Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, CH5N4O2+·CH6N3+·2NO3, consists of alternating layers of guanidinium and nitro­guanidinium cations, these cations being parallel to each other within the layers and perpendicular in adjacent layers. The layers are connected by N—H...O hydrogen bonds to nitrate anions, forming an infinite three-dimensional framework. These hydrogen-bond patterns are closely related to those of guanidinium nitrate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026451/nc2037sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026451/nc2037Isup2.hkl
Contains datablock I

CCDC reference: 654873

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](N-C) = 0.003 Å
  • R factor = 0.028
  • wR factor = 0.054
  • Data-to-parameter ratio = 7.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.74 PLAT230_ALERT_2_C Hirshfeld Test Diff for O8 - N9 .. 6.51 su PLAT352_ALERT_3_C Short N-H Bond (0.87A) N8 - H10 ... 0.74 Ang. PLAT352_ALERT_3_C Short N-H Bond (0.87A) N2 - H2A ... 0.74 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2B .. O3 .. 2.63 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 29.99 From the CIF: _reflns_number_total 1586 Count of symmetry unique reflns 1592 Completeness (_total/calc) 99.62% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: General: None of the coauthors has formal training as a crystallographer, therefore the efforts of many individuals were required to arrive at a satisfactory solution and to meaningfully discuss the result. Steinhauser: Synthesis, principal author of the paper, discussion of the molecular aspects of the solution. Crawford: Guidance concerning experimental setup and synthesis including isolation of the crystals. Darwich: Extensive discussion concerning interionic interactions, graph-set analysis of H-bonding, editor of the text. Klapoetke: Head of the department, financial funding, final proof-reading of the paper. Miro Sabate: Author of the figures, discussion concerning literature data and H-bonding, discussion of solution and refinement as well as appropriateness of the chosen space group. Welch: Solution and refinement of the structure, discussion of the structural parameters and appropriateness of the solution.

1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

Guanidinium and nitroguanidinium compounds are objects of investigation for a possible application as energetic materials (e.g., Hiskey et al., 2005; Pace & Flippen-Anderson, 1984). The crystal structures of guanidinium nitrate (GN) (Katrusiak & Szafrański, 1994, 1996) and nitroguanidinium nitrate (NGN) (Pace & Flippen-Anderson, 1984) have been determined previously. Here, we report the structure of a new nitroguanidinium nitrate-guanidinium nitrate (NGN-GN) double salt.

As for every potential energetic material, a high density is desired. The density of NGN-GN – 1.757 g.cm-3 (100 K) – is comparable to that of NGN (1.80 g.cm-3; Pace & Flippen-Anderson, 1984), and significantly higher than that of the three phases of GN (GN1, GN2 and GN3). The respective densities are for GN1: 1.458 g.cm-3 (153 K), 1.443 g.cm-3 (185 K), 1.421 g.cm-3 (257 K), 1.410 g.cm-3 (291 K), for GN2: 1.444 g.cm-3 (292 K), and for GN3: 1.400 (391 K) (Katrusiak & Szafrański, 1996).

NGN-GN contains one guanidinium and one nitroguanidinium ion and two nitrate counter-ions. The compound consists of alternating, perpendicular layers of guanidinium and nitroguanidinium cations.

The bond lengths in the guanidinium ion are similar to those found in guanidinium chloride (Haas et al., 1965). The geometry of the nitroguanidinium ion is similar to that in Bryden et al. (1956) and Pace & Flippen-Anderson (1984).

H-bonds in NGN-GN are medium to weak according to Jeffrey (1997). The only ring pattern observed is R2,2(8), and a variety of chain patterns are also observed: C2,2(6), C2,2(8) and C1,2(6) (Bernstein et al., 1995). An intramolecular H-bond is also present (N8–H10···O7).

Related literature top

For related literature and structures, see: Bryden et al. (1956); Haas et al. (1965); Hiskey et al. (2005); Katrusiak & Szafrański (1994, 1996); Pace & Flippen-Anderson (1984).

For related literature, see: Bernstein et al. (1995); Jeffrey (1997).

Experimental top

NGN-GN formed in a side reaction using 4.00 g (17 mmol) copper(II) nitrate pentahemihydrate, 6.30 g GN (52 mmol) and 4.5 ml of concentrated HNO3 at 373 K. Single crystals of the compound were obtained upon evaporation of HNO3.

Refinement top

Because no strong anomalously scattering atoms are present the absolute structure cannot be determined and therefore, Friedel opposites were merged in the refinement.

H atoms were located in Fourier difference maps and their coordinates were refined with Uiso fixed at 0.03 Å.

Structure description top

Guanidinium and nitroguanidinium compounds are objects of investigation for a possible application as energetic materials (e.g., Hiskey et al., 2005; Pace & Flippen-Anderson, 1984). The crystal structures of guanidinium nitrate (GN) (Katrusiak & Szafrański, 1994, 1996) and nitroguanidinium nitrate (NGN) (Pace & Flippen-Anderson, 1984) have been determined previously. Here, we report the structure of a new nitroguanidinium nitrate-guanidinium nitrate (NGN-GN) double salt.

As for every potential energetic material, a high density is desired. The density of NGN-GN – 1.757 g.cm-3 (100 K) – is comparable to that of NGN (1.80 g.cm-3; Pace & Flippen-Anderson, 1984), and significantly higher than that of the three phases of GN (GN1, GN2 and GN3). The respective densities are for GN1: 1.458 g.cm-3 (153 K), 1.443 g.cm-3 (185 K), 1.421 g.cm-3 (257 K), 1.410 g.cm-3 (291 K), for GN2: 1.444 g.cm-3 (292 K), and for GN3: 1.400 (391 K) (Katrusiak & Szafrański, 1996).

NGN-GN contains one guanidinium and one nitroguanidinium ion and two nitrate counter-ions. The compound consists of alternating, perpendicular layers of guanidinium and nitroguanidinium cations.

The bond lengths in the guanidinium ion are similar to those found in guanidinium chloride (Haas et al., 1965). The geometry of the nitroguanidinium ion is similar to that in Bryden et al. (1956) and Pace & Flippen-Anderson (1984).

H-bonds in NGN-GN are medium to weak according to Jeffrey (1997). The only ring pattern observed is R2,2(8), and a variety of chain patterns are also observed: C2,2(6), C2,2(8) and C1,2(6) (Bernstein et al., 1995). An intramolecular H-bond is also present (N8–H10···O7).

For related literature and structures, see: Bryden et al. (1956); Haas et al. (1965); Hiskey et al. (2005); Katrusiak & Szafrański (1994, 1996); Pace & Flippen-Anderson (1984).

For related literature, see: Bernstein et al. (1995); Jeffrey (1997).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and ORTEP-3.

Figures top
[Figure 1] Fig. 1. Molecular structure of NGN-GN with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of NGN-GN showing the layers of guanidinium alternating with layers of nitroguanidinium (the nitroguanidinium cations are eclipsed by the guanidinum ions on the subsequent layer).
nitroguanidinium nitrate–guanidinium nitrate (1/1) top
Crystal data top
CH5N4O2+·CH6N3+·2NO3Z = 4
Mr = 289.17F(000) = 600
Monoclinic, CcDx = 1.756 Mg m3
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 12.7337 (11) Åθ = 4.1–30.0°
b = 6.9096 (6) ŵ = 0.17 mm1
c = 13.7852 (13) ÅT = 100 K
β = 115.623 (11)°Block, colorless
V = 1093.6 (2) Å30.29 × 0.2 × 0.17 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD area-detector
diffractometer
1586 independent reflections
Radiation source: fine-focus sealed tube1116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scanθmax = 30.0°, θmin = 4.1°
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006 or???2005)
h = 1716
Tmin = 0.894, Tmax = 0.970k = 99
4546 measured reflectionsl = 1916
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 0.88Δρmax = 0.16 e Å3
1586 reflectionsΔρmin = 0.21 e Å3
205 parameters
Crystal data top
CH5N4O2+·CH6N3+·2NO3V = 1093.6 (2) Å3
Mr = 289.17Z = 4
Monoclinic, CcMo Kα radiation
a = 12.7337 (11) ŵ = 0.17 mm1
b = 6.9096 (6) ÅT = 100 K
c = 13.7852 (13) Å0.29 × 0.2 × 0.17 mm
β = 115.623 (11)°
Data collection top
Oxford Diffraction Xcalibur3 CCD area-detector
diffractometer
1586 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006 or???2005)
1116 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.970Rint = 0.029
4546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.054Only H-atom coordinates refined
S = 0.88Δρmax = 0.16 e Å3
1586 reflectionsΔρmin = 0.21 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08343 (17)0.1042 (3)0.20399 (16)0.0172 (4)
C20.34933 (15)0.2984 (3)0.14373 (16)0.0161 (4)
N10.18538 (15)0.0198 (3)0.26283 (17)0.0221 (4)
N20.03241 (17)0.2099 (3)0.25130 (16)0.0214 (4)
N30.03384 (16)0.0827 (3)0.09806 (15)0.0188 (4)
N40.24964 (13)0.8432 (3)0.03346 (13)0.0179 (4)
N50.01983 (14)0.5459 (3)0.02710 (14)0.0172 (4)
N60.30525 (15)0.2977 (3)0.03790 (14)0.0185 (4)
N70.28239 (16)0.3904 (3)0.18546 (14)0.0192 (4)
N80.44917 (14)0.2152 (3)0.20268 (15)0.0186 (4)
N90.31847 (14)0.4428 (3)0.29147 (14)0.0196 (4)
O10.06327 (12)0.5503 (2)0.07493 (11)0.0218 (4)
O20.07552 (12)0.6259 (2)0.08132 (11)0.0232 (4)
O30.07414 (12)0.4623 (2)0.07189 (11)0.0228 (4)
O40.14695 (12)0.9014 (2)0.01956 (12)0.0224 (4)
O50.30983 (12)0.7982 (2)0.01384 (12)0.0272 (4)
O60.29080 (12)0.8303 (2)0.13394 (12)0.0250 (4)
O70.41354 (12)0.3896 (2)0.35785 (12)0.0240 (4)
O80.24830 (12)0.5406 (2)0.30883 (12)0.0249 (4)
H1A0.217 (2)0.040 (4)0.332 (2)0.030*
H1B0.221 (2)0.049 (4)0.237 (2)0.030*
H2A0.026 (2)0.251 (4)0.217 (2)0.030*
H2B0.064 (2)0.216 (4)0.322 (2)0.030*
H3A0.031 (2)0.144 (3)0.065 (2)0.030*
H3B0.071 (2)0.029 (4)0.067 (2)0.030*
H70.347 (2)0.241 (4)0.010 (2)0.030*
H80.247 (2)0.366 (4)0.002 (2)0.030*
H90.486 (2)0.162 (4)0.170 (2)0.030*
H100.472 (2)0.206 (4)0.262 (2)0.030*
H110.219 (2)0.450 (4)0.143 (2)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (9)0.0184 (11)0.0169 (11)0.0031 (9)0.0092 (9)0.0016 (9)
C20.0173 (10)0.0144 (10)0.0167 (11)0.0025 (8)0.0075 (9)0.0022 (9)
N10.0169 (8)0.0331 (12)0.0146 (9)0.0037 (8)0.0053 (7)0.0008 (9)
N20.0197 (9)0.0282 (11)0.0141 (9)0.0051 (8)0.0052 (8)0.0002 (9)
N30.0182 (9)0.0231 (10)0.0126 (9)0.0049 (8)0.0043 (7)0.0006 (8)
N40.0167 (9)0.0192 (9)0.0166 (10)0.0025 (7)0.0061 (8)0.0009 (8)
N50.0130 (8)0.0206 (10)0.0163 (10)0.0022 (7)0.0048 (7)0.0008 (8)
N60.0187 (9)0.0233 (10)0.0114 (9)0.0021 (7)0.0047 (7)0.0005 (8)
N70.0143 (8)0.0281 (10)0.0128 (10)0.0023 (7)0.0036 (7)0.0008 (8)
N80.0170 (8)0.0262 (10)0.0131 (8)0.0024 (8)0.0070 (7)0.0017 (9)
N90.0213 (10)0.0238 (10)0.0124 (9)0.0043 (7)0.0060 (8)0.0013 (8)
O10.0197 (7)0.0304 (9)0.0130 (8)0.0030 (7)0.0050 (6)0.0013 (7)
O20.0151 (7)0.0295 (8)0.0205 (8)0.0026 (7)0.0033 (6)0.0028 (7)
O30.0194 (7)0.0291 (8)0.0192 (8)0.0030 (7)0.0078 (7)0.0025 (7)
O40.0156 (7)0.0307 (9)0.0175 (8)0.0042 (6)0.0041 (6)0.0010 (7)
O50.0219 (8)0.0424 (10)0.0206 (9)0.0074 (7)0.0123 (7)0.0028 (8)
O60.0189 (7)0.0390 (10)0.0160 (8)0.0042 (7)0.0066 (6)0.0005 (7)
O70.0167 (7)0.0375 (9)0.0156 (8)0.0007 (7)0.0049 (6)0.0002 (7)
O80.0249 (7)0.0314 (8)0.0218 (8)0.0031 (7)0.0134 (6)0.0031 (8)
Geometric parameters (Å, º) top
C1—N21.322 (3)N4—O61.254 (2)
C1—N31.325 (3)N4—O41.257 (2)
C1—N11.332 (3)N5—O21.246 (2)
C2—N81.309 (3)N5—O31.250 (2)
C2—N61.317 (3)N5—O11.270 (2)
C2—N71.373 (3)N6—H70.87 (3)
N1—H1A0.87 (3)N6—H80.84 (3)
N1—H1B0.84 (3)N7—N91.377 (2)
N2—H2A0.75 (2)N7—H110.87 (3)
N2—H2B0.88 (3)N8—H90.87 (3)
N3—H3A0.86 (2)N8—H100.74 (3)
N3—H3B0.84 (3)N9—O71.216 (2)
N4—O51.241 (2)N9—O81.224 (2)
N2—C1—N3120.3 (2)O6—N4—O4119.86 (18)
N2—C1—N1120.0 (2)O2—N5—O3120.81 (18)
N3—C1—N1119.8 (2)O2—N5—O1119.89 (19)
N8—C2—N6121.4 (2)O3—N5—O1119.30 (17)
N8—C2—N7123.7 (2)C2—N6—H7116.1 (16)
N6—C2—N7114.90 (18)C2—N6—H8119.8 (19)
C1—N1—H1A117.5 (17)H7—N6—H8123 (3)
C1—N1—H1B123.9 (17)C2—N7—N9125.70 (17)
H1A—N1—H1B119 (2)C2—N7—H11120.4 (18)
C1—N2—H2A118 (2)N9—N7—H11111.8 (18)
C1—N2—H2B119.0 (17)C2—N8—H9117.6 (16)
H2A—N2—H2B122 (3)C2—N8—H10123 (2)
C1—N3—H3A114.5 (17)H9—N8—H10119 (3)
C1—N3—H3B120.1 (18)O7—N9—O8126.37 (18)
H3A—N3—H3B125 (3)O7—N9—N7119.05 (18)
O5—N4—O6120.27 (16)O8—N9—N7114.58 (16)
O5—N4—O4119.87 (17)
N8—C2—N7—N913.7 (3)C2—N7—N9—O77.4 (3)
N6—C2—N7—N9166.8 (2)C2—N7—N9—O8172.97 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.87 (3)2.59 (3)3.287 (3)138 (2)
N1—H1A···O5i0.87 (3)2.23 (3)3.058 (3)157 (2)
N1—H1B···O6ii0.84 (3)2.14 (3)2.956 (3)164 (2)
N2—H2B···O3i0.88 (3)2.63 (3)3.199 (3)123 (2)
N2—H2B···O4i0.88 (3)2.13 (3)2.952 (2)155 (2)
N2—H2A···O6iii0.75 (2)2.17 (3)2.910 (2)169 (3)
N3—H3B···O4ii0.84 (3)2.04 (3)2.880 (3)175 (3)
N3—H3A···O5iii0.86 (2)2.13 (2)2.988 (2)179 (2)
N6—H7···O2iv0.87 (3)2.07 (3)2.928 (3)170 (2)
N6—H8···O30.84 (3)2.09 (3)2.897 (2)161 (2)
N7—H11···O10.87 (3)1.92 (3)2.766 (2)165 (3)
N8—H9···O1iv0.87 (3)2.09 (3)2.954 (3)174 (2)
N8—H10···O3v0.74 (3)2.39 (3)3.069 (2)153 (3)
N8—H10···O70.74 (3)2.19 (3)2.660 (3)122 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaCH5N4O2+·CH6N3+·2NO3
Mr289.17
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)12.7337 (11), 6.9096 (6), 13.7852 (13)
β (°) 115.623 (11)
V3)1093.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.29 × 0.2 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD area-detector
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2006 or???2005)
Tmin, Tmax0.894, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
4546, 1586, 1116
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.054, 0.88
No. of reflections1586
No. of parameters205
No. of restraints2
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), SHELXL97 and ORTEP-3.

Selected geometric parameters (Å, º) top
C1—N21.322 (3)N4—O61.254 (2)
C1—N31.325 (3)N4—O41.257 (2)
C1—N11.332 (3)N7—N91.377 (2)
C2—N81.309 (3)N9—O71.216 (2)
C2—N61.317 (3)N9—O81.224 (2)
N4—O51.241 (2)
N2—C1—N3120.3 (2)O5—N4—O4119.87 (17)
N2—C1—N1120.0 (2)O6—N4—O4119.86 (18)
N3—C1—N1119.8 (2)C2—N7—N9125.70 (17)
N8—C2—N6121.4 (2)O7—N9—O8126.37 (18)
N8—C2—N7123.7 (2)O7—N9—N7119.05 (18)
N6—C2—N7114.90 (18)O8—N9—N7114.58 (16)
O5—N4—O6120.27 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.87 (3)2.59 (3)3.287 (3)138 (2)
N1—H1A···O5i0.87 (3)2.23 (3)3.058 (3)157 (2)
N1—H1B···O6ii0.84 (3)2.14 (3)2.956 (3)164 (2)
N2—H2B···O3i0.88 (3)2.63 (3)3.199 (3)123 (2)
N2—H2B···O4i0.88 (3)2.13 (3)2.952 (2)155 (2)
N2—H2A···O6iii0.75 (2)2.17 (3)2.910 (2)169 (3)
N3—H3B···O4ii0.84 (3)2.04 (3)2.880 (3)175 (3)
N3—H3A···O5iii0.86 (2)2.13 (2)2.988 (2)179 (2)
N6—H7···O2iv0.87 (3)2.07 (3)2.928 (3)170 (2)
N6—H8···O30.84 (3)2.09 (3)2.897 (2)161 (2)
N7—H11···O10.87 (3)1.92 (3)2.766 (2)165 (3)
N8—H9···O1iv0.87 (3)2.09 (3)2.954 (3)174 (2)
N8—H10···O3v0.74 (3)2.39 (3)3.069 (2)153 (3)
N8—H10···O70.74 (3)2.19 (3)2.660 (3)122 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds