Download citation
Download citation
link to html
In the crystal structure of the title compound, {[Ca(C2H5NO2)2(H2O)3]I2}n, there are two formula units per asymmetric unit; both calcium cations are sevenfold coordinated within irregular polyhedra. The polyhedra can be divided into two halves as square pyramidal and triangular prismatic due to the presence of one and two coordinated water molecules above and below the square plane. In all the glycine zwitterions, the amino groups form three two-centred hydrogen bonds, leading to a class I hydrogen-bonding pattern. The backbone conformations of the amino acids are cis and trans.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051884/nc2061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051884/nc2061Isup2.hkl
Contains datablock I

CCDC reference: 672588

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.020
  • wR factor = 0.057
  • Data-to-parameter ratio = 8.1

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT222_ALERT_3_A Large Non-Solvent H Ueq(max)/Ueq(min) ... 5.33 Ratio
Author Response: This is due to the presence of water molecules in the coordination sphere.

Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H3W .. H10W .. 1.99 Ang. PLAT420_ALERT_2_B D-H Without Acceptor O5W - H10W ... ?
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 1.05 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.20 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ca1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ca2 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2E ... ? PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4C ... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H2E .. I4 .. 3.19 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3A .. I1 .. 3.11 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H4C .. I2 .. 3.24 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 9 O2 -C1 -O1 -CA2 169.00 2.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 C2 -C1 -O1 -CA2 -14.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 O7 -CA2 -O1 -C1 -157.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 12 O6 -CA2 -O1 -C1 147.00 3.00 1.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 13 O4 -CA2 -O1 -C1 30.00 3.00 1.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 14 O4W -CA2 -O1 -C1 116.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 O5W -CA2 -O1 -C1 -75.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 16 O6W -CA2 -O1 -C1 -37.00 3.00 1.555 1.555 1.555 1.555
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 24.97 From the CIF: _reflns_number_total 2784 From the CIF: _diffrn_reflns_limit_ max hkl 11. 15. 27. From the CIF: _diffrn_reflns_limit_ min hkl 0. 0. -1. TEST1: Expected hkl limits for theta max Calculated maximum hkl 15. 11. 27. Calculated minimum hkl -15. -11. -27. REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 24.97 From the CIF: _reflns_number_total 2784 Count of symmetry unique reflns 2649 Completeness (_total/calc) 105.10% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 135 Fraction of Friedel pairs measured 0.051 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 19
1 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 22 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 13 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Glycine, the simplest amino acid, readily forms coordination complexes with many inorganic acids. Calcium has unique biological functions such as contraction of the muscle, mitochondrial functions, activation of enzymes, passage through cell membrances and other biological processes (Kretsinger & Nelson, 1976).

A systematic study on glycine-calcium coordination complexes were carried out from our laboratory (Natarajan, 1976) and the structures of bis(glycine) calcium(II) dichloride tetrahydrate (Natarajan & Mohana Rao, 1980), tris(glycine) calcium(II) dibromide (Mohana Rao & Natarajan, 1980), tris(glycine) calcium(II) diiodide monohydrate (Natarajan & Mohana Rao, 1981) and tris(glycine) calcium (II) dichloride (Ravikumar et al., 1986) were already reported. Here, the crystal structure of another complex of glycine is presented.

The asymmetric unit of the title compound, (I), contains two calcium(II) cations, four glycine zwitterions, six water molecules and four iodine anions (Fig. 1). The zwitterionic nature of glycine is evident from the C—O and C—N bond distances. The back bone conformation angles are observed to be cis and trans forms in all the glycine zwitterions. Each calcium(II) is linked to four glycine oxygen atoms and three water oxygen atoms, leading to a sevenfold coordination. The calcium(II) ion surrounded by four glycine O atoms, within a square planar geometry. Water O atoms are oriented above and below this square-plane. One halve of the polyhedra is a square pyrimidal in which the square plane is capped by one water molecule and the other halve is a square prism with two water molecules above the square plane. The Ca(II) cations are connected by the glycine molecules into chains which elongate in the direction of the a axis (Fig. 2)..

Eventhough the metal coordination dominates, the crystal structure is further stabilized by three dimensional hydrogen bonding (Table 2). The iodine anions are acting as acceptors for N—H···I and O—H···I hydrogen bonds The amino groups of the glycine molecules are involved in three two-centered hydrogen bonds leading to class I hydrogen bonding pattern.

Related literature top

For related literature on glycine-metal complexes, see: Natarajan, (1976); Natarajan & Mohana Rao (1980); Mohana Rao & Natarajan (1980); Natarajan & Mohana Rao (1981) & Ravikumar et al., (1986) and on values of bond lengths and angles, see: Allen (2002). For the information about the importance of calcium in biological systems, see Kretsinger & Nelson, (1976)

Experimental top

The title compound, (I), was crystallized from an aqueous solution containing glycine and calcium(II) diiodide, in the stochiometric ratio of 2:1, at room temperature, by the technique of slow evaporation.

Refinement top

Not all of the N—H H atoms were located in difference map but the zwitterionic nature of the glycine molecule is evident from the C—O and C—N bond distances. Thus, all the H atoms except water H atoms were positioned with idealized geometry and refined using a riding model, with C—H = 0.97 Å and N—H = 0.89 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom). The H atoms of the water molecules were located in the difference fourier map and refined with varying coordinates isotropically. The absolute structure was determined and 135 Friedel pairs have been measured.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC (Bruker, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme and 50% probability displacement ellipsoids. H bonds are shown as dashed lines.
[Figure 2] Fig. 2. Crystal structure of I, viewed down the b-axis. Hydrogen bonding is not shown for clarity.
catena-Poly[[[triaquacalcium(II)]-di-µ-glycine-κ4O:O'] diiodide] top
Crystal data top
[Ca(C2H5NO2)2(H2O)3]I2F(000) = 1888
Mr = 498.07Dx = 2.259 Mg m3
Dm = 2.24 (2) Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and bromoform
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 13.065 (8) Åθ = 10.4–12.9°
b = 9.861 (4) ŵ = 4.66 mm1
c = 22.731 (9) ÅT = 293 K
V = 2929 (2) Å3Block, colourless
Z = 80.24 × 0.19 × 0.15 mm
Data collection top
Nonius MACH-3 sealed-tube
diffractometer
2406 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.337, Tmax = 0.474l = 127
2784 measured reflections3 standard reflections every 60 min
2784 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0312P)2 + 1.5679P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.93 e Å3
2784 reflectionsΔρmin = 0.42 e Å3
342 parametersExtinction correction: SHELXTL/PC (Bruker, 2000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
19 restraintsExtinction coefficient: 0.00170 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 135 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (3)
Crystal data top
[Ca(C2H5NO2)2(H2O)3]I2V = 2929 (2) Å3
Mr = 498.07Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 13.065 (8) ŵ = 4.66 mm1
b = 9.861 (4) ÅT = 293 K
c = 22.731 (9) Å0.24 × 0.19 × 0.15 mm
Data collection top
Nonius MACH-3 sealed-tube
diffractometer
2784 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2406 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 0.474Rint = 0.000
2784 measured reflections3 standard reflections every 60 min
Refinement top
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.93 e Å3
S = 1.11Δρmin = 0.42 e Å3
2784 reflectionsAbsolute structure: Flack (1983), 135 Friedel pairs
342 parametersAbsolute structure parameter: 0.02 (3)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.35756 (8)0.41229 (10)0.39714 (7)0.0216 (2)
Ca20.41323 (8)0.90112 (10)0.40719 (6)0.0202 (2)
C10.3206 (4)0.6346 (6)0.4993 (3)0.0217 (12)
C20.2920 (5)0.6822 (5)0.5600 (3)0.0288 (16)
H2A0.31250.61450.58860.035*
H2B0.21830.69270.56240.035*
C30.3316 (4)0.1391 (6)0.4988 (3)0.0227 (13)
C40.3037 (5)0.1800 (5)0.5612 (3)0.0288 (16)
H4A0.33120.11440.58870.035*
H4B0.22980.18130.56550.035*
C50.4259 (4)0.1518 (6)0.3058 (3)0.0202 (12)
C60.4047 (5)0.1935 (5)0.2419 (3)0.0255 (13)
H6A0.33160.20480.23590.031*
H6B0.42880.12350.21530.031*
C70.4335 (4)0.6509 (6)0.3023 (3)0.0221 (13)
C80.4128 (5)0.6959 (5)0.2390 (3)0.0251 (13)
H8A0.33970.70170.23230.030*
H8B0.44120.63030.21170.030*
N10.3420 (4)0.8134 (4)0.5744 (3)0.0296 (12)
H1A0.32520.87490.54740.044*
H1B0.32120.84140.60960.044*
H1C0.40960.80250.57470.044*
N20.3458 (4)0.3167 (4)0.5744 (3)0.0292 (12)
H2C0.32470.37530.54720.044*
H2D0.32410.34350.60970.044*
H2E0.41390.31310.57420.044*
N30.4583 (4)0.3227 (4)0.2296 (3)0.0288 (12)
H3A0.52560.30970.23180.043*
H3B0.44200.35130.19370.043*
H3C0.43960.38460.25600.043*
N40.4604 (5)0.8292 (4)0.2294 (3)0.0293 (12)
H4C0.52810.82130.23190.044*
H4D0.44350.85980.19390.044*
H4E0.43830.88700.25670.044*
O10.3517 (4)0.7195 (4)0.4632 (2)0.0355 (10)
O20.3073 (3)0.5119 (4)0.4883 (2)0.0301 (10)
O30.3535 (4)0.2306 (4)0.4641 (2)0.0361 (10)
O40.3284 (3)0.0146 (4)0.4867 (2)0.0290 (10)
O50.4493 (3)0.2426 (4)0.34088 (18)0.0283 (9)
O60.4156 (3)0.0272 (4)0.31733 (19)0.0291 (10)
O70.4621 (4)0.7375 (4)0.33814 (19)0.0357 (10)
O80.4172 (3)0.5275 (4)0.3127 (2)0.0321 (10)
I10.32577 (3)0.93569 (4)0.721030 (18)0.03548 (13)
I20.32429 (3)0.44141 (4)0.721120 (18)0.03469 (12)
I30.43649 (3)0.42713 (4)0.079737 (17)0.03247 (12)
I40.43004 (3)0.93532 (4)0.079283 (19)0.03562 (12)
O1W0.5271 (4)0.4429 (6)0.4352 (2)0.0472 (13)
O2W0.2138 (4)0.2778 (6)0.3631 (3)0.0565 (15)
O3W0.2119 (3)0.5782 (5)0.3679 (2)0.0352 (10)
O4W0.2409 (3)0.8749 (5)0.3696 (2)0.0381 (10)
O5W0.5691 (4)0.8135 (5)0.4583 (3)0.0502 (14)
O6W0.5463 (3)1.0843 (4)0.4229 (2)0.0307 (10)
H1W0.531 (8)0.492 (11)0.469 (3)0.15 (5)*
H2W0.579 (4)0.437 (7)0.412 (3)0.06 (2)*
H3W0.175 (5)0.263 (9)0.395 (3)0.07 (3)*
H4W0.184 (6)0.324 (8)0.334 (3)0.09 (4)*
H5W0.198 (6)0.548 (7)0.329 (2)0.06 (2)*
H6W0.219 (6)0.669 (4)0.365 (3)0.05 (2)*
H7W0.182 (5)0.894 (10)0.392 (4)0.12 (4)*
H8W0.220 (5)0.911 (7)0.335 (2)0.05 (2)*
H9W0.563 (10)0.808 (10)0.498 (2)0.16 (6)*
H10W0.565 (5)0.721 (4)0.455 (4)0.05 (2)*
H11W0.546 (5)1.100 (7)0.460 (2)0.05 (2)*
H12W0.518 (5)1.162 (5)0.405 (3)0.05 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0268 (5)0.0221 (5)0.0158 (5)0.0007 (4)0.0028 (5)0.0002 (5)
Ca20.0252 (5)0.0184 (5)0.0172 (5)0.0015 (4)0.0024 (5)0.0002 (5)
C10.025 (3)0.019 (3)0.022 (3)0.002 (2)0.002 (2)0.001 (3)
C20.033 (3)0.025 (3)0.029 (4)0.005 (2)0.008 (3)0.001 (2)
C30.026 (3)0.023 (3)0.019 (3)0.006 (2)0.000 (2)0.000 (3)
C40.031 (3)0.028 (3)0.028 (4)0.005 (2)0.005 (3)0.001 (2)
C50.020 (3)0.018 (3)0.023 (3)0.005 (2)0.008 (2)0.000 (2)
C60.036 (3)0.022 (3)0.019 (3)0.002 (2)0.004 (3)0.004 (2)
C70.025 (3)0.017 (3)0.024 (4)0.007 (2)0.010 (3)0.000 (3)
C80.029 (3)0.022 (3)0.024 (4)0.002 (2)0.000 (3)0.006 (2)
N10.043 (3)0.020 (2)0.026 (3)0.0022 (18)0.004 (3)0.004 (2)
N20.046 (3)0.023 (3)0.019 (3)0.0089 (19)0.002 (3)0.002 (2)
N30.048 (3)0.024 (3)0.014 (3)0.006 (2)0.003 (3)0.001 (2)
N40.049 (3)0.021 (2)0.017 (3)0.003 (2)0.003 (3)0.001 (2)
O10.057 (3)0.028 (2)0.022 (2)0.004 (2)0.009 (2)0.004 (2)
O20.045 (2)0.018 (2)0.028 (2)0.0014 (18)0.0062 (19)0.0009 (19)
O30.061 (3)0.026 (2)0.021 (2)0.006 (2)0.006 (2)0.006 (2)
O40.038 (2)0.021 (2)0.028 (3)0.0011 (16)0.0073 (19)0.0024 (19)
O50.048 (2)0.021 (2)0.016 (2)0.0006 (18)0.0002 (19)0.0008 (17)
O60.043 (2)0.022 (2)0.023 (2)0.0017 (18)0.0002 (19)0.0042 (18)
O70.064 (3)0.022 (2)0.021 (2)0.001 (2)0.002 (2)0.0025 (18)
O80.043 (2)0.024 (2)0.029 (3)0.0011 (18)0.006 (2)0.005 (2)
I10.0308 (2)0.0491 (3)0.0266 (2)0.00419 (16)0.00330 (18)0.0049 (2)
I20.0313 (2)0.0459 (2)0.0269 (2)0.00344 (15)0.00259 (17)0.0064 (2)
I30.0314 (2)0.0413 (2)0.0248 (2)0.00207 (15)0.00133 (19)0.0039 (2)
I40.0296 (2)0.0507 (3)0.0265 (2)0.00068 (16)0.0012 (2)0.0064 (2)
O1W0.032 (3)0.085 (4)0.024 (2)0.002 (2)0.005 (2)0.012 (3)
O2W0.046 (3)0.058 (3)0.065 (4)0.018 (3)0.015 (3)0.009 (3)
O3W0.037 (2)0.038 (2)0.030 (3)0.0003 (19)0.002 (2)0.006 (2)
O4W0.031 (2)0.055 (3)0.028 (3)0.000 (2)0.001 (2)0.007 (2)
O5W0.049 (3)0.049 (3)0.053 (4)0.008 (2)0.004 (3)0.016 (3)
O6W0.033 (2)0.033 (2)0.026 (3)0.0022 (17)0.0013 (18)0.003 (2)
Geometric parameters (Å, º) top
Ca1—O32.352 (4)C7—O71.239 (8)
Ca1—O82.362 (5)C7—O81.258 (7)
Ca1—O22.386 (5)C7—C81.529 (9)
Ca1—O1W2.397 (5)C8—N41.469 (7)
Ca1—O52.423 (4)C8—H8A0.9700
Ca1—O2W2.427 (5)C8—H8B0.9700
Ca1—O3W2.596 (5)N1—H1A0.8900
Ca2—O72.339 (4)N1—H1B0.8900
Ca2—O12.340 (4)N1—H1C0.8900
Ca2—O6i2.391 (4)N2—H2C0.8900
Ca2—O4i2.398 (4)N2—H2D0.8900
Ca2—O4W2.423 (5)N2—H2E0.8900
Ca2—O5W2.499 (6)N3—H3A0.8900
Ca2—O6W2.533 (5)N3—H3B0.8900
C1—O11.240 (7)N3—H3C0.8900
C1—O21.248 (7)N4—H4C0.8900
C1—C21.505 (9)N4—H4D0.8900
C2—N11.485 (7)N4—H4E0.8900
C2—H2A0.9700O4—Ca2ii2.398 (4)
C2—H2B0.9700O6—Ca2ii2.391 (4)
C3—O31.231 (7)O1W—H1W0.90 (5)
C3—O41.259 (7)O1W—H2W0.86 (4)
C3—C41.519 (9)O2W—H3W0.90 (4)
C4—N21.486 (7)O2W—H4W0.89 (4)
C4—H4A0.9700O3W—H5W0.94 (4)
C4—H4B0.9700O3W—H6W0.90 (4)
C5—O51.237 (7)O4W—H7W0.94 (5)
C5—O61.264 (7)O4W—H8W0.90 (4)
C5—C61.535 (8)O5W—H9W0.92 (5)
C6—N31.481 (7)O5W—H10W0.92 (4)
C6—H6A0.9700O6W—H11W0.86 (4)
C6—H6B0.9700O6W—H12W0.94 (4)
O3—Ca1—O8154.10 (16)N3—C6—H6A109.9
O3—Ca1—O275.24 (15)C5—C6—H6A109.9
O8—Ca1—O2126.78 (14)N3—C6—H6B109.9
O3—Ca1—O1W83.28 (18)C5—C6—H6B109.9
O8—Ca1—O1W85.87 (17)H6A—C6—H6B108.3
O2—Ca1—O1W83.63 (17)O7—C7—O8126.5 (6)
O3—Ca1—O580.00 (15)O7—C7—C8118.1 (5)
O8—Ca1—O574.94 (14)O8—C7—C8115.4 (5)
O2—Ca1—O5151.50 (15)N4—C8—C7109.0 (5)
O1W—Ca1—O579.64 (17)N4—C8—H8A109.9
O3—Ca1—O2W76.9 (2)C7—C8—H8A109.9
O8—Ca1—O2W105.0 (2)N4—C8—H8B109.9
O2—Ca1—O2W106.8 (2)C7—C8—H8B109.9
O1W—Ca1—O2W154.1 (2)H8A—C8—H8B108.3
O5—Ca1—O2W80.62 (19)C2—N1—H1A109.5
O3—Ca1—O3W129.02 (16)C2—N1—H1B109.5
O8—Ca1—O3W74.37 (16)H1A—N1—H1B109.5
O2—Ca1—O3W76.21 (15)C2—N1—H1C109.5
O1W—Ca1—O3W133.69 (17)H1A—N1—H1C109.5
O5—Ca1—O3W131.48 (15)H1B—N1—H1C109.5
O2W—Ca1—O3W72.24 (18)C4—N2—H2C109.5
O7—Ca2—O186.05 (16)C4—N2—H2D109.5
O7—Ca2—O6i77.39 (15)H2C—N2—H2D109.5
O1—Ca2—O6i150.14 (16)C4—N2—H2E109.5
O7—Ca2—O4i162.50 (15)H2C—N2—H2E109.5
O1—Ca2—O4i77.75 (15)H2D—N2—H2E109.5
O6i—Ca2—O4i114.06 (15)C6—N3—H3A109.5
O7—Ca2—O4W86.73 (17)C6—N3—H3B109.5
O1—Ca2—O4W77.96 (16)H3A—N3—H3B109.5
O6i—Ca2—O4W76.46 (16)C6—N3—H3C109.5
O4i—Ca2—O4W83.48 (16)H3A—N3—H3C109.5
O7—Ca2—O5W81.4 (2)H3B—N3—H3C109.5
O1—Ca2—O5W76.25 (17)C8—N4—H4C109.5
O6i—Ca2—O5W124.48 (18)C8—N4—H4D109.5
O4i—Ca2—O5W100.82 (19)H4C—N4—H4D109.5
O4W—Ca2—O5W152.23 (17)C8—N4—H4E109.5
O7—Ca2—O6W113.54 (15)H4C—N4—H4E109.5
O1—Ca2—O6W134.82 (16)H4D—N4—H4E109.5
O6i—Ca2—O6W74.98 (15)C1—O1—Ca2171.5 (4)
O4i—Ca2—O6W83.00 (14)C1—O2—Ca1122.3 (4)
O4W—Ca2—O6W139.82 (16)C3—O3—Ca1167.8 (4)
O5W—Ca2—O6W67.76 (16)C3—O4—Ca2ii127.1 (4)
O1—C1—O2124.6 (6)C5—O5—Ca1135.8 (4)
O1—C1—C2118.5 (5)C5—O6—Ca2ii133.1 (4)
O2—C1—C2116.8 (5)C7—O7—Ca2146.6 (4)
N1—C2—C1111.4 (5)C7—O8—Ca1132.4 (4)
N1—C2—H2A109.4Ca1—O1W—H1W115 (7)
C1—C2—H2A109.4Ca1—O1W—H2W121 (5)
N1—C2—H2B109.4H1W—O1W—H2W120 (7)
C1—C2—H2B109.4Ca1—O2W—H3W106 (5)
H2A—C2—H2B108.0Ca1—O2W—H4W107 (6)
O3—C3—O4125.6 (6)H3W—O2W—H4W116 (7)
O3—C3—C4117.3 (5)Ca1—O3W—H5W100 (4)
O4—C3—C4117.0 (5)Ca1—O3W—H6W125 (5)
N2—C4—C3109.9 (5)H5W—O3W—H6W105 (6)
N2—C4—H4A109.7Ca2—O4W—H7W123 (6)
C3—C4—H4A109.7Ca2—O4W—H8W123 (5)
N2—C4—H4B109.7H7W—O4W—H8W99 (6)
C3—C4—H4B109.7Ca2—O5W—H9W114 (8)
H4A—C4—H4B108.2Ca2—O5W—H10W106 (5)
O5—C5—O6126.6 (6)H9W—O5W—H10W90 (6)
O5—C5—C6117.4 (5)Ca2—O6W—H11W105 (5)
O6—C5—C6115.9 (5)Ca2—O6W—H12W105 (4)
N3—C6—C5108.9 (5)H11W—O6W—H12W106 (6)
O1—C1—C2—N121.7 (8)O2W—Ca1—O3—C342 (2)
O2—C1—C2—N1160.9 (5)O3W—Ca1—O3—C312 (2)
O3—C3—C4—N221.5 (8)O3—C3—O4—Ca2ii22.0 (8)
O4—C3—C4—N2159.8 (5)C4—C3—O4—Ca2ii159.4 (4)
O5—C5—C6—N324.0 (7)O6—C5—O5—Ca198.4 (7)
O6—C5—C6—N3157.3 (5)C6—C5—O5—Ca180.2 (7)
O7—C7—C8—N416.5 (7)O3—Ca1—O5—C588.7 (6)
O8—C7—C8—N4164.9 (5)O8—Ca1—O5—C597.9 (6)
O2—C1—O1—Ca2169 (2)O2—Ca1—O5—C5118.6 (6)
C2—C1—O1—Ca214 (3)O1W—Ca1—O5—C5173.6 (6)
O7—Ca2—O1—C1157 (3)O2W—Ca1—O5—C510.5 (6)
O6i—Ca2—O1—C1147 (3)O3W—Ca1—O5—C545.5 (6)
O4i—Ca2—O1—C130 (3)O5—C5—O6—Ca2ii8.6 (9)
O4W—Ca2—O1—C1116 (3)C6—C5—O6—Ca2ii170.0 (4)
O5W—Ca2—O1—C175 (3)O8—C7—O7—Ca289.7 (9)
O6W—Ca2—O1—C137 (3)C8—C7—O7—Ca288.7 (8)
O1—C1—O2—Ca16.9 (8)O1—Ca2—O7—C766.8 (8)
C2—C1—O2—Ca1175.9 (4)O6i—Ca2—O7—C788.1 (8)
O3—Ca1—O2—C1156.4 (4)O4i—Ca2—O7—C744.7 (11)
O8—Ca1—O2—C18.3 (5)O4W—Ca2—O7—C711.3 (8)
O1W—Ca1—O2—C171.7 (4)O5W—Ca2—O7—C7143.5 (8)
O5—Ca1—O2—C1125.9 (4)O6W—Ca2—O7—C7155.4 (7)
O2W—Ca1—O2—C1132.5 (4)O7—C7—O8—Ca131.9 (9)
O3W—Ca1—O2—C166.3 (4)C8—C7—O8—Ca1146.5 (4)
O4—C3—O3—Ca1101 (2)O3—Ca1—O8—C7142.7 (5)
C4—C3—O3—Ca177 (2)O2—Ca1—O8—C71.6 (6)
O8—Ca1—O3—C3139 (2)O1W—Ca1—O8—C777.3 (5)
O2—Ca1—O3—C370 (2)O5—Ca1—O8—C7157.7 (5)
O1W—Ca1—O3—C3155 (2)O2W—Ca1—O8—C7126.6 (5)
O5—Ca1—O3—C3124 (2)O3W—Ca1—O8—C760.3 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.952.817 (7)165
N1—H1B···I10.892.703.551 (7)161
N1—H1C···I3iii0.893.033.743 (5)139
N2—H2C···O20.891.912.790 (7)169
N2—H2D···I20.892.713.566 (6)161
N2—H2E···I4iii0.893.193.842 (6)132
N3—H3A···I1iv0.893.113.806 (6)136
N3—H3B···I30.892.703.570 (6)167
N3—H3C···O80.891.932.817 (7)173
N4—H4C···I2iv0.893.243.882 (5)131
N4—H4D···I40.892.723.592 (6)168
N4—H4E···O6i0.891.972.854 (7)170
O1W—H1W···I3iii0.90 (5)2.68 (6)3.559 (5)164 (11)
O1W—H2W···O3Wv0.86 (4)2.01 (4)2.866 (7)173 (7)
O2W—H3W···O5Wvi0.90 (4)2.13 (5)3.011 (10)166 (8)
O2W—H4W···I2vii0.89 (4)2.81 (6)3.641 (7)154 (7)
O3W—H5W···I2vii0.94 (4)2.69 (4)3.629 (5)174 (6)
O3W—H6W···O4W0.90 (4)2.06 (4)2.951 (7)172 (7)
O4W—H7W···O6Wviii0.94 (5)1.92 (5)2.845 (6)167 (9)
O4W—H8W···I1vii0.90 (4)2.67 (5)3.538 (5)161 (6)
O5W—H9W···I3iii0.92 (5)2.96 (9)3.641 (6)132 (8)
O6W—H11W···I4ix0.86 (4)2.75 (5)3.573 (5)161 (6)
O6W—H12W···O5i0.94 (4)1.89 (5)2.742 (6)150 (6)
Symmetry codes: (i) x, y+1, z; (iii) x+1, y+1, z1/2; (iv) x+1, y+1, z+1/2; (v) x+1/2, y+1, z; (vi) x1/2, y+1, z; (vii) x+1/2, y, z+1/2; (viii) x1/2, y+2, z; (ix) x+1, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Ca(C2H5NO2)2(H2O)3]I2
Mr498.07
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)13.065 (8), 9.861 (4), 22.731 (9)
V3)2929 (2)
Z8
Radiation typeMo Kα
µ (mm1)4.66
Crystal size (mm)0.24 × 0.19 × 0.15
Data collection
DiffractometerNonius MACH-3 sealed-tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.337, 0.474
No. of measured, independent and
observed [I > 2σ(I)] reflections
2784, 2784, 2406
Rint0.000
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.057, 1.11
No. of reflections2784
No. of parameters342
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.42
Absolute structureFlack (1983), 135 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL/PC (Bruker, 2000), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Ca1—O32.352 (4)Ca2—O6W2.533 (5)
Ca1—O82.362 (5)C1—O11.240 (7)
Ca1—O22.386 (5)C1—O21.248 (7)
Ca1—O1W2.397 (5)C2—N11.485 (7)
Ca1—O52.423 (4)C3—O31.231 (7)
Ca1—O2W2.427 (5)C3—O41.259 (7)
Ca1—O3W2.596 (5)C4—N21.486 (7)
Ca2—O72.339 (4)C5—O51.237 (7)
Ca2—O12.340 (4)C5—O61.264 (7)
Ca2—O6i2.391 (4)C6—N31.481 (7)
Ca2—O4i2.398 (4)C7—O71.239 (8)
Ca2—O4W2.423 (5)C7—O81.258 (7)
Ca2—O5W2.499 (6)C8—N41.469 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.952.817 (7)164.5
N1—H1B···I10.892.703.551 (7)160.9
N1—H1C···I3ii0.893.033.743 (5)138.5
N2—H2C···O20.891.912.790 (7)168.5
N2—H2D···I20.892.713.566 (6)161.2
N2—H2E···I4ii0.893.193.842 (6)132.0
N3—H3A···I1iii0.893.113.806 (6)136.4
N3—H3B···I30.892.703.570 (6)167.3
N3—H3C···O80.891.932.817 (7)172.5
N4—H4C···I2iii0.893.243.882 (5)131.0
N4—H4D···I40.892.723.592 (6)168.4
N4—H4E···O6i0.891.972.854 (7)169.5
O1W—H1W···I3ii0.90 (5)2.68 (6)3.559 (5)164 (11)
O1W—H2W···O3Wiv0.86 (4)2.01 (4)2.866 (7)173 (7)
O2W—H3W···O5Wv0.90 (4)2.13 (5)3.011 (10)166 (8)
O2W—H4W···I2vi0.89 (4)2.81 (6)3.641 (7)154 (7)
O3W—H5W···I2vi0.94 (4)2.69 (4)3.629 (5)174 (6)
O3W—H6W···O4W0.90 (4)2.06 (4)2.951 (7)172 (7)
O4W—H7W···O6Wvii0.94 (5)1.92 (5)2.845 (6)167 (9)
O4W—H8W···I1vi0.90 (4)2.67 (5)3.538 (5)161 (6)
O5W—H9W···I3ii0.92 (5)2.96 (9)3.641 (6)132 (8)
O6W—H11W···I4viii0.86 (4)2.75 (5)3.573 (5)161 (6)
O6W—H12W···O5i0.94 (4)1.89 (5)2.742 (6)150 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z1/2; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+1, z; (v) x1/2, y+1, z; (vi) x+1/2, y, z+1/2; (vii) x1/2, y+2, z; (viii) x+1, y+2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds