organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1252

4-Chloro-N-phenyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 20 April 2011; accepted 21 April 2011; online 29 April 2011)

In the crystal of the title compound, C12H10ClNO2S, the asymmetric unit contains two independent mol­ecules. The N—C bonds in the C—SO2—NH—C segments have gauche torsions with respect to the S=O bonds. The mol­ecules are twisted at the S atoms with C—SO2—NH—C torsion angles of −53.8 (3) and −63.4 (3)° in the two mol­ecules. The benzene rings are tilted relative to each other by 69.1 (1) and 82.6 (1)°. The dihedral angle between the sulfonyl benzene rings of the two independent mol­ecules is 23.7 (2)°. The crystal structure features inversion-related dimers linked by N—H⋯O hydrogen bonds.

Related literature

For hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]); on the structures of N-(ar­yl)aryl­sulfonamides, see: Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o988.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1017.]); and on the oxidative strengths of N-chloro,N-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClNO2S

  • Mr = 267.72

  • Triclinic, [P \overline 1]

  • a = 10.206 (1) Å

  • b = 10.900 (1) Å

  • c = 13.461 (2) Å

  • α = 68.19 (1)°

  • β = 87.64 (2)°

  • γ = 67.08 (1)°

  • V = 1271.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.40 × 0.36 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.840, Tmax = 0.876

  • 8487 measured reflections

  • 4831 independent reflections

  • 2470 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 0.93

  • 4831 reflections

  • 313 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.17 (2) 3.010 (3) 175 (3)
N2—H2N⋯O3ii 0.89 (2) 1.99 (2) 2.867 (4) 167 (3)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moieties are the constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). As a part of studying the substituent effects on the structures and other aspects of this class of compounds (Gowda, & Kumar, 2003; Gowda et al., 2004; Shakuntala et al., 2011a,b), in the present work, the crystal structure of 4-chloro-N-(phenyl)-benzenesulfonamide (I) has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules. The N—C bonds in the C—SO2—NH—C segments have gauche torsions with respect to the SO bonds. The molecules are twisted at the S atom with the C—SO2—NH—C torsion angles of -53.8 (3)° (molecule 1) and -63.4 (3)° (molecule 2), compared to the values of 57.6 (3)° in 4-chloro-N-(2-chlorophenyl)-benzenesulfonamide (II) (Shakuntala et al., 2011a) and -58.4 (3)° in 4-chloro-N-(3-chlorophenyl)-benzenesulfonamide (III) (Shakuntala et al., 2011b).

The sulfonyl and the anilino benzene rings in the two independent molecules of (I) are tilted relative to each other by 69.1 (1)° in molecule 1, and 82.6 (1)° in molecule 2, compared to the values of 84.7 (1)° in (II) and 77.1 (1)° in (III).

In the crystal structure of the title compound the molecules are linked by N—H···O(S) hydrogen bonding into dimers that are located on centers of inversion (Table 1 and Fig.2).

Related literature top

For hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004); on the structures of N-(aryl)arylsulfonamides, see: Shakuntala et al. (2011a,b); and on the oxidative strengths of N-chloro,N-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with aniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(phenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by recording its infrared and NMR spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry with C—H = 0.93 Å and refined isotropic with Uiso(H) = 1.2 Ueq(C) using a riding model.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-phenylbenzenesulfonamide top
Crystal data top
C12H10ClNO2SZ = 4
Mr = 267.72F(000) = 552
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.206 (1) ÅCell parameters from 2291 reflections
b = 10.900 (1) Åθ = 2.5–28.0°
c = 13.461 (2) ŵ = 0.45 mm1
α = 68.19 (1)°T = 293 K
β = 87.64 (2)°Prism, colourless
γ = 67.08 (1)°0.40 × 0.36 × 0.30 mm
V = 1271.1 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4831 independent reflections
Radiation source: fine-focus sealed tube2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω and ϕ scansθmax = 25.7°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1211
Tmin = 0.840, Tmax = 0.876k = 1312
8487 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0725P)2]
where P = (Fo2 + 2Fc2)/3
4831 reflections(Δ/σ)max = 0.002
313 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C12H10ClNO2Sγ = 67.08 (1)°
Mr = 267.72V = 1271.1 (3) Å3
Triclinic, P1Z = 4
a = 10.206 (1) ÅMo Kα radiation
b = 10.900 (1) ŵ = 0.45 mm1
c = 13.461 (2) ÅT = 293 K
α = 68.19 (1)°0.40 × 0.36 × 0.30 mm
β = 87.64 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4831 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2470 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.876Rint = 0.018
8487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.33 e Å3
4831 reflectionsΔρmin = 0.29 e Å3
313 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38715 (12)0.51207 (13)0.41184 (9)0.1275 (4)
S10.02351 (7)0.72074 (7)0.00095 (6)0.0670 (2)
O10.11578 (19)0.6455 (2)0.02316 (17)0.0804 (6)
O20.0837 (2)0.87352 (19)0.04563 (18)0.0897 (7)
N10.0811 (3)0.6608 (2)0.07990 (19)0.0692 (6)
H1N0.089 (3)0.576 (2)0.068 (2)0.083*
C10.0854 (2)0.6661 (2)0.1192 (2)0.0533 (6)
C20.1321 (3)0.7597 (3)0.1375 (3)0.0733 (8)
H20.10120.85480.08840.088*
C30.2241 (4)0.7129 (4)0.2279 (3)0.0848 (9)
H30.25590.77570.24030.102*
C40.2683 (3)0.5731 (4)0.2993 (2)0.0720 (8)
C50.2225 (3)0.4798 (3)0.2825 (3)0.0741 (8)
H50.25280.38500.33230.089*
C60.1322 (3)0.5259 (3)0.1927 (2)0.0657 (8)
H60.10170.46190.18070.079*
C70.2053 (3)0.6890 (3)0.1087 (2)0.0664 (7)
C80.2085 (4)0.8223 (3)0.1344 (3)0.0948 (10)
H80.12700.89970.13350.114*
C90.3330 (5)0.8399 (5)0.1615 (3)0.1103 (12)
H90.33560.92930.17650.132*
C100.4510 (5)0.7316 (6)0.1669 (3)0.1183 (14)
H100.53400.74590.18660.142*
C110.4471 (4)0.6022 (5)0.1435 (4)0.1243 (14)
H110.52820.52630.14700.149*
C120.3244 (4)0.5801 (4)0.1142 (3)0.0973 (11)
H120.32360.48980.09820.117*
Cl20.97275 (15)0.38078 (14)0.44881 (14)0.1891 (7)
S20.70362 (9)0.06953 (8)0.61492 (8)0.0866 (3)
O30.6774 (3)0.1070 (2)0.5286 (2)0.1169 (9)
O40.7868 (2)0.1795 (2)0.71098 (18)0.0997 (7)
N20.5442 (3)0.0186 (3)0.6386 (2)0.0906 (8)
H2N0.477 (3)0.060 (3)0.583 (2)0.109*
C130.7846 (3)0.0531 (3)0.5660 (2)0.0719 (8)
C140.7295 (4)0.1667 (4)0.4690 (3)0.1014 (11)
H140.65190.17640.42830.122*
C150.7889 (5)0.2658 (5)0.4321 (3)0.1218 (15)
H150.75170.34330.36620.146*
C160.9025 (5)0.2509 (4)0.4917 (4)0.1077 (13)
C170.9598 (4)0.1372 (5)0.5872 (4)0.1026 (11)
H171.03840.12710.62680.123*
C180.9004 (4)0.0369 (3)0.6248 (3)0.0848 (9)
H180.93900.04150.69000.102*
C190.5121 (4)0.0836 (3)0.7156 (3)0.0790 (9)
C200.3836 (5)0.2019 (4)0.6914 (3)0.1075 (12)
H200.32710.24070.62590.129*
C210.3412 (5)0.2617 (4)0.7696 (5)0.1361 (16)
H210.25360.33970.75740.163*
C220.4284 (6)0.2053 (5)0.8630 (4)0.1273 (15)
H220.40020.24550.91440.153*
C230.5557 (5)0.0913 (5)0.8823 (3)0.1047 (11)
H230.61520.05540.94600.126*
C240.5976 (4)0.0284 (4)0.8086 (3)0.0887 (10)
H240.68410.05130.82260.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1162 (8)0.1725 (10)0.1093 (8)0.0534 (7)0.0125 (6)0.0735 (7)
S10.0507 (4)0.0611 (5)0.0912 (6)0.0237 (4)0.0041 (4)0.0300 (4)
O10.0537 (11)0.0874 (13)0.1169 (17)0.0383 (10)0.0124 (10)0.0469 (12)
O20.0689 (12)0.0559 (12)0.1212 (18)0.0118 (10)0.0069 (12)0.0220 (11)
N10.0686 (15)0.0743 (15)0.0798 (17)0.0378 (14)0.0106 (13)0.0364 (14)
C10.0493 (14)0.0480 (14)0.0737 (19)0.0254 (12)0.0187 (13)0.0304 (13)
C20.093 (2)0.0576 (16)0.087 (2)0.0403 (16)0.0212 (19)0.0370 (16)
C30.109 (3)0.091 (2)0.098 (3)0.062 (2)0.023 (2)0.061 (2)
C40.0646 (18)0.095 (2)0.074 (2)0.0345 (17)0.0139 (15)0.0481 (18)
C50.079 (2)0.0653 (18)0.079 (2)0.0329 (16)0.0075 (17)0.0248 (16)
C60.0645 (17)0.0594 (17)0.087 (2)0.0356 (15)0.0076 (16)0.0315 (16)
C70.072 (2)0.079 (2)0.0570 (19)0.0434 (18)0.0098 (14)0.0228 (15)
C80.102 (3)0.083 (2)0.107 (3)0.052 (2)0.029 (2)0.0298 (19)
C90.125 (3)0.113 (3)0.119 (3)0.085 (3)0.041 (3)0.037 (2)
C100.105 (3)0.142 (4)0.128 (4)0.079 (3)0.045 (3)0.046 (3)
C110.096 (3)0.128 (3)0.154 (4)0.051 (3)0.058 (3)0.059 (3)
C120.092 (3)0.097 (3)0.122 (3)0.052 (2)0.046 (2)0.050 (2)
Cl20.1382 (10)0.1327 (10)0.2808 (18)0.0760 (9)0.0996 (11)0.0487 (10)
S20.0843 (6)0.0634 (5)0.1069 (7)0.0150 (4)0.0088 (5)0.0407 (5)
O30.1039 (17)0.1019 (16)0.150 (2)0.0112 (14)0.0269 (16)0.0819 (16)
O40.1068 (17)0.0676 (13)0.1103 (18)0.0200 (12)0.0262 (14)0.0312 (13)
N20.0723 (18)0.0866 (18)0.113 (2)0.0273 (15)0.0021 (15)0.0417 (17)
C130.0665 (19)0.0609 (18)0.077 (2)0.0088 (15)0.0022 (17)0.0320 (17)
C140.096 (3)0.083 (2)0.099 (3)0.017 (2)0.006 (2)0.025 (2)
C150.113 (3)0.092 (3)0.105 (3)0.014 (3)0.026 (3)0.010 (2)
C160.087 (3)0.088 (3)0.137 (4)0.031 (2)0.053 (3)0.040 (3)
C170.075 (2)0.115 (3)0.128 (4)0.041 (2)0.023 (2)0.055 (3)
C180.077 (2)0.076 (2)0.090 (3)0.0201 (19)0.0030 (19)0.0307 (18)
C190.083 (2)0.066 (2)0.101 (3)0.0424 (19)0.030 (2)0.0350 (19)
C200.117 (3)0.075 (2)0.101 (3)0.022 (2)0.012 (2)0.020 (2)
C210.147 (4)0.083 (3)0.128 (4)0.007 (3)0.022 (4)0.029 (3)
C220.162 (4)0.094 (3)0.110 (4)0.033 (3)0.043 (3)0.045 (3)
C230.112 (3)0.113 (3)0.098 (3)0.050 (3)0.033 (2)0.046 (2)
C240.081 (2)0.092 (2)0.104 (3)0.044 (2)0.015 (2)0.039 (2)
Geometric parameters (Å, º) top
Cl1—C41.727 (3)Cl2—C161.732 (4)
S1—O21.4152 (19)S2—O41.406 (2)
S1—O11.4301 (18)S2—O31.432 (2)
S1—N11.625 (3)S2—N21.625 (3)
S1—C11.746 (3)S2—C131.750 (3)
N1—C71.424 (3)N2—C191.422 (4)
N1—H1N0.844 (16)N2—H2N0.889 (17)
C1—C61.375 (3)C13—C181.366 (4)
C1—C21.380 (3)C13—C141.368 (4)
C2—C31.371 (4)C14—C151.367 (5)
C2—H20.9300C14—H140.9300
C3—C41.365 (4)C15—C161.359 (5)
C3—H30.9300C15—H150.9300
C4—C51.362 (4)C16—C171.358 (5)
C5—C61.358 (4)C17—C181.378 (5)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—H180.9300
C7—C121.351 (4)C19—C241.346 (4)
C7—C81.376 (4)C19—C201.376 (5)
C8—C91.373 (4)C20—C211.405 (6)
C8—H80.9300C20—H200.9300
C9—C101.341 (5)C21—C221.357 (6)
C9—H90.9300C21—H210.9300
C10—C111.343 (5)C22—C231.353 (5)
C10—H100.9300C22—H220.9300
C11—C121.380 (5)C23—C241.371 (5)
C11—H110.9300C23—H230.9300
C12—H120.9300C24—H240.9300
O2—S1—O1119.51 (12)O4—S2—O3119.25 (14)
O2—S1—N1108.62 (13)O4—S2—N2110.50 (16)
O1—S1—N1104.49 (12)O3—S2—N2103.86 (15)
O2—S1—C1107.78 (12)O4—S2—C13107.49 (15)
O1—S1—C1109.11 (12)O3—S2—C13108.16 (16)
N1—S1—C1106.65 (12)N2—S2—C13106.99 (13)
C7—N1—S1123.44 (19)C19—N2—S2125.8 (2)
C7—N1—H1N116 (2)C19—N2—H2N115 (2)
S1—N1—H1N109 (2)S2—N2—H2N114 (2)
C6—C1—C2119.1 (3)C18—C13—C14120.2 (3)
C6—C1—S1119.92 (19)C18—C13—S2120.4 (2)
C2—C1—S1120.9 (2)C14—C13—S2119.4 (3)
C3—C2—C1120.2 (3)C15—C14—C13119.7 (4)
C3—C2—H2119.9C15—C14—H14120.1
C1—C2—H2119.9C13—C14—H14120.1
C4—C3—C2119.2 (3)C16—C15—C14119.9 (4)
C4—C3—H3120.4C16—C15—H15120.0
C2—C3—H3120.4C14—C15—H15120.0
C5—C4—C3121.2 (3)C17—C16—C15120.9 (4)
C5—C4—Cl1119.3 (3)C17—C16—Cl2118.9 (4)
C3—C4—Cl1119.5 (2)C15—C16—Cl2120.2 (4)
C6—C5—C4119.6 (3)C16—C17—C18119.5 (4)
C6—C5—H5120.2C16—C17—H17120.3
C4—C5—H5120.2C18—C17—H17120.3
C5—C6—C1120.7 (2)C13—C18—C17119.8 (3)
C5—C6—H6119.7C13—C18—H18120.1
C1—C6—H6119.7C17—C18—H18120.1
C12—C7—C8118.6 (3)C24—C19—C20122.3 (3)
C12—C7—N1118.0 (3)C24—C19—N2122.2 (3)
C8—C7—N1123.3 (3)C20—C19—N2115.4 (4)
C9—C8—C7119.4 (3)C19—C20—C21117.4 (4)
C9—C8—H8120.3C19—C20—H20121.3
C7—C8—H8120.3C21—C20—H20121.3
C10—C9—C8121.8 (4)C22—C21—C20119.8 (4)
C10—C9—H9119.1C22—C21—H21120.1
C8—C9—H9119.1C20—C21—H21120.1
C9—C10—C11118.7 (4)C23—C22—C21120.9 (4)
C9—C10—H10120.6C23—C22—H22119.5
C11—C10—H10120.6C21—C22—H22119.5
C10—C11—C12121.0 (4)C22—C23—C24120.4 (4)
C10—C11—H11119.5C22—C23—H23119.8
C12—C11—H11119.5C24—C23—H23119.8
C7—C12—C11120.4 (3)C19—C24—C23119.2 (4)
C7—C12—H12119.8C19—C24—H24120.4
C11—C12—H12119.8C23—C24—H24120.4
O2—S1—N1—C762.1 (2)O4—S2—N2—C1953.3 (3)
O1—S1—N1—C7169.3 (2)O3—S2—N2—C19177.7 (3)
C1—S1—N1—C753.8 (2)C13—S2—N2—C1963.4 (3)
O2—S1—C1—C6165.8 (2)O4—S2—C13—C185.0 (3)
O1—S1—C1—C634.6 (2)O3—S2—C13—C18135.0 (2)
N1—S1—C1—C677.7 (2)N2—S2—C13—C18113.7 (3)
O2—S1—C1—C217.9 (3)O4—S2—C13—C14176.0 (3)
O1—S1—C1—C2149.1 (2)O3—S2—C13—C1446.0 (3)
N1—S1—C1—C298.6 (2)N2—S2—C13—C1465.3 (3)
C6—C1—C2—C30.0 (4)C18—C13—C14—C151.4 (5)
S1—C1—C2—C3176.3 (2)S2—C13—C14—C15177.6 (3)
C1—C2—C3—C40.1 (5)C13—C14—C15—C160.1 (6)
C2—C3—C4—C50.2 (5)C14—C15—C16—C171.1 (6)
C2—C3—C4—Cl1178.6 (2)C14—C15—C16—Cl2176.7 (3)
C3—C4—C5—C60.6 (5)C15—C16—C17—C181.1 (6)
Cl1—C4—C5—C6178.2 (2)Cl2—C16—C17—C18176.8 (3)
C4—C5—C6—C10.7 (4)C14—C13—C18—C171.4 (5)
C2—C1—C6—C50.4 (4)S2—C13—C18—C17177.6 (2)
S1—C1—C6—C5176.8 (2)C16—C17—C18—C130.2 (5)
S1—N1—C7—C12139.2 (3)S2—N2—C19—C2432.0 (4)
S1—N1—C7—C843.1 (4)S2—N2—C19—C20151.6 (3)
C12—C7—C8—C92.1 (5)C24—C19—C20—C212.1 (5)
N1—C7—C8—C9179.9 (3)N2—C19—C20—C21174.3 (3)
C7—C8—C9—C102.2 (6)C19—C20—C21—C222.1 (6)
C8—C9—C10—C111.1 (7)C20—C21—C22—C230.4 (7)
C9—C10—C11—C120.0 (7)C21—C22—C23—C241.5 (6)
C8—C7—C12—C111.0 (5)C20—C19—C24—C230.3 (5)
N1—C7—C12—C11178.9 (3)N2—C19—C24—C23175.9 (3)
C10—C11—C12—C70.0 (6)C22—C23—C24—C191.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.17 (2)3.010 (3)175 (3)
N2—H2N···O3ii0.89 (2)1.99 (2)2.867 (4)167 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10ClNO2S
Mr267.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.206 (1), 10.900 (1), 13.461 (2)
α, β, γ (°)68.19 (1), 87.64 (2), 67.08 (1)
V3)1271.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.40 × 0.36 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.840, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
8487, 4831, 2470
Rint0.018
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 0.93
No. of reflections4831
No. of parameters313
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.844 (16)2.168 (17)3.010 (3)175 (3)
N2—H2N···O3ii0.889 (17)1.99 (2)2.867 (4)167 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o988.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1252
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds