Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cd(C7H5O2)2(C5H6N2)2], the CdII atom is hexa­coordinated by four O atoms from two crystallographically independent benzoate anions, and two pyridine N atoms from two crystallographically independent 2-amino­pyridine mol­ecules in a distorted octa­hedral geometry. In the crystal structure, the metal complexes are connected by N—H...O hydrogen bonding between the carboxylate O atoms of the benzoate anions and the amino H atoms of the 2-amino­pyridine ligands. The benzoate and the amino­pyridine rings are stacked in the direction of the crystallographic a axis, indicating π–π stacking inter­actions are present [centroid-centroid distance = 3.6790 (15) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059181/nc2078sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059181/nc2078Isup2.hkl
Contains datablock I

CCDC reference: 672714

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.022
  • wR factor = 0.057
  • Data-to-parameter ratio = 18.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 - O1 .. 17.03 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 - O2 .. 10.62 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 - O3 .. 20.59 su
Alert level C PLAT194_ALERT_1_C Missing _cell_measurement_reflns_used datum .... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O4
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 276
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Over the past two decades, there has been considerable interest in the study of crystal structures and properties of cadmium complexes based on carboxyl ligand, owing to their photoluminescent behaviours. (Tan et al., 2003; Zheng et al., 2004; Wang et al., 2004; Shi et al., 2004). The structures of mixed ligand complexes containing benzoate anions and 2-aminopyridine ligands have also been reported (Kozlevčar et al., 2001; Zhu, Usman et al., 2003; Zhu, Shao et al., 2004). As a part of our ongoing investigations in this field we report the synthesis and crystal structure of the title compound.

The stucture of the title compound (I), is isostructural with the nickel (I) complex (Zhu, Shao et al., 2003). The CdII atom is hexa-coordinated by four O atoms of two crystallographically independent benzoate anions, and two pyridine N atoms from two crystallographically independent 2-aminopyridine molecules, within a distorted octahedron. The Cd—N bond lengths are 2.2857 (15) Å and 2.2945 (15) Å, and the Cd—O distances ranges from 2.3206 (15) to 2.4287 (15) Å. The molecules are connected via intermolecular O—H···N hydrogen bonding between the carboxyl oxygen atoms of the benzoate anions and the amino hydrogen atoms of the 2-aminopyridine ligands (Table 1 and Fig. 2). The benzoate and the aminopyridine rings are stacked in the direction of the crystallographic a axis indicating for π···π stacking interaction (Fig. 2).

Related literature top

For related literature, see: Kozlevčar et al. (2001); Shi et al. (2004); Tan et al. (2003); Wang et al. (2004); Zheng et al. (2004); Zhu, Shao et al. (2003); Zhu, Usman et al. (2003).

Experimental top

All reagents are commercially available and were used without further purification. CdCl2.2.5H2O (0.5 mmol), benzoate sodium (1 mmol) and 2-aminopyridine (1 mmol) were mixed in 8 ml of methanol and and 8 ml of water. After stirring for half an hour, the mixture was transfered in a 25 ml Teflon-lined reactor and heated at 130 °C for 7 days. The reaction mixture was filtered and the filtrate was allowed to stay at room temperature. Well shaped yellow crystals of the title compound suitable for X-rays diffraction were obtained after two weeks. Yield: 62% based on benzoate sodium.

Refinement top

All the H atoms were placed in geometrically idealized positions with N—H and C—H distances of 0.86 Å and 0.93 Å and were refined isotropic using a riding model with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL(Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I), with labeling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of compound (I) with view along the crystallographic a axis (Hydrogen bonding is shown as dashed lines).
Bis(2-aminopyridine-κN1)bis(benzoato-κO2)cadmium(II) top
Crystal data top
[Cd(C7H5O2)2(C5H6N2)2]Z = 4
Mr = 542.86F(000) = 1096
Monoclinic, P21/nDx = 1.546 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.1226 (9) Åθ = 2.3–27.7°
b = 11.4153 (11) ŵ = 0.97 mm1
c = 22.520 (2) ÅT = 296 K
β = 96.109 (1)°Block, yellow
V = 2331.8 (4) Å30.42 × 0.36 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5418 independent reflections
Radiation source: fine-focus sealed tube4817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.672, Tmax = 0.758k = 1414
20104 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.8501P]
where P = (Fo2 + 2Fc2)/3
5418 reflections(Δ/σ)max = 0.022
298 parametersΔρmax = 0.24 e Å3
276 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cd(C7H5O2)2(C5H6N2)2]V = 2331.8 (4) Å3
Mr = 542.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1226 (9) ŵ = 0.97 mm1
b = 11.4153 (11) ÅT = 296 K
c = 22.520 (2) Å0.42 × 0.36 × 0.28 mm
β = 96.109 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5418 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4817 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.758Rint = 0.020
20104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022276 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
5418 reflectionsΔρmin = 0.56 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.308844 (14)0.551275 (12)0.124286 (5)0.03915 (5)
O10.56299 (16)0.48583 (14)0.14239 (6)0.0541 (3)
O20.47033 (17)0.59585 (17)0.20791 (7)0.0656 (4)
O30.15943 (18)0.42390 (12)0.05863 (6)0.0517 (3)
O40.24832 (18)0.35974 (13)0.14697 (7)0.0581 (4)
N10.38419 (17)0.67576 (14)0.05352 (6)0.0406 (3)
N20.3290 (2)0.55339 (14)0.02765 (7)0.0490 (4)
H2A0.27740.51070.00630.059*
H2B0.33650.53480.06420.059*
N30.11118 (17)0.65797 (14)0.14799 (7)0.0416 (3)
N40.2241 (2)0.73593 (19)0.23601 (8)0.0658 (5)
H4A0.30470.70180.22930.079*
H4B0.22110.77770.26770.079*
C10.1026 (2)0.72404 (16)0.19711 (8)0.0442 (4)
C20.0298 (2)0.78070 (18)0.20682 (10)0.0537 (5)
H20.03520.82470.24130.064*
C30.1490 (2)0.77110 (19)0.16603 (11)0.0581 (5)
H30.23650.80880.17220.070*
C40.1403 (2)0.7043 (2)0.11449 (11)0.0573 (5)
H40.22060.69760.08560.069*
C50.0104 (2)0.64945 (19)0.10798 (9)0.0499 (4)
H50.00480.60350.07420.060*
C60.4484 (2)0.77564 (18)0.07639 (9)0.0491 (4)
H60.43700.79460.11580.059*
C70.5282 (2)0.84974 (19)0.04511 (10)0.0550 (5)
H70.56900.91800.06230.066*
C80.5467 (2)0.81977 (19)0.01361 (10)0.0547 (5)
H80.60270.86740.03600.066*
C90.4830 (2)0.72089 (18)0.03821 (9)0.0492 (4)
H90.49520.70070.07740.059*
C100.39819 (19)0.64920 (16)0.00389 (7)0.0387 (4)
C110.1700 (2)0.34529 (17)0.09790 (8)0.0431 (4)
C120.0872 (2)0.23300 (17)0.08679 (8)0.0437 (4)
C130.1306 (3)0.13299 (19)0.11883 (11)0.0591 (5)
H130.21210.13550.14740.071*
C140.0532 (3)0.0292 (2)0.10853 (13)0.0735 (7)
H140.08440.03820.12930.088*
C150.0691 (3)0.0260 (2)0.06784 (14)0.0739 (7)
H150.12220.04330.06180.089*
C160.1141 (3)0.1243 (2)0.03587 (13)0.0716 (7)
H160.19730.12140.00820.086*
C170.0355 (2)0.2279 (2)0.04486 (11)0.0568 (5)
H170.06510.29410.02270.068*
C180.5755 (2)0.53716 (16)0.19175 (8)0.0405 (4)
C190.7157 (2)0.52812 (18)0.23220 (9)0.0455 (4)
C200.7305 (3)0.5873 (2)0.28624 (10)0.0635 (6)
H200.65310.63200.29770.076*
C210.8625 (4)0.5790 (3)0.32314 (13)0.0870 (9)
H210.87380.61850.35950.104*
C220.9756 (3)0.5129 (3)0.30603 (17)0.0942 (10)
H221.06360.50830.33090.113*
C230.9618 (3)0.4543 (3)0.25367 (18)0.0894 (10)
H231.03980.40940.24280.107*
C240.8304 (3)0.4612 (2)0.21574 (13)0.0651 (6)
H240.82050.42090.17960.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04208 (8)0.04492 (8)0.03039 (7)0.00135 (5)0.00357 (5)0.00096 (5)
O10.0543 (8)0.0687 (9)0.0392 (7)0.0014 (7)0.0042 (6)0.0117 (7)
O20.0535 (9)0.0896 (12)0.0517 (9)0.0229 (8)0.0033 (7)0.0207 (8)
O30.0677 (9)0.0414 (7)0.0463 (8)0.0019 (6)0.0080 (7)0.0074 (6)
O40.0652 (9)0.0560 (9)0.0506 (8)0.0115 (7)0.0052 (7)0.0119 (7)
N10.0456 (8)0.0433 (8)0.0329 (7)0.0031 (6)0.0049 (6)0.0003 (6)
N20.0646 (11)0.0494 (9)0.0345 (8)0.0032 (8)0.0122 (7)0.0055 (7)
N30.0445 (8)0.0450 (8)0.0362 (7)0.0032 (7)0.0085 (6)0.0001 (6)
N40.0578 (11)0.0837 (14)0.0553 (11)0.0109 (10)0.0032 (9)0.0319 (10)
C10.0500 (10)0.0404 (9)0.0439 (10)0.0004 (8)0.0134 (8)0.0009 (7)
C20.0601 (12)0.0433 (10)0.0609 (12)0.0059 (9)0.0212 (10)0.0051 (9)
C30.0497 (11)0.0471 (11)0.0798 (15)0.0106 (9)0.0170 (10)0.0042 (10)
C40.0486 (11)0.0546 (12)0.0674 (13)0.0074 (9)0.0001 (10)0.0067 (10)
C50.0511 (11)0.0531 (11)0.0449 (10)0.0058 (9)0.0023 (8)0.0013 (9)
C60.0557 (11)0.0501 (11)0.0410 (10)0.0001 (9)0.0020 (8)0.0039 (8)
C70.0549 (12)0.0468 (11)0.0618 (12)0.0051 (9)0.0005 (10)0.0010 (9)
C80.0524 (11)0.0522 (12)0.0611 (12)0.0005 (9)0.0131 (9)0.0126 (9)
C90.0558 (11)0.0524 (11)0.0414 (10)0.0075 (9)0.0148 (8)0.0067 (8)
C100.0408 (9)0.0411 (9)0.0344 (8)0.0096 (7)0.0044 (7)0.0030 (7)
C110.0434 (9)0.0440 (10)0.0435 (10)0.0039 (8)0.0116 (7)0.0048 (8)
C120.0440 (9)0.0433 (10)0.0452 (10)0.0014 (8)0.0118 (8)0.0041 (8)
C130.0653 (13)0.0502 (12)0.0609 (13)0.0029 (10)0.0020 (10)0.0121 (10)
C140.0891 (18)0.0493 (13)0.0830 (17)0.0043 (12)0.0135 (14)0.0159 (12)
C150.0734 (16)0.0561 (14)0.0943 (19)0.0182 (12)0.0179 (14)0.0044 (13)
C160.0555 (13)0.0692 (15)0.0882 (17)0.0069 (11)0.0011 (12)0.0093 (13)
C170.0510 (11)0.0526 (12)0.0655 (13)0.0035 (9)0.0008 (10)0.0034 (10)
C180.0430 (9)0.0447 (10)0.0340 (9)0.0028 (7)0.0041 (7)0.0024 (7)
C190.0419 (10)0.0519 (11)0.0424 (10)0.0073 (8)0.0025 (8)0.0129 (8)
C200.0657 (14)0.0758 (15)0.0463 (11)0.0165 (12)0.0059 (10)0.0044 (10)
C210.089 (2)0.104 (2)0.0612 (15)0.0350 (17)0.0242 (14)0.0168 (14)
C220.0589 (16)0.119 (2)0.097 (2)0.0305 (16)0.0255 (15)0.0531 (19)
C230.0507 (14)0.105 (2)0.112 (2)0.0073 (14)0.0064 (15)0.0476 (18)
C240.0494 (12)0.0740 (15)0.0723 (15)0.0067 (11)0.0083 (11)0.0212 (12)
Geometric parameters (Å, º) top
Cd1—N32.2857 (15)C7—C81.393 (3)
Cd1—N12.2945 (15)C7—H70.9300
Cd1—O22.3206 (15)C8—C91.360 (3)
Cd1—O42.3251 (15)C8—H80.9300
Cd1—O32.3936 (15)C9—C101.412 (3)
Cd1—O12.4287 (15)C9—H90.9300
O1—C181.251 (2)C11—C121.495 (3)
O2—C181.255 (2)C12—C131.386 (3)
O3—C111.256 (2)C12—C171.386 (3)
O4—C111.261 (2)C13—C141.386 (3)
N1—C101.347 (2)C13—H130.9300
N1—C61.358 (2)C14—C151.367 (4)
N2—C101.345 (2)C14—H140.9300
N2—H2A0.8600C15—C161.372 (4)
N2—H2B0.8600C15—H150.9300
N3—C11.348 (2)C16—C171.387 (3)
N3—C51.356 (2)C16—H160.9300
N4—C11.344 (3)C17—H170.9300
N4—H4A0.8600C18—C191.492 (3)
N4—H4B0.8600C19—C241.378 (3)
C1—C21.407 (3)C19—C201.386 (3)
C2—C31.351 (3)C20—C211.392 (4)
C2—H20.9300C20—H200.9300
C3—C41.398 (3)C21—C221.366 (5)
C3—H30.9300C21—H210.9300
C4—C51.361 (3)C22—C231.350 (5)
C4—H40.9300C22—H220.9300
C5—H50.9300C23—C241.398 (4)
C6—C71.361 (3)C23—H230.9300
C6—H60.9300C24—H240.9300
N3—Cd1—N197.72 (5)C9—C8—C7120.03 (19)
N3—Cd1—O298.17 (5)C9—C8—H8120.0
N1—Cd1—O2102.51 (6)C7—C8—H8120.0
N3—Cd1—O4103.77 (6)C8—C9—C10119.57 (18)
N1—Cd1—O4146.17 (5)C8—C9—H9120.2
O2—Cd1—O499.96 (6)C10—C9—H9120.2
N3—Cd1—O393.24 (5)N2—C10—N1118.46 (17)
N1—Cd1—O398.06 (5)N2—C10—C9120.98 (17)
O2—Cd1—O3154.83 (6)N1—C10—C9120.56 (17)
O4—Cd1—O355.36 (5)O3—C11—O4121.14 (18)
N3—Cd1—O1152.55 (5)O3—C11—C12119.67 (17)
N1—Cd1—O187.47 (5)O4—C11—C12119.19 (17)
O2—Cd1—O154.48 (5)C13—C12—C17119.0 (2)
O4—Cd1—O185.33 (6)C13—C12—C11120.52 (18)
O3—Cd1—O1112.80 (5)C17—C12—C11120.46 (18)
C18—O1—Cd190.02 (12)C14—C13—C12120.3 (2)
C18—O2—Cd194.96 (12)C14—C13—H13119.9
C11—O3—Cd190.18 (12)C12—C13—H13119.9
C11—O4—Cd193.22 (11)C15—C14—C13120.1 (2)
C10—N1—C6118.16 (17)C15—C14—H14120.0
C10—N1—Cd1126.38 (12)C13—C14—H14120.0
C6—N1—Cd1113.92 (12)C14—C15—C16120.5 (2)
C10—N2—H2A120.0C14—C15—H15119.8
C10—N2—H2B120.0C16—C15—H15119.8
H2A—N2—H2B120.0C15—C16—C17119.9 (2)
C1—N3—C5118.06 (17)C15—C16—H16120.0
C1—N3—Cd1127.30 (13)C17—C16—H16120.0
C5—N3—Cd1114.62 (12)C16—C17—C12120.2 (2)
C1—N4—H4A120.0C16—C17—H17119.9
C1—N4—H4B120.0C12—C17—H17119.9
H4A—N4—H4B120.0O1—C18—O2120.48 (18)
N4—C1—N3118.39 (17)O1—C18—C19120.08 (18)
N4—C1—C2120.91 (19)O2—C18—C19119.43 (17)
N3—C1—C2120.69 (19)C24—C19—C20120.0 (2)
C3—C2—C1119.9 (2)C24—C19—C18120.0 (2)
C3—C2—H2120.0C20—C19—C18120.0 (2)
C1—C2—H2120.0C19—C20—C21119.2 (3)
C2—C3—C4119.7 (2)C19—C20—H20120.4
C2—C3—H3120.1C21—C20—H20120.4
C4—C3—H3120.1C22—C21—C20120.0 (3)
C5—C4—C3117.9 (2)C22—C21—H21120.0
C5—C4—H4121.1C20—C21—H21120.0
C3—C4—H4121.1C23—C22—C21121.1 (3)
N3—C5—C4123.7 (2)C23—C22—H22119.4
N3—C5—H5118.1C21—C22—H22119.4
C4—C5—H5118.1C22—C23—C24120.0 (3)
N1—C6—C7123.95 (19)C22—C23—H23120.0
N1—C6—H6118.0C24—C23—H23120.0
C7—C6—H6118.0C19—C24—C23119.6 (3)
C6—C7—C8117.7 (2)C19—C24—H24120.2
C6—C7—H7121.2C23—C24—H24120.2
C8—C7—H7121.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.152.999 (2)170
N2—H2B···O1i0.862.082.897 (2)157
N4—H4A···O20.862.032.880 (3)169
N4—H4B···O4ii0.862.132.979 (2)168
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C7H5O2)2(C5H6N2)2]
Mr542.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.1226 (9), 11.4153 (11), 22.520 (2)
β (°) 96.109 (1)
V3)2331.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.42 × 0.36 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.672, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
20104, 5418, 4817
Rint0.020
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.04
No. of reflections5418
No. of parameters298
No. of restraints276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.56

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL(Sheldrick, 1997b).

Selected bond lengths (Å) top
Cd1—N32.2857 (15)Cd1—O12.4287 (15)
Cd1—N12.2945 (15)O1—C181.251 (2)
Cd1—O22.3206 (15)O2—C181.255 (2)
Cd1—O42.3251 (15)O3—C111.256 (2)
Cd1—O32.3936 (15)O4—C111.261 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.152.999 (2)170
N2—H2B···O1i0.862.082.897 (2)157
N4—H4A···O20.862.032.880 (3)169
N4—H4B···O4ii0.862.132.979 (2)168
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds