metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[(Z)-4-(2,6-diiso­propyl­anilino)pent-3-en-2-one]di­methyl­tin(IV)

aUniversitatea Babeş-Bolyai, Facultatea de Chimie şi Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
*Correspondence e-mail: crat@chem.ubbcluj.ro

(Received 16 December 2009; accepted 30 December 2009; online 9 January 2010)

In the crystal structure of the title compound, [Sn(CH3)2Cl2(C17H25NO)], the Sn atom adopts a trigonal-bipyramidal geometry with the O and one Cl atom in axial positions. A weak intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure displays weak inter­molecular C—H⋯Cl inter­actions.

Related literature

For dichloridodiorganotin(IV) complexes, see: Cunningham et al. (2004[Cunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984-994.]); Curnow et al. (2006[Curnow, O. J., Fern, G. M. & Pipal, R. J. (2006). Arkivoc, 7, 43-47.]); Ianelli et al. (1993[Ianelli, S., Orcesi, M., Pelizzi, C., Pelizzi, G. & Predieri, G. (1993). J. Organomet. Chem. 451, 59-65.]); Mahadevan et al. (1982[Mahadevan, C., Seshasayee, M. & Kothiwal, A. S. (1982). Cryst. Struct. Commun. 11, 1725-1730.]); Ng (1996[Ng, S. W. (1996). Z. Kristallogr. 211, 916-918.]); Papadaki et al. (2008[Papadaki, H., Christofides, A., Bakalbassis, E. G. & Jeffery, J. C. (2008). J. Organomet. Chem. 693, 1203-1214.]); Tian et al. (2006[Tian, L., Shang, Z., Zheng, X., Sun, Y., Yu, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74-80.]); Valle et al. (1982[Valle, G., Calogero, S. & Russo, U. (1982). J. Organomet. Chem. 228, C79-C82.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2Cl2(C17H25NO)]

  • Mr = 479.04

  • Triclinic, [P \overline 1]

  • a = 8.504 (4) Å

  • b = 10.212 (4) Å

  • c = 14.507 (6) Å

  • α = 71.070 (7)°

  • β = 83.300 (8)°

  • γ = 76.984 (7)°

  • V = 1159.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 297 K

  • 0.36 × 0.35 × 0.33 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.626, Tmax = 0.645

  • 8415 measured reflections

  • 4044 independent reflections

  • 3433 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.104

  • S = 1.06

  • 4044 reflections

  • 229 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

C18—Sn1 2.095 (5)
C19—Sn1 2.105 (5)
Cl1—Sn1 2.3478 (16)
Cl2—Sn1 2.4644 (17)
O1—Sn1 2.375 (3)
C18—Sn1—C19 142.9 (3)
Cl1—Sn1—O1 81.74 (9)
C18—Sn1—Cl2 94.04 (15)
C19—Sn1—Cl2 94.78 (18)
Cl1—Sn1—Cl2 95.82 (6)
O1—Sn1—Cl2 176.81 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.83 (3) 2.03 (4) 2.662 (5) 133 (4)
C8i—H8i⋯Cl1 0.93 2.91 3.695 (4) 143
C17ii—H17Bii⋯Cl2 0.96 2.89 3.783 (6) 155
C19iii—H19Ciii⋯Cl2 0.96 2.94 3.700 (6) 137
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y-1, z; (iii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our attempts to prepare compounds of type Me2R'2Sn, where R' = ketinimate ligand, starting from RLi and Me2SnCl2, accidental hydrolysis of the lithium derivative lead to the formation of the title complex. A rational preparation of the complex was acomplished later starting from R'H and Me2SnCl2.

In the structure of the title compound the geometry around the tin can be described as distorted trigonal bipyramidal, with the Cl(2) and O(1) atoms occupying the axial positions (Fig. 1). The equatorial plane is formed by the two methyl carbon atoms C(18) and C(19) and the Cl(1) atom.

A weak intramolecular hydrogen bond exist between the hydrogen atom bonded to nitrogen and the oxygen atom (Table 2). There are additional weak C–H···Cl interactions (Table 2).

Related literature top

For dichloridodiorganotin(IV) complexes, see: Cunningham et al. (2004); Curnow et al. (2006); Ianelli et al. (1993); Mahadevan et al. (1982); Ng (1996); Papadaki et al. (2008); Tian et al. (2006); Valle et al. (1982).

Experimental top

A solution of Me2SnCl2 in Et2O (0.84 g, 3.82 mmol) was added to a stirred solution of (Z)-4-[(2,6-diisopropylphenyl)amino]pent-3-en-2-one (1 g, 3.85 mmol) in 50 ml Et2O resulting in a clear red-brown solution. The reaction mixture was stirred for 24 h and than the solvent was removed under reduced presure to give the title compound as a white-yellow powder. Crystals were obtained by slow diffusion of hexane into a dichloromethane solution of the title compound. Yield: 0.6 g (33%). mp = 124–125 °C.

1H NMR (CDCl3, 300 MHz): δ 1.15 [d, 6HA, –CH(CH3)2, 3J(H,H) = 6.8 Hz], 1.19 [s, 6H, SnCH3, 2J(117Sn,H) = 75.3, 2J(119Sn,H) = 78.7 Hz], 1.20 [d, 6HB, –CH(CH3)2, 3J(H,H) = 6.9 Hz], 1.67 [s, 3H, CH3C(N)], 2.11 [s, 3H, CH3C(O)], 2.92 [sept, 2H, –CH(CH3)2, 3J(H,H) = 6.9 Hz], 5.22 [s, 1H, –CH-], 7.18 [d, 2H, H8,10, 3J(H,H) = 7.7 Hz], 7.32 [t, 1H, H9, 3J(H,H) = 7.7 Hz], 11.83 [s, 1H, –NH-].

13C NMR (CDCl3, 75.5 MHz): δ 10.73 [s, SnCH3, 1J(117Sn,C) = 587.1, 1J(119Sn,C) = 614.4 Hz], 19.49 [s, CH3C(N)], 22.57 [s, –CH(CH3)2, (B)], 24.45 [s, –CH(CH3)2, (A)], 28.01 [s, -CH(CH3)2], 28.43 [s, CH3C(O)], 96.31 [s, -CH–], 123.68 [s, C8,10], 128.81 [s, C9], 132.27 [s, C6], 145.53 [s, C7,11], 166.74 [s, CH3C(N)], 193.59 [s, CH3C(O)].

119Sn NMR (CDCl3, 111.9 MHz): δ -1.33.

Refinement top

The C-H H atoms were placed in calculated positions (methyl H atoms allowed to rotate but not to tip) with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms). The N-H H atom was located in a difference map and its position was refined with istotropic displacement parameters with a restrained N–H distance of 0.86 Å.

Structure description top

···

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at 30% probability level. Hydrogen atoms, except that bonded to nitrogen, were omitted for clarity. Intramolecular hydrogen bonding is shown as a dashed line.
Dichlorido[(Z)-4-(2,6-diisopropylanilino)pent-3-en-2-one]dimethyltin(IV) top
Crystal data top
[Sn(CH3)2Cl2(C17H25NO)]Z = 2
Mr = 479.04F(000) = 488
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Melting point = 397–398 K
a = 8.504 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.212 (4) ÅCell parameters from 2254 reflections
c = 14.507 (6) Åθ = 2.2–20.4°
α = 71.070 (7)°µ = 1.34 mm1
β = 83.300 (8)°T = 297 K
γ = 76.984 (7)°Block, colourless
V = 1159.8 (9) Å30.36 × 0.35 × 0.33 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4044 independent reflections
Radiation source: fine-focus sealed tube3433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 25°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.626, Tmax = 0.645k = 1212
8415 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.045P)2 + 0.2662P]
where P = (Fo2 + 2Fc2)/3
4044 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
[Sn(CH3)2Cl2(C17H25NO)]γ = 76.984 (7)°
Mr = 479.04V = 1159.8 (9) Å3
Triclinic, P1Z = 2
a = 8.504 (4) ÅMo Kα radiation
b = 10.212 (4) ŵ = 1.34 mm1
c = 14.507 (6) ÅT = 297 K
α = 71.070 (7)°0.36 × 0.35 × 0.33 mm
β = 83.300 (8)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4044 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3433 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.645Rint = 0.028
8415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.57 e Å3
4044 reflectionsΔρmin = 0.41 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6984 (5)0.9135 (5)0.5930 (3)0.0605 (11)
C20.6594 (5)1.0064 (4)0.6472 (3)0.0541 (10)
H20.69081.09310.62090.065*
C30.5787 (5)0.9812 (4)0.7360 (3)0.0494 (10)
C40.7852 (8)0.9572 (6)0.4950 (4)0.101 (2)
H4A0.87390.88250.48990.152*
H4B0.82521.04080.48790.152*
H4C0.71190.97620.44460.152*
C50.5455 (7)1.0906 (5)0.7874 (4)0.0781 (15)
H5A0.43091.12090.79590.117*
H5B0.5921.170.74940.117*
H5C0.59221.05110.85010.117*
C60.4417 (5)0.8299 (4)0.8734 (3)0.0486 (10)
C70.5269 (5)0.7605 (4)0.9578 (3)0.0527 (10)
C80.4401 (6)0.7330 (5)1.0457 (3)0.0603 (11)
H80.4940.6851.1030.072*
C90.2759 (6)0.7751 (5)1.0501 (3)0.0641 (12)
H90.21950.75691.11030.077*
C100.1943 (5)0.8433 (5)0.9674 (3)0.0648 (12)
H100.08260.8720.97160.078*
C110.2755 (5)0.8706 (5)0.8765 (3)0.0565 (11)
C120.7095 (5)0.7131 (5)0.9532 (4)0.0650 (12)
H120.75070.7740.89230.078*
C130.7902 (7)0.7273 (8)1.0355 (5)0.109 (2)
H13A0.76110.66151.09580.163*
H13B0.75560.82181.03920.163*
H13C0.90530.70781.02390.163*
C140.7528 (8)0.5650 (7)0.9482 (6)0.120 (2)
H14A0.72340.50131.00950.18*
H14B0.8670.54080.93480.18*
H14C0.69570.5580.89720.18*
C150.1811 (6)0.9386 (6)0.7843 (4)0.0727 (14)
H150.25490.9790.73090.087*
C160.1201 (8)0.8259 (8)0.7587 (4)0.112 (2)
H16A0.20960.7520.75320.169*
H16B0.0680.86750.69770.169*
H16C0.04440.78740.8090.169*
C170.0427 (8)1.0556 (8)0.7938 (5)0.132 (3)
H17A0.03471.01720.8430.198*
H17B0.00811.10.73260.198*
H17C0.08251.12420.81190.198*
C180.6696 (7)0.6652 (5)0.4531 (3)0.0799 (15)
H18A0.59090.74960.45150.12*
H18B0.62020.60010.43720.12*
H18C0.75680.68860.40650.12*
C190.9525 (7)0.5569 (7)0.6771 (4)0.1025 (19)
H19A0.99780.45920.70770.154*
H19B0.91380.60230.72620.154*
H19C1.03390.60220.63560.154*
Cl10.5420 (2)0.51095 (17)0.70215 (11)0.1040 (5)
Cl20.8568 (2)0.33755 (15)0.57138 (13)0.1102 (6)
H10.547 (5)0.801 (3)0.752 (3)0.055 (13)*
N10.5289 (4)0.8616 (4)0.7806 (3)0.0513 (8)
O10.6627 (4)0.7925 (3)0.6232 (2)0.0761 (10)
Sn10.75936 (4)0.57249 (3)0.59303 (2)0.06287 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.064 (3)0.058 (3)0.056 (3)0.011 (2)0.010 (2)0.019 (2)
C20.060 (3)0.047 (2)0.056 (3)0.018 (2)0.003 (2)0.014 (2)
C30.048 (2)0.046 (2)0.057 (3)0.0075 (19)0.0061 (19)0.019 (2)
C40.131 (5)0.096 (4)0.077 (4)0.048 (4)0.042 (3)0.027 (3)
C50.111 (4)0.056 (3)0.078 (3)0.024 (3)0.013 (3)0.036 (3)
C60.052 (2)0.046 (2)0.053 (2)0.0107 (19)0.004 (2)0.024 (2)
C70.056 (3)0.050 (2)0.057 (3)0.011 (2)0.002 (2)0.023 (2)
C80.072 (3)0.059 (3)0.050 (3)0.015 (2)0.001 (2)0.016 (2)
C90.073 (3)0.069 (3)0.052 (3)0.019 (3)0.017 (2)0.024 (2)
C100.052 (3)0.074 (3)0.067 (3)0.014 (2)0.004 (2)0.023 (3)
C110.060 (3)0.059 (3)0.054 (3)0.014 (2)0.002 (2)0.022 (2)
C120.055 (3)0.065 (3)0.074 (3)0.008 (2)0.004 (2)0.022 (2)
C130.069 (4)0.152 (6)0.125 (5)0.024 (4)0.020 (4)0.062 (5)
C140.087 (4)0.093 (5)0.188 (7)0.020 (4)0.030 (4)0.070 (5)
C150.055 (3)0.094 (4)0.064 (3)0.012 (3)0.008 (2)0.019 (3)
C160.117 (5)0.156 (7)0.081 (4)0.052 (5)0.023 (4)0.035 (4)
C170.103 (5)0.141 (7)0.118 (6)0.040 (5)0.030 (4)0.028 (5)
C180.100 (4)0.074 (3)0.058 (3)0.002 (3)0.021 (3)0.017 (3)
C190.097 (4)0.121 (5)0.101 (5)0.013 (4)0.029 (4)0.048 (4)
Cl10.1360 (13)0.1014 (11)0.0782 (9)0.0581 (10)0.0188 (9)0.0174 (8)
Cl20.1549 (15)0.0523 (8)0.1206 (13)0.0019 (9)0.0277 (11)0.0282 (8)
N10.058 (2)0.046 (2)0.055 (2)0.0101 (17)0.0052 (17)0.0250 (18)
O10.106 (3)0.061 (2)0.068 (2)0.0291 (19)0.0276 (19)0.0314 (17)
Sn10.0865 (3)0.0497 (2)0.0515 (2)0.01062 (16)0.00813 (16)0.01462 (15)
Geometric parameters (Å, º) top
C1—O11.264 (5)C13—H13A0.96
C1—C21.382 (6)C13—H13B0.96
C1—C41.502 (6)C13—H13C0.96
C2—C31.362 (5)C14—H14A0.96
C2—H20.93C14—H14B0.96
C3—N11.322 (5)C14—H14C0.96
C3—C51.494 (6)C15—C171.506 (8)
C4—H4A0.96C15—C161.524 (8)
C4—H4B0.96C15—H150.98
C4—H4C0.96C16—H16A0.96
C5—H5A0.96C16—H16B0.96
C5—H5B0.96C16—H16C0.96
C5—H5C0.96C17—H17A0.96
C6—C111.381 (6)C17—H17B0.96
C6—C71.392 (6)C17—H17C0.96
C6—N11.435 (5)C18—Sn12.095 (5)
C7—C81.376 (6)C18—H18A0.96
C7—C121.519 (6)C18—H18B0.96
C8—C91.366 (6)C18—H18C0.96
C8—H80.93C19—Sn12.105 (5)
C9—C101.356 (6)C19—H19A0.96
C9—H90.93C19—H19B0.96
C10—C111.389 (6)C19—H19C0.96
C10—H100.93Cl1—Sn12.3478 (16)
C11—C151.520 (6)Cl2—Sn12.4644 (17)
C12—C141.497 (7)N1—H10.833 (18)
C12—C131.505 (7)O1—Sn12.375 (3)
C12—H120.98
O1—C1—C2121.9 (4)C12—C14—H14A109.5
O1—C1—C4118.8 (4)C12—C14—H14B109.5
C2—C1—C4119.3 (4)H14A—C14—H14B109.5
C3—C2—C1125.3 (4)C12—C14—H14C109.5
C3—C2—H2117.3H14A—C14—H14C109.5
C1—C2—H2117.3H14B—C14—H14C109.5
N1—C3—C2122.7 (4)C17—C15—C11112.4 (5)
N1—C3—C5117.4 (4)C17—C15—C16110.5 (5)
C2—C3—C5119.9 (4)C11—C15—C16109.5 (4)
C1—C4—H4A109.5C17—C15—H15108.1
C1—C4—H4B109.5C11—C15—H15108.1
H4A—C4—H4B109.5C16—C15—H15108.1
C1—C4—H4C109.5C15—C16—H16A109.5
H4A—C4—H4C109.5C15—C16—H16B109.5
H4B—C4—H4C109.5H16A—C16—H16B109.5
C3—C5—H5A109.5C15—C16—H16C109.5
C3—C5—H5B109.5H16A—C16—H16C109.5
H5A—C5—H5B109.5H16B—C16—H16C109.5
C3—C5—H5C109.5C15—C17—H17A109.5
H5A—C5—H5C109.5C15—C17—H17B109.5
H5B—C5—H5C109.5H17A—C17—H17B109.5
C11—C6—C7121.8 (4)C15—C17—H17C109.5
C11—C6—N1118.9 (4)H17A—C17—H17C109.5
C7—C6—N1119.2 (4)H17B—C17—H17C109.5
C8—C7—C6117.9 (4)Sn1—C18—H18A109.5
C8—C7—C12120.8 (4)Sn1—C18—H18B109.5
C6—C7—C12121.3 (4)H18A—C18—H18B109.5
C9—C8—C7121.0 (4)Sn1—C18—H18C109.5
C9—C8—H8119.5H18A—C18—H18C109.5
C7—C8—H8119.5H18B—C18—H18C109.5
C10—C9—C8120.6 (4)Sn1—C19—H19A109.5
C10—C9—H9119.7Sn1—C19—H19B109.5
C8—C9—H9119.7H19A—C19—H19B109.5
C9—C10—C11120.8 (4)Sn1—C19—H19C109.5
C9—C10—H10119.6H19A—C19—H19C109.5
C11—C10—H10119.6H19B—C19—H19C109.5
C6—C11—C10117.9 (4)C3—N1—C6125.1 (3)
C6—C11—C15122.0 (4)C3—N1—H1117 (3)
C10—C11—C15120.1 (4)C6—N1—H1117 (3)
C14—C12—C13111.3 (5)C1—O1—Sn1136.4 (3)
C14—C12—C7109.7 (4)C18—Sn1—C19142.9 (3)
C13—C12—C7113.5 (4)C18—Sn1—Cl1107.61 (16)
C14—C12—H12107.3C19—Sn1—Cl1107.20 (18)
C13—C12—H12107.3C18—Sn1—O188.67 (17)
C7—C12—H12107.3C19—Sn1—O184.0 (2)
C12—C13—H13A109.5Cl1—Sn1—O181.74 (9)
C12—C13—H13B109.5C18—Sn1—Cl294.04 (15)
H13A—C13—H13B109.5C19—Sn1—Cl294.78 (18)
C12—C13—H13C109.5Cl1—Sn1—Cl295.82 (6)
H13A—C13—H13C109.5O1—Sn1—Cl2176.81 (8)
H13B—C13—H13C109.5
O1—C1—C2—C31.0 (7)C8—C7—C12—C1487.0 (6)
C4—C1—C2—C3178.8 (5)C6—C7—C12—C1491.4 (5)
C1—C2—C3—N10.4 (7)C8—C7—C12—C1338.2 (6)
C1—C2—C3—C5179.4 (4)C6—C7—C12—C13143.3 (5)
C11—C6—C7—C80.0 (6)C6—C11—C15—C17140.8 (5)
N1—C6—C7—C8179.3 (4)C10—C11—C15—C1741.3 (7)
C11—C6—C7—C12178.5 (4)C6—C11—C15—C1696.0 (5)
N1—C6—C7—C122.2 (6)C10—C11—C15—C1681.8 (6)
C6—C7—C8—C91.3 (6)C2—C3—N1—C6179.2 (4)
C12—C7—C8—C9179.8 (4)C5—C3—N1—C61.7 (6)
C7—C8—C9—C101.0 (7)C11—C6—N1—C386.6 (5)
C8—C9—C10—C110.6 (7)C7—C6—N1—C392.8 (5)
C7—C6—C11—C101.6 (6)C2—C1—O1—Sn1156.7 (3)
N1—C6—C11—C10177.7 (4)C4—C1—O1—Sn123.6 (7)
C7—C6—C11—C15176.3 (4)C1—O1—Sn1—C1868.9 (5)
N1—C6—C11—C154.4 (6)C1—O1—Sn1—C1974.7 (5)
C9—C10—C11—C61.8 (7)C1—O1—Sn1—Cl1176.9 (5)
C9—C10—C11—C15176.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.83 (3)2.03 (4)2.662 (5)133 (4)
C8i—H8i···Cl10.932.913.695 (4)143
C17ii—H17Bii···Cl20.962.893.783 (6)155
C19iii—H19Ciii···Cl20.962.943.700 (6)137
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2Cl2(C17H25NO)]
Mr479.04
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.504 (4), 10.212 (4), 14.507 (6)
α, β, γ (°)71.070 (7), 83.300 (8), 76.984 (7)
V3)1159.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.36 × 0.35 × 0.33
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.626, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
8415, 4044, 3433
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.104, 1.06
No. of reflections4044
No. of parameters229
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.41

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
C1—O11.264 (5)Cl1—Sn12.3478 (16)
C18—Sn12.095 (5)Cl2—Sn12.4644 (17)
C19—Sn12.105 (5)O1—Sn12.375 (3)
C18—Sn1—C19142.9 (3)C19—Sn1—Cl294.78 (18)
Cl1—Sn1—O181.74 (9)Cl1—Sn1—Cl295.82 (6)
C18—Sn1—Cl294.04 (15)O1—Sn1—Cl2176.81 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.83 (3)2.03 (4)2.662 (5)133 (4)
C8i—H8i···Cl10.932.913.695 (4)143
C17ii—H17Bii···Cl20.962.893.783 (6)155
C19iii—H19Ciii···Cl20.962.943.700 (6)137
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the National University Research Council (CNCSIS) of Romania (research project TD-340/2007).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984–994.  Web of Science CSD CrossRef CAS Google Scholar
First citationCurnow, O. J., Fern, G. M. & Pipal, R. J. (2006). Arkivoc, 7, 43–47.  Google Scholar
First citationIanelli, S., Orcesi, M., Pelizzi, C., Pelizzi, G. & Predieri, G. (1993). J. Organomet. Chem. 451, 59–65.  CSD CrossRef CAS Web of Science Google Scholar
First citationMahadevan, C., Seshasayee, M. & Kothiwal, A. S. (1982). Cryst. Struct. Commun. 11, 1725–1730.  CAS Google Scholar
First citationNg, S. W. (1996). Z. Kristallogr. 211, 916–918.  CAS Google Scholar
First citationPapadaki, H., Christofides, A., Bakalbassis, E. G. & Jeffery, J. C. (2008). J. Organomet. Chem. 693, 1203–1214.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Shang, Z., Zheng, X., Sun, Y., Yu, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationValle, G., Calogero, S. & Russo, U. (1982). J. Organomet. Chem. 228, C79–C82.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds