, C. L. & Kirkland, K. M. (2001). J. Med. Chem. 44, 372–389.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3133-o3134
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds