organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[5-(4-Formyl­phen­­oxy)pent­­oxy]benzaldehyde

aDepartment of Chemistry, J. J. Strossmayer University, Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
*Correspondence e-mail: tombalic@kemija.unios.hr

(Received 5 July 2012; accepted 1 August 2012; online 8 August 2012)

In the title compound, C20H19O4, the benzene rings, linked via five methyl­ene C atoms, form a dihedral angle of 77.28 (6)°. In the crystal, mol­ecules are linked via pairs of weak C—H⋯O inter­actions [graph set R22(6)] into dimers that are further connected by additional weak C—H⋯O interactions [graph sets R22(14), R22(26) and R22(6)].

Related literature

For related structures and the synthesis of similar compounds, see: Ali et al. (2010[Ali, Q., Raza Shah, M. & Ng, S. W. (2010). Acta Cryst. E66, o1620.]); Dehno Khalaji et al. (2011[Dehno Khalaji, A., Hafez Ghoran, S., Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2484.]); Han & Zhen (2005[Han, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, o4358-o4359.]); Narasimha Moorthy et al. (2005[Narasimha Moorthy, J., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107-114.]). For the synthesis of Schiff bases and Schiff base complexes, see: Ma & Cao (2011[Ma, Z. & Cao, Y. (2011). Acta Cryst. E67, o1503.]); Ilhan et al. (2007[Ilhan, S., Temel, H., Yilmaz, I. & Kilic, A. (2007). Transition Met. Chem. 32, 344-349.]); Keypour et al. (2008[Keypour, H., Azadbakht, R., Salehzadeh, S., Khanmohammadi, H., Khavasi, H. & Adams, H. (2008). Polyhedron, 27, 1631-1638.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O4

  • Mr = 312.35

  • Monoclinic, C 2/c

  • a = 22.3018 (8) Å

  • b = 4.6829 (16) Å

  • c = 31.6082 (12) Å

  • β = 103.752 (4)°

  • V = 3206.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 190 K

  • 0.51 × 0.37 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.975, Tmax = 1.000

  • 9589 measured reflections

  • 3136 independent reflections

  • 2560 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.06

  • 3136 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.95 2.53 3.3401 (18) 144
C8—H8B⋯O4ii 0.99 2.58 3.4815 (18) 152
C6—H6⋯O2iii 0.95 2.53 3.4487 (16) 163
C12—H12B⋯O1iv 0.99 2.50 3.4360 (18) 157
C14—H14⋯O3v 0.95 2.63 3.4977 (15) 151
C19—H19⋯O1vi 0.95 2.63 3.3698 (19) 135
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The aldehydes represent important class of organic compounds that are used for the condensation reaction with amines to form Schiff bases. Therefore, we have decided to explore the capability of novel dialdehydes, namely 4-[5-(4-formylphenoxy)pentoxy]benzaldehyde, as starting material for the synthesis of some novel Schiff bases. Dialdehydes have recently been investigated as valuble precursors for condensation reactions with amines (Ilhan et al. 2007; Ma & Cao 2011; Dehno Khalaji et al. 2011). Such condensation reactions can lead to the formation of macrocyclic ligands or complex compounds, by methods of template synthesis (Ilhan et al. 2007; Keypour et al. 2008; Ma & Cao 2011).

In the title molecule two formylphenoxy groups are linked by five methylene C atoms and the dihedral angle between benzen ring is 77.28° (Figure 1.). In the crystal, the molecules are linked into dimers via weak C—H···O hydrogen bonding into a staircase-like motif (Figure 2.). A similar motif in dialdehydes was observed by Narasimha Moorthy et al. (2005). Additional stabilization of the crystal structure is accomplished by a number of weak C— H···O hydrogen bonding interactions [graph set: R22(14), R22(26), R22(6)] (Bernstein et al. 1995). O1 and O4 are involved in the formation of two different motifs: dimer formation [graph set R22(6)] and ring formation [graph set R22(26)]; specifically: O1···(C12— H12B, C19— H19) and O4···(C8— H8B, C1— H1) and thus making them bifurcated (Table 1).

Related literature top

For related structures and the synthesis of similar compounds, see: Ali et al. (2010); Dehno Khalaji et al. (2011); Han & Zhen (2005); Narasimha Moorthy et al. (2005). For the synthesis of Schiff bases and Schiff base complexes, see: Ma & Cao (2011); Ilhan et al. (2007); Keypour et al. (2008). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

p-hydroxybenzaldehyde (50 mmol) and K2CO3 (50 mmol) were mixed in 50 ml DMF and the mixture was brought to brisk reflux. 25 mmol of pentane-1,5-dibrom dissolved in 10 ml of DMF were added and the reaction mixture was refluxed for 4 h and stired at room temperature for additional 2 h. After the reaction was completed, 300 ml of demineralized water were added and the resulting percipitate was filtered and washed with plenty water. Single crystals suitable for X-ray diffraction were grown via liquid diffusion of water into 1,4-dioxane solution of title compound.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of title compound viewed down the b axis with dashed lines representing weak C—H···O intermolecular interactions.
4-[5-(4-Formylphenoxy)pentoxy]benzaldehyde top
Crystal data top
C19H20O4F(000) = 1328
Mr = 312.35Dx = 1.294 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4466 reflections
a = 22.3018 (8) Åθ = 4.3–28.4°
b = 4.6829 (16) ŵ = 0.09 mm1
c = 31.6082 (12) ÅT = 190 K
β = 103.752 (4)°Block, colourless
V = 3206.5 (11) Å30.51 × 0.37 × 0.18 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3136 independent reflections
Radiation source: Enhance (Mo) X-ray Source2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.0°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2427
Tmin = 0.975, Tmax = 1.000k = 55
9589 measured reflectionsl = 3837
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.7845P]
where P = (Fo2 + 2Fc2)/3
3136 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H20O4V = 3206.5 (11) Å3
Mr = 312.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.3018 (8) ŵ = 0.09 mm1
b = 4.6829 (16) ÅT = 190 K
c = 31.6082 (12) Å0.51 × 0.37 × 0.18 mm
β = 103.752 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2560 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 1.000Rint = 0.020
9589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
3136 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08040 (5)1.1018 (3)0.38389 (4)0.0547 (3)
O20.18750 (4)0.2636 (2)0.54219 (3)0.0319 (2)
O30.32553 (4)0.2744 (2)0.72116 (3)0.0285 (2)
O40.42945 (5)1.1213 (2)0.87886 (3)0.0477 (3)
C10.06143 (7)1.0219 (3)0.41477 (5)0.0405 (4)
H10.02261.09310.41730.049*
C20.09356 (6)0.8247 (3)0.44835 (4)0.0304 (3)
C30.06566 (6)0.7310 (3)0.48055 (5)0.0338 (3)
H30.02540.79720.48060.041*
C40.09498 (6)0.5429 (3)0.51280 (4)0.0312 (3)
H40.07520.48150.53470.037*
C50.15385 (6)0.4457 (3)0.51250 (4)0.0268 (3)
C60.18249 (6)0.5389 (3)0.48024 (4)0.0330 (3)
H60.22270.47230.48000.040*
C70.15283 (6)0.7264 (3)0.44882 (4)0.0341 (3)
H70.17280.79010.42720.041*
C80.16073 (6)0.1576 (3)0.57633 (4)0.0299 (3)
H8A0.12260.04860.56370.036*
H8B0.15000.31850.59340.036*
C90.20774 (6)0.0332 (3)0.60517 (4)0.0298 (3)
H9A0.22070.18200.58690.036*
H9B0.18800.13060.62620.036*
C100.26483 (6)0.1251 (3)0.63036 (4)0.0283 (3)
H10A0.25170.28990.64560.034*
H10B0.28780.20040.60950.034*
C110.30789 (6)0.0631 (3)0.66370 (4)0.0301 (3)
H11A0.28300.17200.68030.036*
H11B0.32820.20250.64810.036*
C120.35692 (6)0.1019 (3)0.69529 (4)0.0285 (3)
H12A0.38610.03050.71410.034*
H12B0.38030.22460.67940.034*
C130.35974 (6)0.4398 (3)0.75307 (4)0.0247 (3)
C140.32629 (6)0.6109 (3)0.77544 (4)0.0280 (3)
H140.28250.60470.76800.034*
C150.35664 (6)0.7880 (3)0.80814 (4)0.0300 (3)
H150.33360.90490.82310.036*
C160.42127 (6)0.7984 (3)0.81970 (4)0.0301 (3)
C170.45393 (6)0.6280 (3)0.79728 (4)0.0320 (3)
H170.49780.63410.80480.038*
C180.42406 (6)0.4486 (3)0.76408 (4)0.0296 (3)
H180.44710.33300.74900.036*
C190.45393 (7)0.9823 (3)0.85514 (5)0.0378 (4)
H190.49760.99400.86000.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (7)0.0681 (8)0.0458 (7)0.0129 (6)0.0108 (5)0.0243 (6)
O20.0310 (5)0.0398 (6)0.0251 (5)0.0092 (4)0.0069 (4)0.0049 (4)
O30.0253 (5)0.0331 (5)0.0267 (5)0.0014 (4)0.0056 (4)0.0033 (4)
O40.0512 (6)0.0523 (7)0.0426 (6)0.0169 (6)0.0171 (5)0.0155 (5)
C10.0343 (8)0.0446 (9)0.0405 (8)0.0074 (7)0.0045 (7)0.0073 (7)
C20.0290 (7)0.0312 (7)0.0286 (7)0.0024 (6)0.0024 (5)0.0014 (6)
C30.0246 (7)0.0385 (8)0.0370 (8)0.0056 (6)0.0045 (6)0.0006 (6)
C40.0275 (7)0.0363 (8)0.0303 (7)0.0016 (6)0.0080 (6)0.0005 (6)
C50.0279 (6)0.0285 (7)0.0219 (6)0.0029 (6)0.0016 (5)0.0030 (5)
C60.0284 (7)0.0407 (8)0.0305 (7)0.0088 (6)0.0080 (6)0.0011 (6)
C70.0335 (7)0.0411 (8)0.0285 (7)0.0047 (6)0.0090 (6)0.0030 (6)
C80.0301 (7)0.0325 (7)0.0270 (7)0.0021 (6)0.0065 (6)0.0006 (6)
C90.0334 (7)0.0266 (7)0.0278 (7)0.0009 (6)0.0042 (6)0.0005 (5)
C100.0331 (7)0.0256 (7)0.0251 (7)0.0005 (6)0.0048 (6)0.0008 (5)
C110.0362 (7)0.0268 (7)0.0255 (7)0.0010 (6)0.0035 (6)0.0004 (5)
C120.0294 (7)0.0298 (7)0.0267 (7)0.0035 (6)0.0074 (5)0.0015 (6)
C130.0262 (6)0.0257 (7)0.0216 (6)0.0024 (5)0.0043 (5)0.0043 (5)
C140.0241 (6)0.0325 (7)0.0277 (7)0.0011 (6)0.0065 (5)0.0031 (6)
C150.0333 (7)0.0303 (7)0.0283 (7)0.0002 (6)0.0113 (6)0.0006 (6)
C160.0332 (7)0.0299 (7)0.0271 (7)0.0055 (6)0.0069 (6)0.0023 (6)
C170.0255 (7)0.0356 (8)0.0332 (7)0.0039 (6)0.0038 (6)0.0013 (6)
C180.0266 (6)0.0319 (7)0.0306 (7)0.0003 (6)0.0076 (6)0.0007 (6)
C190.0370 (8)0.0405 (8)0.0360 (8)0.0114 (7)0.0092 (7)0.0035 (7)
Geometric parameters (Å, º) top
O1—C11.2118 (18)C9—H9A0.9900
O2—C51.3552 (15)C9—H9B0.9900
O2—C81.4401 (15)C10—C111.5261 (17)
O3—C131.3541 (15)C10—H10A0.9900
O3—C121.4436 (15)C10—H10B0.9900
O4—C191.2160 (18)C11—C121.5069 (18)
C1—C21.4596 (19)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.3847 (19)C12—H12A0.9900
C2—C71.3963 (19)C12—H12B0.9900
C3—C41.3876 (19)C13—C181.3938 (17)
C3—H30.9500C13—C141.3962 (18)
C4—C51.3915 (18)C14—C151.3717 (18)
C4—H40.9500C14—H140.9500
C5—C61.3957 (19)C15—C161.4009 (18)
C6—C71.3719 (19)C15—H150.9500
C6—H60.9500C16—C171.3838 (19)
C7—H70.9500C16—C191.4626 (19)
C8—C91.5081 (18)C17—C181.3850 (19)
C8—H8A0.9900C17—H170.9500
C8—H8B0.9900C18—H180.9500
C9—C101.5241 (18)C19—H190.9500
C5—O2—C8118.40 (10)C11—C10—H10A109.0
C13—O3—C12118.60 (10)C9—C10—H10B109.0
O1—C1—C2125.17 (14)C11—C10—H10B109.0
O1—C1—H1117.4H10A—C10—H10B107.8
C2—C1—H1117.4C12—C11—C10113.55 (11)
C3—C2—C7118.51 (13)C12—C11—H11A108.9
C3—C2—C1120.40 (12)C10—C11—H11A108.9
C7—C2—C1121.08 (13)C12—C11—H11B108.9
C2—C3—C4121.69 (12)C10—C11—H11B108.9
C2—C3—H3119.2H11A—C11—H11B107.7
C4—C3—H3119.2O3—C12—C11106.81 (10)
C3—C4—C5118.91 (13)O3—C12—H12A110.4
C3—C4—H4120.5C11—C12—H12A110.4
C5—C4—H4120.5O3—C12—H12B110.4
O2—C5—C4124.71 (12)C11—C12—H12B110.4
O2—C5—C6115.36 (11)H12A—C12—H12B108.6
C4—C5—C6119.92 (12)O3—C13—C18124.55 (12)
C7—C6—C5120.23 (12)O3—C13—C14115.54 (11)
C7—C6—H6119.9C18—C13—C14119.91 (12)
C5—C6—H6119.9C15—C14—C13120.08 (12)
C6—C7—C2120.73 (13)C15—C14—H14120.0
C6—C7—H7119.6C13—C14—H14120.0
C2—C7—H7119.6C14—C15—C16120.69 (13)
O2—C8—C9107.74 (10)C14—C15—H15119.7
O2—C8—H8A110.2C16—C15—H15119.7
C9—C8—H8A110.2C17—C16—C15118.72 (12)
O2—C8—H8B110.2C17—C16—C19120.32 (12)
C9—C8—H8B110.2C15—C16—C19120.96 (13)
H8A—C8—H8B108.5C16—C17—C18121.38 (12)
C8—C9—C10113.70 (11)C16—C17—H17119.3
C8—C9—H9A108.8C18—C17—H17119.3
C10—C9—H9A108.8C17—C18—C13119.22 (12)
C8—C9—H9B108.8C17—C18—H18120.4
C10—C9—H9B108.8C13—C18—H18120.4
H9A—C9—H9B107.7O4—C19—C16124.93 (14)
C9—C10—C11112.96 (11)O4—C19—H19117.5
C9—C10—H10A109.0C16—C19—H19117.5
O1—C1—C2—C3175.26 (16)C9—C10—C11—C12167.57 (11)
O1—C1—C2—C74.8 (2)C13—O3—C12—C11178.44 (10)
C7—C2—C3—C40.2 (2)C10—C11—C12—O365.94 (14)
C1—C2—C3—C4179.78 (13)C12—O3—C13—C182.50 (17)
C2—C3—C4—C50.3 (2)C12—O3—C13—C14177.13 (11)
C8—O2—C5—C40.99 (19)O3—C13—C14—C15179.49 (11)
C8—O2—C5—C6179.73 (11)C18—C13—C14—C150.16 (19)
C3—C4—C5—O2179.59 (12)C13—C14—C15—C160.43 (19)
C3—C4—C5—C60.3 (2)C14—C15—C16—C170.5 (2)
O2—C5—C6—C7179.25 (12)C14—C15—C16—C19178.70 (13)
C4—C5—C6—C70.1 (2)C15—C16—C17—C180.2 (2)
C5—C6—C7—C20.6 (2)C19—C16—C17—C18178.94 (13)
C3—C2—C7—C60.7 (2)C16—C17—C18—C130.0 (2)
C1—C2—C7—C6179.35 (14)O3—C13—C18—C17179.69 (12)
C5—O2—C8—C9178.73 (11)C14—C13—C18—C170.07 (19)
O2—C8—C9—C1066.89 (14)C17—C16—C19—O4173.80 (14)
C8—C9—C10—C11172.47 (11)C15—C16—C19—O45.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.952.533.3401 (18)144
C8—H8B···O4ii0.992.583.4815 (18)152
C6—H6···O2iii0.952.533.4487 (16)163
C12—H12B···O1iv0.992.503.4360 (18)157
C14—H14···O3v0.952.633.4977 (15)151
C19—H19···O1vi0.952.633.3698 (19)135
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+3/2, z+1; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20O4
Mr312.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)190
a, b, c (Å)22.3018 (8), 4.6829 (16), 31.6082 (12)
β (°) 103.752 (4)
V3)3206.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.37 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.975, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9589, 3136, 2560
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.06
No. of reflections3136
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.952.533.3401 (18)143.8
C8—H8B···O4ii0.992.583.4815 (18)151.5
C6—H6···O2iii0.952.533.4487 (16)162.9
C12—H12B···O1iv0.992.503.4360 (18)157.2
C14—H14···O3v0.952.633.4977 (15)151.3
C19—H19···O1vi0.952.633.3698 (19)135.3
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+3/2, z+1; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y+5/2, z+1/2.
 

Acknowledgements

This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant No. 119–1193079-1084). The authors wish to thank Prof. Dubravka Matković-Čalogović for all the help during data collection and structure refinement.

References

First citationAli, Q., Raza Shah, M. & Ng, S. W. (2010). Acta Cryst. E66, o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDehno Khalaji, A., Hafez Ghoran, S., Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, o4358–o4359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlhan, S., Temel, H., Yilmaz, I. & Kilic, A. (2007). Transition Met. Chem. 32, 344–349.  Web of Science CrossRef CAS Google Scholar
First citationKeypour, H., Azadbakht, R., Salehzadeh, S., Khanmohammadi, H., Khavasi, H. & Adams, H. (2008). Polyhedron, 27, 1631–1638.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z. & Cao, Y. (2011). Acta Cryst. E67, o1503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarasimha Moorthy, J., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107–114.  Web of Science CSD CrossRef Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds