Download citation
Download citation
link to html
X-ray diffraction techniques have been developed to measure flow stresses of polycrystalline sheet metal specimens subjected to large plastic deformation. The uncertainty in the measured stress based on this technique has not been quantified previously owing to the lack of an appropriate method. In this article, the propagation of four selected elements of experimental error is studied on the basis of the elasto-viscoplastic self-consistent modeling framework: (1) the counting statistics error; (2) the range of tilting angles in use; (3) the use of a finite number of tilting angles; and (4) the incomplete measurement of diffraction elastic constants. Uncertainties propagated to the diffraction stress are estimated by conducting virtual experiments based on the Monte Carlo method demonstrated for a rolled interstitial-free steel sheet. A systematic report on the quantitative uncertainty is provided. It is also demonstrated that the results of the Monte Carlo virtual experiments can be used to find an optimal number of tilting angles and diffraction elastic constant measurements to use without loss of quality.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds