metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­thio­benzoato-κ2S,S′)[hydridotris(pyrazol-1-yl-κN2)borato](tri­phenyl­phosphine-κP)ruthenium(II)

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, bDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, and cDepartment of Chemistry, National Normal Taiwan University, Taipei 106, Taiwan
*Correspondence e-mail: yhlo@ttu.edu.tw

(Received 6 November 2008; accepted 7 November 2008; online 13 November 2008)

Reaction of [Ru(Tp)Cl(PPh3)2] (Tp = hydridotrispyrazolyl­borate) with ammonium dithio­benzoate in methanol leads to the formation of the title compound, [Ru(C9H10BN6)(C7H5S2)(C18H15P)]. In the crystal structure, the Ru atom is coordinated by three N atoms of the Tp ligand, one P atom of the triphenyl­phosphine ligand and the two S atoms of the dithio­benzoate ligand within a slightly distorted octa­hedron. The Ru—S bonds are slightly different [2.321 (1) and 2.396 (1) Å] and the average N—Ru—N angle is 86.31°.

Related literature

For general background, see: Alock et al. (1992[Alock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906-2908.]); Burrows (2001[Burrows, A. D. (2001). CrystEngComm, 46, 1-5.]); Pavlik et al. (2005[Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organo­metallics, 24, 3561-3575.]); Hidai et al. (2000[Hidai, M., Kuwata, S. & &Mizobe, Y. (2000). Acc. Chem. Res. 33, 46-52.]); Vit & Zdrazil (1989[Vit, Z. & Zdrazil, M. (1989). J. Catal. 119, 1-9.]). For related structures, see: Gemel et al. (1996[Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998-4004.]); Slugovc et al. (1998[Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827-831.]); Sellmann et al. (1999[Sellmann, D., Utz, J. & Heineman, F. W. (1999). Eur. J. Inorg. Chem. 2, 341-346.]); Meno et al. (1995[Meno, M., Pramanik, A., Bag, N. & Chakravorty, A. (1995). J. Chem. Soc. Dalton Trans. pp. 1543-1547.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H10BN6)(C7H5S2)(C18H15P)]

  • Mr = 729.61

  • Monoclinic, P 21 /n

  • a = 12.8915 (13) Å

  • b = 18.394 (2) Å

  • c = 13.5174 (16) Å

  • β = 96.591 (5)°

  • V = 3184.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 200 (2) K

  • 0.18 × 0.12 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.883, Tmax = 0.986

  • 22786 measured reflections

  • 5557 independent reflections

  • 3974 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.080

  • S = 1.02

  • 5557 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ruthenium(II) hydridotripyrazolylborate complexes, (Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex [Ru(Tp)Cl(PPh3)2] (Alock et al., 1992) has been used as the starting material for the synthesis of several complexes because the chloride atom and the phosphine ligand can easily be substituted (Burrows, 2001). On the other hand, the chemistry of transition metal sulfur compounds has attracted much interest for their importance in the field of catalysis and metalloenzymes (Hidai et al., 2000). In recent years there has been an increased interest in ruthenium sulfur complexes, in part because of the high catalytic activity of RuS2 in various hydrotreating processes (Vit & Zdrazil, 1989). Thus, many ruthenium thiolate complexes have been reported. However, ruthenium complexes with dithio ligands are relatively rare (Sellmann et al., 1999). In this context the structure of the title compound was determined.

In the crystal structure of the title compound, the Ru atom is coordinated by three N atoms of the Tp ligand, two S atoms of the dithiobenzoate ligand and one P atom of the triphenylphosphine ligand forming slightly distorted octahedron. The average N—Ru—N angle amount to 86.31° and the three Ru—N bond lengths of 2.141 (3), 2.098 (3) and 2.134 (3) Å are slightly longer than the average distance of 2.038 Å in observed in other RuTp complexes (Gemel et al.1996 and Slugovc et al.1998). The dithiobenzoate ligand chelates the ruthenium centre with slightly different Ru—S bonds of 2.321 (1) Å and and 2.396 (1) Å and an S—Ru—S angle of 71.61 (3)°. The average Ru—S bond length of 2.3588 (11) Å is slightly shorter than in cis-[Ru(S2CNEt2)2(PPh3)2] (av. 2.3952 (5) Å) (Meno et al., 1995).

Related literature top

For general background, see: Alock et al. (1992); Burrows et al. (2001); Pavlik et al. (2005); (Hidai et al., 2000); (Vit & Zdrazil, 1989). For related structures, see: Gemel et al. (1996); Slugovc et al. (1998); Sellmann et al. (1999); Meno et al. (1995).

Experimental top

To a solution of [Ru(Tp)Cl(PPh3)2] (3.95 g, 4.50 mmol) in MeOH (20 ml) an excess of [NH4][S2C(C6H5)] (1.71 g, 10 mmol) were added. The reaction mixture was stirred for 4 h at room temperature. The solvent was removed in vacuum and 20 ml of CH2Cl2 were added to the residue. After filtration the solvent was removed in vacuum to give the title compound. Spectroscopic analysis: IR(KBr, cm-1): ν(BH)2467 cm-1.31P NMR(CDCl3, 303 K, δ,p.p.m.): d 58.3 (PPh3). MS (m/z,Ru102): 730.2 (M+), 468.1(M+ - PPh3). Anal. Calcd for C34H30BN6PRuS2: C, 55.97; H,4.14; N, 11.52. Found: C, 55.73; H, 4.11;N, 11.42. The bright-yellow crystals used for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–hexane.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).
(Dithiobenzoato-κ2S,S')[hydridotris(pyrazol-1-yl-κN2)borato](triphenylphosphine-κP)ruthenium(II) top
Crystal data top
[Ru(C9H10BN6)(C7H5S2)(C18H15P)]F(000) = 1488
Mr = 729.61Dx = 1.522 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5326 reflections
a = 12.8915 (13) Åθ = 2.3–24.9°
b = 18.394 (2) ŵ = 0.71 mm1
c = 13.5174 (16) ÅT = 200 K
β = 96.591 (5)°Prism, green
V = 3184.2 (6) Å30.18 × 0.12 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5557 independent reflections
Radiation source: fine-focus sealed tube3974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
CCD rotation images, thick slices scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1512
Tmin = 0.883, Tmax = 0.986k = 2120
22786 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.684P]
where P = (Fo2 + 2Fc2)/3
5557 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ru(C9H10BN6)(C7H5S2)(C18H15P)]V = 3184.2 (6) Å3
Mr = 729.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8915 (13) ŵ = 0.71 mm1
b = 18.394 (2) ÅT = 200 K
c = 13.5174 (16) Å0.18 × 0.12 × 0.02 mm
β = 96.591 (5)°
Data collection top
Nonius KappaCCD
diffractometer
5557 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3974 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.986Rint = 0.056
22786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.02Δρmax = 1.39 e Å3
5557 reflectionsΔρmin = 0.62 e Å3
406 parameters
Special details top

Experimental. Semi-empirical from equivalents by WinGX (Blessing, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.3330 (3)0.7338 (2)0.0521 (3)0.0277 (11)
H1'0.38750.70680.01980.033*
C10.3375 (3)0.75212 (19)0.3191 (3)0.0272 (9)
H10.30960.76780.37770.033*
C20.4285 (3)0.7130 (2)0.3191 (3)0.0331 (10)
H20.47390.69700.37520.040*
C30.4393 (3)0.7023 (2)0.2210 (3)0.0283 (9)
H30.49490.67700.19590.034*
C40.2720 (3)0.9240 (2)0.0120 (3)0.0282 (9)
H40.23590.96730.02550.034*
C50.3432 (3)0.9186 (2)0.0566 (3)0.0334 (10)
H50.36480.95590.09830.040*
C60.3760 (3)0.8478 (2)0.0514 (3)0.0310 (10)
H60.42560.82670.08970.037*
C70.0588 (3)0.68809 (19)0.0294 (3)0.0259 (9)
H70.01090.69700.04240.031*
C80.0901 (3)0.6302 (2)0.0258 (3)0.0338 (10)
H80.04740.59270.05700.041*
C90.1945 (3)0.6385 (2)0.0257 (3)0.0327 (10)
H90.23890.60700.05740.039*
C100.2846 (3)0.98437 (19)0.2445 (2)0.0191 (8)
C110.2725 (3)1.05912 (19)0.2465 (3)0.0243 (9)
H110.20571.07940.25250.029*
C120.3569 (3)1.1045 (2)0.2400 (3)0.0298 (10)
H120.34781.15570.24080.036*
C130.4542 (3)1.0757 (2)0.2322 (3)0.0279 (9)
H130.51241.10700.22870.034*
C140.4670 (3)1.0014 (2)0.2297 (3)0.0280 (9)
H140.53410.98140.22420.034*
C150.3825 (3)0.9555 (2)0.2350 (3)0.0241 (9)
H150.39160.90430.23230.029*
C160.2187 (3)0.89959 (19)0.3980 (3)0.0218 (8)
C170.2997 (3)0.9362 (2)0.4538 (3)0.0275 (9)
H170.33280.97560.42470.033*
C180.3329 (3)0.9164 (2)0.5511 (3)0.0349 (10)
H180.38900.94180.58770.042*
C190.2853 (3)0.8606 (2)0.5942 (3)0.0329 (10)
H190.31020.84600.66010.040*
C200.2015 (3)0.8251 (2)0.5433 (3)0.0322 (10)
H200.16610.78780.57470.039*
C210.1693 (3)0.8448 (2)0.4452 (3)0.0273 (9)
H210.11200.82000.40960.033*
C220.0647 (3)0.97588 (18)0.2688 (3)0.0206 (8)
C230.0053 (3)0.9746 (2)0.3480 (3)0.0301 (10)
H230.02970.94850.40680.036*
C240.0893 (3)1.0110 (2)0.3421 (3)0.0380 (11)
H240.12901.01000.39710.046*
C250.1262 (3)1.0486 (2)0.2574 (3)0.0341 (10)
H250.19211.07220.25300.041*
C260.0671 (3)1.0517 (2)0.1791 (3)0.0279 (9)
H260.09131.07870.12120.034*
C270.0272 (3)1.01580 (19)0.1842 (3)0.0228 (9)
H270.06731.01820.12950.027*
C280.0643 (3)0.83083 (19)0.1494 (3)0.0212 (8)
C290.1777 (3)0.83849 (19)0.1434 (3)0.0256 (9)
C300.2313 (3)0.8185 (2)0.2228 (3)0.0341 (10)
H300.19400.80010.28220.041*
C310.3392 (3)0.8253 (3)0.2156 (3)0.0454 (12)
H310.37550.81080.26970.055*
C320.3936 (3)0.8529 (2)0.1303 (4)0.0457 (12)
H320.46730.85750.12580.055*
C330.3420 (3)0.8735 (2)0.0523 (4)0.0452 (12)
H330.38010.89270.00630.054*
C340.2346 (3)0.8668 (2)0.0578 (3)0.0334 (10)
H340.19930.88150.00320.040*
N10.2933 (2)0.76531 (15)0.2267 (2)0.0215 (7)
N20.3582 (2)0.73352 (16)0.1657 (2)0.0235 (7)
N30.2606 (2)0.86080 (16)0.0565 (2)0.0210 (7)
N40.3261 (2)0.81318 (16)0.0171 (2)0.0241 (7)
N50.1408 (2)0.72945 (15)0.0615 (2)0.0223 (7)
N60.2250 (2)0.69857 (16)0.0266 (2)0.0251 (7)
P10.18113 (7)0.91954 (5)0.26504 (7)0.0190 (2)
Ru10.16002 (2)0.822395 (15)0.15631 (2)0.01805 (9)
S10.01327 (7)0.78411 (5)0.23709 (7)0.0227 (2)
S20.00968 (7)0.87056 (5)0.06980 (7)0.0231 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.025 (3)0.031 (3)0.028 (3)0.005 (2)0.006 (2)0.001 (2)
C10.038 (3)0.022 (2)0.020 (2)0.0017 (18)0.0020 (18)0.0005 (17)
C20.036 (3)0.033 (2)0.028 (2)0.0073 (19)0.0084 (19)0.0016 (19)
C30.021 (2)0.026 (2)0.037 (3)0.0045 (17)0.0015 (18)0.0056 (19)
C40.033 (2)0.026 (2)0.024 (2)0.0042 (18)0.0010 (18)0.0035 (18)
C50.034 (3)0.036 (3)0.032 (2)0.0045 (19)0.0105 (19)0.009 (2)
C60.025 (2)0.047 (3)0.023 (2)0.0026 (19)0.0100 (17)0.0058 (19)
C70.028 (2)0.025 (2)0.024 (2)0.0035 (18)0.0006 (17)0.0000 (17)
C80.037 (3)0.029 (2)0.033 (3)0.0087 (19)0.0037 (19)0.004 (2)
C90.048 (3)0.022 (2)0.029 (2)0.0042 (19)0.004 (2)0.0041 (19)
C100.017 (2)0.023 (2)0.018 (2)0.0013 (16)0.0032 (15)0.0009 (16)
C110.020 (2)0.025 (2)0.028 (2)0.0013 (16)0.0048 (17)0.0001 (18)
C120.035 (3)0.019 (2)0.036 (2)0.0033 (18)0.0028 (19)0.0010 (18)
C130.027 (2)0.030 (2)0.027 (2)0.0109 (18)0.0061 (17)0.0006 (18)
C140.021 (2)0.032 (2)0.032 (2)0.0007 (17)0.0050 (17)0.0034 (19)
C150.027 (2)0.020 (2)0.025 (2)0.0008 (17)0.0032 (17)0.0006 (17)
C160.024 (2)0.024 (2)0.018 (2)0.0070 (16)0.0031 (16)0.0004 (16)
C170.025 (2)0.031 (2)0.026 (2)0.0006 (17)0.0016 (17)0.0015 (19)
C180.029 (2)0.046 (3)0.028 (2)0.004 (2)0.0019 (18)0.005 (2)
C190.035 (3)0.043 (3)0.020 (2)0.015 (2)0.0022 (19)0.004 (2)
C200.041 (3)0.032 (2)0.024 (2)0.007 (2)0.0088 (19)0.005 (2)
C210.031 (2)0.028 (2)0.022 (2)0.0023 (17)0.0015 (17)0.0000 (17)
C220.020 (2)0.0188 (19)0.023 (2)0.0035 (16)0.0047 (16)0.0039 (17)
C230.027 (2)0.035 (2)0.029 (2)0.0039 (19)0.0049 (18)0.0014 (19)
C240.035 (3)0.046 (3)0.035 (3)0.009 (2)0.016 (2)0.001 (2)
C250.021 (2)0.040 (3)0.042 (3)0.0084 (18)0.004 (2)0.006 (2)
C260.027 (2)0.026 (2)0.030 (2)0.0022 (17)0.0036 (18)0.0047 (18)
C270.023 (2)0.024 (2)0.023 (2)0.0002 (16)0.0053 (16)0.0001 (17)
C280.021 (2)0.023 (2)0.020 (2)0.0022 (16)0.0010 (15)0.0024 (17)
C290.019 (2)0.023 (2)0.034 (2)0.0022 (16)0.0034 (18)0.0101 (18)
C300.025 (2)0.050 (3)0.028 (2)0.003 (2)0.0047 (18)0.013 (2)
C310.030 (3)0.068 (3)0.041 (3)0.004 (2)0.015 (2)0.025 (3)
C320.022 (3)0.053 (3)0.062 (3)0.004 (2)0.002 (2)0.023 (3)
C330.031 (3)0.043 (3)0.059 (3)0.004 (2)0.007 (2)0.004 (2)
C340.025 (3)0.032 (2)0.043 (3)0.0008 (18)0.0023 (19)0.005 (2)
N10.0232 (18)0.0173 (16)0.0244 (18)0.0015 (13)0.0042 (14)0.0000 (14)
N20.0193 (18)0.0260 (17)0.0255 (18)0.0024 (14)0.0047 (14)0.0024 (15)
N30.0207 (18)0.0228 (17)0.0195 (17)0.0011 (13)0.0020 (13)0.0022 (14)
N40.0198 (17)0.0311 (19)0.0218 (17)0.0011 (14)0.0043 (13)0.0026 (15)
N50.0238 (19)0.0212 (17)0.0221 (17)0.0006 (14)0.0032 (14)0.0026 (14)
N60.0270 (19)0.0232 (18)0.0257 (19)0.0004 (14)0.0067 (14)0.0014 (14)
P10.0186 (5)0.0182 (5)0.0203 (5)0.0001 (4)0.0030 (4)0.0008 (4)
Ru10.01702 (17)0.01847 (15)0.01893 (17)0.00125 (13)0.00328 (11)0.00074 (14)
S10.0213 (5)0.0233 (5)0.0239 (5)0.0014 (4)0.0042 (4)0.0021 (4)
S20.0216 (6)0.0252 (5)0.0225 (5)0.0010 (4)0.0016 (4)0.0013 (4)
Geometric parameters (Å, º) top
B1—N21.533 (5)C18—C191.361 (5)
B1—N41.535 (5)C18—H180.9500
B1—N61.538 (5)C19—C201.378 (5)
B1—H1'1.0000C19—H190.9500
C1—N11.335 (4)C20—C211.391 (5)
C1—C21.376 (5)C20—H200.9500
C1—H10.9500C21—H210.9500
C2—C31.363 (5)C22—C231.386 (5)
C2—H20.9500C22—C271.398 (5)
C3—N21.342 (4)C22—P11.829 (4)
C3—H30.9500C23—C241.386 (5)
C4—N31.325 (4)C23—H230.9500
C4—C51.382 (5)C24—C251.375 (5)
C4—H40.9500C24—H240.9500
C5—C61.368 (5)C25—C261.375 (5)
C5—H50.9500C25—H250.9500
C6—N41.347 (4)C26—C271.378 (5)
C6—H60.9500C26—H260.9500
C7—N51.334 (4)C27—H270.9500
C7—C81.386 (5)C28—C291.461 (5)
C7—H70.9500C28—S21.684 (4)
C8—C91.355 (5)C28—S11.694 (4)
C8—H80.9500C29—C301.392 (5)
C9—N61.347 (5)C29—C341.397 (5)
C9—H90.9500C30—C311.388 (5)
C10—C111.384 (5)C30—H300.9500
C10—C151.389 (5)C31—C321.376 (6)
C10—P11.834 (3)C31—H310.9500
C11—C121.383 (5)C32—C331.364 (6)
C11—H110.9500C32—H320.9500
C12—C131.376 (5)C33—C341.384 (5)
C12—H120.9500C33—H330.9500
C13—C141.379 (5)C34—H340.9500
C13—H130.9500N1—N21.372 (4)
C14—C151.386 (5)N1—Ru12.141 (3)
C14—H140.9500N3—N41.366 (4)
C15—H150.9500N3—Ru12.098 (3)
C16—C211.387 (5)N5—N61.357 (4)
C16—C171.389 (5)N5—Ru12.134 (3)
C16—P11.844 (4)P1—Ru12.3100 (10)
C17—C181.384 (5)Ru1—S22.3213 (10)
C17—H170.9500Ru1—S12.3962 (10)
N2—B1—N4108.0 (3)C25—C24—C23120.6 (4)
N2—B1—N6107.8 (3)C25—C24—H24119.7
N4—B1—N6108.2 (3)C23—C24—H24119.7
N2—B1—H1'110.9C26—C25—C24119.5 (4)
N4—B1—H1'110.9C26—C25—H25120.3
N6—B1—H1'110.9C24—C25—H25120.3
N1—C1—C2111.5 (3)C25—C26—C27120.4 (4)
N1—C1—H1124.2C25—C26—H26119.8
C2—C1—H1124.2C27—C26—H26119.8
C3—C2—C1104.9 (3)C26—C27—C22120.8 (3)
C3—C2—H2127.5C26—C27—H27119.6
C1—C2—H2127.5C22—C27—H27119.6
N2—C3—C2108.7 (3)C29—C28—S2124.0 (3)
N2—C3—H3125.7C29—C28—S1126.4 (3)
C2—C3—H3125.7S2—C28—S1109.6 (2)
N3—C4—C5110.9 (4)C30—C29—C34118.5 (4)
N3—C4—H4124.5C30—C29—C28121.0 (4)
C5—C4—H4124.5C34—C29—C28120.6 (3)
C6—C5—C4105.1 (3)C31—C30—C29120.3 (4)
C6—C5—H5127.5C31—C30—H30119.8
C4—C5—H5127.5C29—C30—H30119.8
N4—C6—C5108.4 (4)C32—C31—C30120.1 (4)
N4—C6—H6125.8C32—C31—H31119.9
C5—C6—H6125.8C30—C31—H31119.9
N5—C7—C8110.2 (3)C33—C32—C31120.3 (4)
N5—C7—H7124.9C33—C32—H32119.9
C8—C7—H7124.9C31—C32—H32119.9
C9—C8—C7105.3 (3)C32—C33—C34120.4 (4)
C9—C8—H8127.4C32—C33—H33119.8
C7—C8—H8127.4C34—C33—H33119.8
N6—C9—C8108.9 (4)C33—C34—C29120.4 (4)
N6—C9—H9125.6C33—C34—H34119.8
C8—C9—H9125.6C29—C34—H34119.8
C11—C10—C15119.1 (3)C1—N1—N2105.1 (3)
C11—C10—P1123.9 (3)C1—N1—Ru1137.7 (2)
C15—C10—P1116.7 (3)N2—N1—Ru1117.1 (2)
C12—C11—C10120.5 (3)C3—N2—N1109.7 (3)
C12—C11—H11119.7C3—N2—B1128.4 (3)
C10—C11—H11119.7N1—N2—B1121.8 (3)
C13—C12—C11120.2 (4)C4—N3—N4106.3 (3)
C13—C12—H12119.9C4—N3—Ru1134.1 (3)
C11—C12—H12119.9N4—N3—Ru1119.3 (2)
C12—C13—C14119.7 (3)C6—N4—N3109.3 (3)
C12—C13—H13120.1C6—N4—B1130.3 (3)
C14—C13—H13120.1N3—N4—B1120.4 (3)
C13—C14—C15120.4 (4)C7—N5—N6106.5 (3)
C13—C14—H14119.8C7—N5—Ru1133.3 (3)
C15—C14—H14119.8N6—N5—Ru1120.1 (2)
C14—C15—C10120.0 (3)C9—N6—N5109.2 (3)
C14—C15—H15120.0C9—N6—B1131.7 (3)
C10—C15—H15120.0N5—N6—B1119.1 (3)
C21—C16—C17117.3 (3)C22—P1—C10104.42 (16)
C21—C16—P1120.7 (3)C22—P1—C16102.15 (16)
C17—C16—P1122.0 (3)C10—P1—C1699.36 (16)
C18—C17—C16121.4 (4)C22—P1—Ru1114.77 (11)
C18—C17—H17119.3C10—P1—Ru1116.19 (12)
C16—C17—H17119.3C16—P1—Ru1117.70 (12)
C19—C18—C17120.0 (4)N3—Ru1—N585.49 (11)
C19—C18—H18120.0N3—Ru1—N185.83 (11)
C17—C18—H18120.0N5—Ru1—N184.61 (11)
C18—C19—C20120.7 (4)N3—Ru1—P196.44 (8)
C18—C19—H19119.7N5—Ru1—P1177.43 (8)
C20—C19—H19119.7N1—Ru1—P193.82 (8)
C19—C20—C21118.9 (4)N3—Ru1—S295.15 (8)
C19—C20—H20120.5N5—Ru1—S288.31 (8)
C21—C20—H20120.5N1—Ru1—S2172.76 (8)
C16—C21—C20121.7 (4)P1—Ru1—S293.20 (3)
C16—C21—H21119.2N3—Ru1—S1166.07 (8)
C20—C21—H21119.2N5—Ru1—S189.71 (8)
C23—C22—C27118.1 (3)N1—Ru1—S1106.76 (8)
C23—C22—P1122.6 (3)P1—Ru1—S188.79 (3)
C27—C22—P1118.8 (3)S2—Ru1—S171.61 (3)
C22—C23—C24120.5 (4)C28—S1—Ru188.02 (12)
C22—C23—H23119.7C28—S2—Ru190.79 (12)
C24—C23—H23119.7

Experimental details

Crystal data
Chemical formula[Ru(C9H10BN6)(C7H5S2)(C18H15P)]
Mr729.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)12.8915 (13), 18.394 (2), 13.5174 (16)
β (°) 96.591 (5)
V3)3184.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.18 × 0.12 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.883, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
22786, 5557, 3974
Rint0.056
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.080, 1.02
No. of reflections5557
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 0.62

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This research was supported by the National Science Council, Taiwan (NSC 97–2113-M-036–001-MY2) and in part by the Project of Specific Research Fields in Tatung University, Taiwan (B96—C07–081), and the Project of Specific Research Fields in Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR—CH.

References

First citationAlock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurrows, A. D. (2001). CrystEngComm, 46, 1–5.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.  CSD CrossRef Web of Science Google Scholar
First citationHidai, M., Kuwata, S. & &Mizobe, Y. (2000). Acc. Chem. Res. 33, 46–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeno, M., Pramanik, A., Bag, N. & Chakravorty, A. (1995). J. Chem. Soc. Dalton Trans. pp. 1543–1547.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organo­metallics, 24, 3561–3575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSellmann, D., Utz, J. & Heineman, F. W. (1999). Eur. J. Inorg. Chem. 2, 341–346.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationVit, Z. & Zdrazil, M. (1989). J. Catal. 119, 1–9.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds