Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title tetranuclear copper(II) complex, di­aqua­bis­[di­­meth­yl­glyoximato(2-)]­bis­[di­methyl­glyoximato(1-)]bis­(phenanthroline)­ tetracopper(II)bis[di­methylglyoximato(2-)]­bis­[di­methyl­glyoximato(1-)]bis­(phenanthroline)­tetracopper(II) tetraperchlorate methanol disolvate, [Cu4(dmg)2(Hdmg)2(phen)2(H2O)2][Cu4(dmg)2(Hdmg)2(phen)2](ClO4)4·2CH3OH (dmg = di­methyl­glyoximate and phen = 1,10-phenanthroline) or [Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2(H2O)2][Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2]<(ClO4)4·2CH4O, with cations containing dimethylglyoximato bridges, has been synthesized and its structure determined by X-ray single-crystal diffraction methods. The Cu atoms have two different coordination geometries, distorted square pyramidal and distorted square planar. There are two different cations, each lying on an inversion centre; one contains water molecules coordinated to two of the Cu atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013382/na6243sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013382/na6243Isup2.hkl
Contains datablock I

CCDC reference: 217386

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • H-atom completeness 92%
  • Disorder in solvent or counterion
  • R factor = 0.056
  • wR factor = 0.159
  • Data-to-parameter ratio = 11.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
PLAT_214 Alert A Atom O17' (Anion/Solvent) ADP max/min Ratio 6.20 prolat
Amber Alert Alert Level B:
SHFSU_01 Alert B The absolute value of parameter shift to su ratio > 0.10 Absolute value of the parameter shift to su ratio given 0.119 Additional refinement cycles may be required.
Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ......................... 29.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C82 H96 Cl4 Cu8 N24 O36 Atom count from _chemical_formula_moiety:C82 H96 Cl2 Cu8 N24 O28 FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C82 H96 Cl4 Cu8 N24 O36 Atom count from the _atom_site data: C82 H88 Cl4 Cu8 N24 O36 CELLZ_01 From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C82 H96 Cl4 Cu8 N24 O36 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 82.00 82.00 0.00 H 96.00 88.00 8.00 Cl 4.00 4.00 0.00 Cu 8.00 8.00 0.00 N 24.00 24.00 0.00 O 36.00 36.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?
1 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

It is well known that the dioxime ligands have a remarkable capability to bind metal ions through the imino nitrogen and the deprotonated oxygen, which can coordinate with metal ions in versatile ways as a bridging ligand. Dimethylglyoxime has a potential of tridentating as well as tetradentatE. Recent STUDIES have showed that dimethylglyoxime is more likely to act as a bridge between two metal ions than as a terminal ligand (Liu et al., 2002; Birkelbach et al., 2000; Burdinski et al., 1998). As well, 1,10-phenanthroline has always received much attention due to its strong coordinaton capability and simple coordination mode derived from two n atoms. Recently, it is still received many attentions (Chen et al., 2003; Wang et al., 2000; Devi & Zubieta, 2003; Clarke et al., 2003; Guo et al., 2002). In order to make further investigation of the versatility of oximes in coordination chemistry and throw further light on such co-ligand system, we designed and synthesized a new tetranuclear copper(II) complex bridged by dimethylglyoxime successfully. We report in this paper on the crystal structure of the title compound, (I).

Single-crystal X-ray diffraction results show that complex (I) consists of two tetranuclear cations which are [Cu4(dmg)2(Hdmg)2(phen)2(H2O)2] and [Cu4(dmg)2(Hdmg)4(phen)2], respectively, four uncoordinated perchloric acid anions, and two uncoordinated CH3OH molecules in a cell. The projection of the structure of complex (I) is shown in Fig. 1. Not only in the right of Fig. 1 (Cu3 and Cu4), but also in the left (Cu1 and Cu2) the two tetranuclear complex cations are on symmetry centers. The Cu3 and Cu4 cations are all five-coordinated, and their coordination geometry can be described as a distorted square-pyramid, but it is very different for the coordination circumstance. As for Cu3, it is coordinated by two nitrogen atoms of a phen, and three O atoms of three different dmg groups, whose apex of the pyramid is occupied by an oxygen atom from a dmg group. In contrast, Cu4 cation is coordinated by four N atoms from two dmg groups, and one O atom being the apex of the pyramid from H2O. The bond distance between Cu3 and O6A is 2.372 (5) Å. The bond distances between Cu3 and O7, O5, N8 and N7 are 1.919 (5), 1.947 (5), 2.066 (5) and 2.033 (6) Å, respectively. So Cu3—O5 bond distance is not-significantly different from Cu3—O7 and the other two bond distances are very alike. In turn, the bond distances between Cu4 and N9, N10, N11, N12, and O9 are 1.961 (6), 1.963 (6), 1.977 (6), 1.967 (6) and 2.287 (5) Å, respectively. Cu4—N9 bond distance is not-significantly different from that of Cu4—N10, and Cu4—N11 bond distance is also not-significantly different from that of Cu4—N12. In this tetranuclear structure, all four Cu2+ ions are in accordance with five of the normal coordination number of Cu.

What is interesting for us is that there are two coordination style for the Cu2+ ion in the tetranuclear unit [Cu4(dmg)2(Hdmg)2(phen)2] in the left of Figure 1. From Fig. 1, it can be observed that there is also a symmetry center in this unit. And the coordination circumstance of Cu1 is alike with Cu3. But, it is novel that Cu2 has a completely different coordination geometry from aforesaid which can be described as a distorted square planar with the Cu2+ ion being coordinated by four N atoms from two dmg groups, respectively. The Cu1—O4(2 − x, −y, 1 − z) distance is 2.453 (5) Å, which also approximates the single bond coordination distance. Because all four Cu2+ ions of this tetranuclear unit are also in line with normal four or five of coordination number of Cu, along with the bond distance, it is reasonable to assert that Cu1A cation is coordinated by O4.

Fig. 2 shows the packing arrangement of the complex in crystal cell. The two coordination units are alternately distributed.

In summary, the noticeable feature of complex (I) is the versatile coordination modes of the dmg groups and their strong bridging coordination capability. In this complex, the dmg groups display two kinds of coordination modes which are tri-dentate (two nitrogen and one oxygen atoms) and tetra-dentate (two nitrogen and two oxygen atoms) ligands. In the structure, tri-dentate dmg groups serve as bridge ligands connecting two Cu2+ ions, at the same time, tetra-dentate dmg groups also serve as bridge ligands connecting three Cu2+ ions. Furthermore, it has long been known that the NO oxime group has a remarkable efficiency to mediate magnetic interactions when it acts as a bridging ligand(Ruiz et al., 1997). It makes no surprise to us that this complex promotes us to find new approach in designing inorganic ferromagnetic materials.

Experimental top

Complex (I) was prepared by a simple approach. To a solution of Cu(ClO4)2·6H2O (0.5 mmol) and phen (0.3 mmol) in water and methanol (20 ml) with the ratio between water and methanol being 0.6:1, H2dmg (0.6 mmol) were added. The mixture was stirred for 2 h in air before staying at room temperature for 30 min. The resulting dark-blue solution then was filtered. The final solution was allowed to evaporate at room temperature. After one day, blue crystals of the complex suitable for X-ray analysis were obtained. They were collected by filtration and air-dried. All chemicals used in this experiment were purchased commercially without further purification.

Refinement top

H atoms of organic legends were generated theoretically and the coordinates for water H atoms were calculated using the program HYDROGEN (Nardelli, 1999). They were allowed to ride on their parent atoms in the final refinement. One of perchlorates is diorientationally disordered and the solvent molecule, methanol, is dipositionally disordered so that the displacement parameters of involved atoms are a little large and the distance between C41 and C42 is too close. The H atoms of the disordered methanol were not included in the structure refinement. The largest 10 peaks on the final difference Fourier map were located around the disordered methanol and perchlorate moieties, except one which was located near O6 to show another potential position of H8A. So Δρmax is rather large.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I), with 35% probability ellipsoids, showing the atomic numbering scheme.
[Figure 2] Fig. 2. A packing view along the a direction.
diaquabis[dimethylglyoximato(2-)]bis[dimethylglyoximato(1-)] bis(phenanthroline)tetracopper(II) bis[dimethylglyoximato(2-)]bis[dimethylglyoximato(1-)] bis(phenanthroline)tetracopper(II) tetraperchlorate methanol disolvate top
Crystal data top
[Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2(H2O)2] [Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2](ClO4)4·2CH4OZ = 1
Mr = 2643.94F(000) = 1344
Triclinic, P1Dx = 1.725 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.922 (3) ÅCell parameters from 995 reflections
b = 14.841 (4) Åθ = 2.9–24.4°
c = 15.024 (4) ŵ = 1.84 mm1
α = 65.547 (5)°T = 293 K
β = 70.265 (5)°Plate, blue
γ = 67.182 (4)°0.32 × 0.18 × 0.04 mm
V = 2545.8 (11) Å3
Data collection top
Bruker SMART CCD
diffractometer
8911 independent reflections
Radiation source: fine-focus sealed tube5441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 15µm x 15µm pixels mm-1θmax = 25.0°, θmin = 1.5°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
k = 917
Tmin = 0.675, Tmax = 0.929l = 1417
13013 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0635P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
8911 reflections(Δ/σ)max = 0.119
749 parametersΔρmax = 0.96 e Å3
75 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2(H2O)2] [Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2](ClO4)4·2CH4Oγ = 67.182 (4)°
Mr = 2643.94V = 2545.8 (11) Å3
Triclinic, P1Z = 1
a = 13.922 (3) ÅMo Kα radiation
b = 14.841 (4) ŵ = 1.84 mm1
c = 15.024 (4) ÅT = 293 K
α = 65.547 (5)°0.32 × 0.18 × 0.04 mm
β = 70.265 (5)°
Data collection top
Bruker SMART CCD
diffractometer
8911 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5441 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.929Rint = 0.040
13013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05675 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.03(Δ/σ)max = 0.119
8911 reflectionsΔρmax = 0.96 e Å3
749 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.90976 (7)0.29065 (6)0.41740 (7)0.0336 (2)
Cu20.93123 (6)0.04220 (6)0.40554 (6)0.0301 (2)
Cu30.02055 (7)0.16507 (6)0.12227 (7)0.0357 (2)
Cu40.08391 (7)0.08279 (6)0.09348 (7)0.0342 (2)
O10.7940 (4)0.2476 (4)0.4260 (4)0.0416 (13)
O20.8460 (4)0.1315 (3)0.4541 (4)0.0457 (14)
H2A0.91070.15830.44470.069*
O31.0297 (4)0.2095 (3)0.3465 (4)0.0367 (12)
O41.0502 (4)0.1741 (3)0.4187 (4)0.0365 (12)
O50.0664 (4)0.0704 (3)0.1951 (4)0.0400 (12)
O60.0214 (4)0.2150 (4)0.0351 (4)0.0459 (13)
O70.1613 (4)0.0709 (4)0.1072 (4)0.0429 (13)
O80.2212 (4)0.2396 (4)0.0046 (4)0.0606 (16)
H8A0.16100.24260.00410.091*
O90.1178 (4)0.2144 (4)0.2383 (4)0.0422 (12)
H1090.09660.20310.29380.051*
H2090.17800.26010.23890.051*
N10.7967 (5)0.4080 (4)0.4651 (5)0.0377 (15)
N21.0019 (5)0.3836 (4)0.3829 (4)0.0339 (14)
N30.8013 (4)0.1531 (4)0.4293 (4)0.0305 (13)
N40.8239 (4)0.0301 (4)0.4460 (4)0.0320 (14)
N51.0428 (4)0.1106 (4)0.3589 (4)0.0293 (13)
N61.0561 (4)0.0769 (4)0.3947 (4)0.0292 (13)
N70.1075 (5)0.2799 (4)0.1586 (4)0.0346 (14)
N80.0964 (5)0.2738 (4)0.0890 (4)0.0361 (14)
N90.0514 (4)0.0055 (4)0.1592 (4)0.0340 (14)
N100.0119 (5)0.1430 (4)0.0808 (4)0.0368 (14)
N110.1847 (5)0.0111 (4)0.0790 (4)0.0359 (14)
N120.2150 (5)0.1601 (5)0.0222 (5)0.0408 (15)
C10.6950 (6)0.4187 (6)0.5079 (6)0.045 (2)
H10.66740.36540.52150.054*
C20.6277 (7)0.5052 (6)0.5335 (7)0.054 (2)
H20.55710.50820.56580.065*
C30.6647 (7)0.5854 (6)0.5113 (7)0.055 (2)
H30.61910.64470.52650.066*
C40.7712 (6)0.5792 (5)0.4656 (6)0.0418 (19)
C50.8197 (7)0.6595 (6)0.4379 (6)0.052 (2)
H50.77870.72080.45140.062*
C60.9240 (7)0.6474 (6)0.3925 (6)0.053 (2)
H60.95320.70080.37470.064*
C70.9889 (7)0.5554 (6)0.3720 (6)0.0422 (19)
C81.0985 (7)0.5362 (6)0.3282 (6)0.052 (2)
H81.13190.58660.31010.063*
C91.1558 (7)0.4449 (6)0.3124 (6)0.053 (2)
H91.22780.43270.28220.064*
C101.1051 (6)0.3694 (6)0.3420 (6)0.0422 (19)
H101.14550.30600.33270.051*
C110.9444 (6)0.4752 (5)0.3990 (5)0.0338 (17)
C120.8340 (6)0.4891 (5)0.4443 (5)0.0355 (17)
C130.6040 (5)0.2038 (6)0.4718 (7)0.051 (2)
H13A0.61060.26810.46620.076*
H13B0.56640.17420.53800.076*
H13C0.56530.21600.42380.076*
C140.7126 (5)0.1309 (5)0.4521 (5)0.0340 (17)
C150.7270 (6)0.0237 (6)0.4597 (5)0.0339 (17)
C160.6342 (6)0.0145 (6)0.4850 (6)0.052 (2)
H16A0.65870.08460.48520.077*
H16B0.59080.02810.43630.077*
H16C0.59290.01180.55000.077*
C171.2334 (5)0.0925 (6)0.2919 (6)0.0423 (19)
H17A1.22060.14970.31290.063*
H17B1.24690.11450.22020.063*
H17C1.29400.03810.31490.063*
C181.1377 (5)0.0536 (5)0.3349 (5)0.0293 (16)
C191.1451 (5)0.0550 (5)0.3527 (5)0.0298 (16)
C201.2478 (5)0.1301 (5)0.3268 (5)0.0387 (18)
H20A1.24320.19920.36490.058*
H20B1.30340.11950.34200.058*
H20C1.26350.12050.25670.058*
C210.2107 (6)0.2849 (6)0.1874 (6)0.0415 (19)
H210.23120.23090.19040.050*
C220.2883 (6)0.3682 (6)0.2128 (6)0.052 (2)
H220.35940.36850.23240.062*
C230.2631 (7)0.4498 (6)0.2097 (6)0.053 (2)
H230.31560.50500.22780.063*
C240.1554 (6)0.4478 (6)0.1783 (5)0.0423 (19)
C250.1182 (7)0.5310 (6)0.1679 (6)0.049 (2)
H250.16710.58790.18560.059*
C260.0150 (7)0.5281 (6)0.1333 (6)0.051 (2)
H260.00660.58280.12700.061*
C270.0619 (6)0.4412 (6)0.1058 (5)0.0399 (19)
C280.1720 (7)0.4322 (7)0.0672 (6)0.053 (2)
H280.19890.48380.06010.064*
C290.2384 (7)0.3474 (6)0.0404 (6)0.051 (2)
H290.31060.34130.01460.061*
C300.1980 (6)0.2699 (6)0.0515 (6)0.0428 (19)
H300.24430.21330.03180.051*
C310.0295 (6)0.3577 (5)0.1150 (5)0.0355 (17)
C320.0816 (6)0.3629 (5)0.1526 (5)0.0355 (17)
C330.2397 (6)0.0005 (6)0.2298 (6)0.050 (2)
H33A0.25510.05230.29190.074*
H33B0.29020.01890.19020.074*
H33C0.24450.06030.24290.074*
C340.1309 (5)0.0385 (5)0.1748 (5)0.0315 (16)
C350.1066 (6)0.1208 (5)0.1322 (5)0.0356 (17)
C360.1857 (6)0.1754 (6)0.1508 (6)0.047 (2)
H36A0.16760.20390.09840.071*
H36B0.25580.12720.15190.071*
H36C0.18440.23000.21390.071*
C370.3738 (6)0.0169 (7)0.0327 (7)0.060 (2)
H37A0.38380.03520.03140.090*
H37B0.43760.07410.03770.090*
H37C0.35850.01170.08450.090*
C380.2834 (6)0.0533 (6)0.0442 (5)0.0375 (18)
C390.3014 (6)0.1418 (6)0.0114 (5)0.0389 (18)
C400.4108 (6)0.2000 (7)0.0294 (7)0.067 (3)
H40A0.40730.25870.03910.100*
H40B0.45570.22320.01680.100*
H40C0.43960.15560.09230.100*
Cl10.55640 (18)0.73500 (19)0.2435 (2)0.0645 (6)
O100.5809 (13)0.7447 (10)0.1473 (8)0.218 (7)
O110.5244 (8)0.8343 (8)0.2465 (10)0.176 (5)
O120.6515 (7)0.6780 (7)0.2703 (9)0.148 (4)
O130.4826 (7)0.6869 (8)0.3035 (9)0.168 (5)
Cl20.44088 (18)0.2445 (2)0.27446 (18)0.0660 (6)
O140.3791 (6)0.2490 (6)0.3703 (4)0.103 (3)
O150.3749 (8)0.2773 (11)0.2064 (8)0.083 (5)0.68 (3)
O160.5009 (17)0.3144 (17)0.2371 (11)0.246 (17)0.68 (3)
O170.5051 (14)0.1414 (9)0.2846 (9)0.172 (16)0.68 (3)
O15'0.407 (2)0.3404 (17)0.1986 (13)0.16 (3)0.32 (3)
O16'0.5519 (7)0.223 (2)0.2655 (14)0.070 (10)0.32 (3)
O17'0.426 (3)0.165 (3)0.254 (2)0.23 (4)0.32 (3)
O180.3258 (8)0.6621 (7)0.2279 (8)0.070 (3)0.716 (10)
C410.3762 (18)0.5784 (13)0.1931 (16)0.28 (3)0.716 (10)
C420.371 (3)0.522 (3)0.101 (3)0.093 (15)0.284 (10)
O190.445 (3)0.511 (2)0.012 (3)0.169 (19)0.284 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0340 (5)0.0293 (5)0.0427 (6)0.0108 (4)0.0070 (4)0.0160 (4)
Cu20.0232 (4)0.0291 (5)0.0399 (5)0.0095 (4)0.0043 (4)0.0131 (4)
Cu30.0362 (5)0.0335 (5)0.0416 (6)0.0145 (4)0.0076 (4)0.0126 (4)
Cu40.0300 (5)0.0377 (5)0.0400 (5)0.0134 (4)0.0047 (4)0.0162 (4)
O10.031 (3)0.035 (3)0.068 (4)0.004 (2)0.013 (3)0.028 (3)
O20.036 (3)0.031 (3)0.072 (4)0.011 (2)0.010 (3)0.019 (3)
O30.036 (3)0.033 (3)0.045 (3)0.017 (2)0.003 (2)0.014 (2)
O40.041 (3)0.021 (2)0.047 (3)0.011 (2)0.009 (2)0.010 (2)
O50.039 (3)0.036 (3)0.047 (3)0.017 (2)0.004 (2)0.020 (2)
O60.054 (3)0.047 (3)0.049 (3)0.019 (3)0.011 (3)0.024 (3)
O70.036 (3)0.040 (3)0.064 (4)0.014 (2)0.013 (3)0.021 (3)
O80.049 (3)0.077 (4)0.081 (4)0.016 (3)0.004 (3)0.059 (4)
O90.048 (3)0.042 (3)0.039 (3)0.015 (2)0.006 (2)0.016 (2)
N10.038 (4)0.026 (3)0.047 (4)0.006 (3)0.008 (3)0.013 (3)
N20.036 (4)0.027 (3)0.044 (4)0.013 (3)0.009 (3)0.012 (3)
N30.024 (3)0.029 (3)0.040 (4)0.007 (3)0.005 (3)0.015 (3)
N40.028 (3)0.036 (3)0.039 (4)0.015 (3)0.006 (3)0.015 (3)
N50.031 (3)0.030 (3)0.034 (3)0.016 (3)0.002 (3)0.015 (3)
N60.029 (3)0.028 (3)0.030 (3)0.010 (3)0.002 (3)0.011 (3)
N70.041 (4)0.036 (3)0.030 (3)0.015 (3)0.007 (3)0.011 (3)
N80.040 (4)0.038 (4)0.036 (4)0.020 (3)0.007 (3)0.009 (3)
N90.029 (3)0.031 (3)0.044 (4)0.010 (3)0.007 (3)0.013 (3)
N100.040 (4)0.037 (3)0.040 (4)0.013 (3)0.011 (3)0.015 (3)
N110.031 (3)0.038 (3)0.036 (4)0.013 (3)0.005 (3)0.008 (3)
N120.038 (4)0.051 (4)0.043 (4)0.011 (3)0.006 (3)0.028 (3)
C10.041 (5)0.042 (5)0.059 (5)0.015 (4)0.008 (4)0.022 (4)
C20.041 (5)0.052 (5)0.066 (6)0.009 (4)0.004 (4)0.026 (5)
C30.057 (6)0.036 (5)0.072 (6)0.001 (4)0.015 (5)0.027 (4)
C40.048 (5)0.030 (4)0.046 (5)0.006 (4)0.011 (4)0.015 (4)
C50.066 (6)0.030 (4)0.064 (6)0.007 (4)0.019 (5)0.022 (4)
C60.066 (6)0.035 (5)0.067 (6)0.023 (4)0.006 (5)0.024 (4)
C70.059 (5)0.036 (4)0.044 (5)0.019 (4)0.017 (4)0.014 (4)
C80.058 (6)0.047 (5)0.063 (6)0.031 (4)0.005 (5)0.022 (4)
C90.048 (5)0.053 (5)0.070 (6)0.027 (4)0.006 (4)0.024 (5)
C100.045 (5)0.035 (4)0.053 (5)0.014 (4)0.010 (4)0.019 (4)
C110.047 (5)0.027 (4)0.034 (4)0.010 (3)0.016 (4)0.011 (3)
C120.045 (5)0.030 (4)0.036 (4)0.011 (3)0.014 (4)0.011 (3)
C130.026 (4)0.060 (5)0.073 (6)0.006 (4)0.009 (4)0.035 (5)
C140.029 (4)0.042 (4)0.038 (4)0.012 (3)0.006 (3)0.019 (3)
C150.033 (4)0.045 (4)0.031 (4)0.019 (4)0.005 (3)0.012 (3)
C160.033 (4)0.063 (5)0.071 (6)0.026 (4)0.004 (4)0.026 (5)
C170.030 (4)0.051 (5)0.050 (5)0.019 (4)0.001 (4)0.019 (4)
C180.029 (4)0.044 (4)0.025 (4)0.022 (3)0.000 (3)0.015 (3)
C190.022 (4)0.037 (4)0.033 (4)0.011 (3)0.003 (3)0.013 (3)
C200.030 (4)0.043 (4)0.042 (5)0.008 (3)0.000 (3)0.020 (4)
C210.040 (5)0.047 (5)0.044 (5)0.018 (4)0.004 (4)0.020 (4)
C220.034 (4)0.059 (5)0.063 (6)0.010 (4)0.003 (4)0.028 (5)
C230.057 (6)0.046 (5)0.053 (6)0.012 (4)0.008 (4)0.019 (4)
C240.055 (5)0.037 (4)0.034 (4)0.018 (4)0.002 (4)0.011 (4)
C250.073 (6)0.038 (5)0.040 (5)0.013 (4)0.014 (4)0.018 (4)
C260.071 (6)0.044 (5)0.052 (5)0.029 (5)0.013 (5)0.019 (4)
C270.056 (5)0.036 (4)0.036 (4)0.023 (4)0.018 (4)0.005 (3)
C280.071 (6)0.052 (5)0.052 (5)0.035 (5)0.018 (5)0.010 (4)
C290.053 (5)0.056 (5)0.050 (5)0.034 (4)0.009 (4)0.010 (4)
C300.045 (5)0.042 (5)0.042 (5)0.015 (4)0.013 (4)0.009 (4)
C310.046 (5)0.036 (4)0.028 (4)0.016 (4)0.013 (3)0.005 (3)
C320.049 (5)0.034 (4)0.030 (4)0.017 (4)0.018 (4)0.004 (3)
C330.042 (5)0.063 (5)0.053 (5)0.020 (4)0.001 (4)0.031 (4)
C340.033 (4)0.035 (4)0.024 (4)0.015 (3)0.010 (3)0.000 (3)
C350.039 (4)0.040 (4)0.031 (4)0.018 (4)0.013 (4)0.003 (3)
C360.051 (5)0.058 (5)0.046 (5)0.032 (4)0.004 (4)0.019 (4)
C370.034 (5)0.061 (6)0.087 (7)0.018 (4)0.005 (5)0.029 (5)
C380.031 (4)0.045 (4)0.035 (4)0.017 (4)0.006 (3)0.006 (4)
C390.035 (4)0.055 (5)0.029 (4)0.008 (4)0.006 (3)0.020 (4)
C400.042 (5)0.092 (7)0.075 (7)0.016 (5)0.002 (5)0.050 (6)
Cl10.0422 (13)0.0677 (15)0.0727 (17)0.0141 (12)0.0025 (12)0.0259 (13)
O100.34 (2)0.214 (13)0.088 (8)0.071 (13)0.044 (10)0.047 (8)
O110.140 (9)0.112 (8)0.262 (14)0.037 (7)0.031 (9)0.106 (9)
O120.078 (6)0.131 (8)0.227 (12)0.019 (6)0.041 (7)0.054 (8)
O130.102 (7)0.160 (9)0.224 (12)0.084 (7)0.031 (8)0.054 (8)
Cl20.0513 (14)0.0843 (18)0.0561 (15)0.0181 (13)0.0062 (12)0.0224 (13)
O140.108 (6)0.111 (6)0.070 (5)0.013 (5)0.006 (4)0.046 (4)
O150.071 (7)0.102 (12)0.085 (9)0.005 (8)0.041 (7)0.040 (9)
O160.30 (3)0.36 (4)0.156 (17)0.30 (3)0.09 (2)0.06 (2)
O170.159 (19)0.131 (18)0.070 (9)0.080 (15)0.002 (11)0.021 (9)
O15'0.15 (4)0.11 (3)0.13 (3)0.01 (3)0.01 (3)0.01 (2)
O16'0.054 (14)0.12 (3)0.050 (15)0.051 (14)0.001 (11)0.022 (15)
O17'0.26 (7)0.34 (10)0.24 (6)0.27 (7)0.10 (5)0.20 (7)
O180.050 (5)0.070 (7)0.067 (6)0.026 (5)0.017 (5)0.036 (5)
C410.19 (3)0.36 (5)0.21 (3)0.21 (3)0.13 (3)0.17 (3)
C420.12 (4)0.09 (3)0.10 (3)0.08 (3)0.01 (3)0.04 (3)
O190.14 (3)0.08 (2)0.23 (4)0.07 (3)0.05 (4)0.05 (2)
Geometric parameters (Å, º) top
Cu1—O11.900 (5)C13—H13B0.9600
Cu1—O31.917 (5)C13—H13C0.9600
Cu1—N22.037 (5)C14—C151.484 (9)
Cu1—N12.042 (6)C15—C161.481 (9)
Cu1—O4i2.453 (5)C16—H16A0.9600
Cu2—N51.957 (5)C16—H16B0.9600
Cu2—N61.959 (5)C16—H16C0.9600
Cu2—N31.962 (5)C17—C181.492 (9)
Cu2—N41.962 (5)C17—H17A0.9600
Cu3—O71.919 (5)C17—H17B0.9600
Cu3—O51.947 (5)C17—H17C0.9600
Cu3—N72.033 (6)C18—C191.489 (9)
Cu3—N82.066 (5)C19—C201.478 (9)
Cu3—O6ii2.372 (5)C20—H20A0.9600
Cu4—N91.961 (6)C20—H20B0.9600
Cu4—N101.963 (6)C20—H20C0.9600
Cu4—N121.967 (6)C21—C221.384 (10)
Cu4—N111.977 (6)C21—H210.9300
Cu4—O92.287 (5)C22—C231.366 (11)
O1—N31.348 (6)C22—H220.9300
O2—N41.374 (7)C23—C241.404 (11)
O2—H2A0.8200C23—H230.9300
O3—N51.346 (6)C24—C321.387 (10)
O4—N61.362 (6)C24—C251.448 (10)
O5—N91.359 (7)C25—C261.342 (11)
O6—N101.354 (7)C25—H250.9300
O6—Cu3ii2.372 (5)C26—C271.432 (11)
O7—N111.339 (7)C26—H260.9300
O8—N121.361 (7)C27—C311.417 (9)
O8—H8A0.8200C27—C281.417 (11)
O9—H1090.8506C28—C291.367 (11)
O9—H2090.8498C28—H280.9300
N1—C11.318 (9)C29—C301.396 (10)
N1—C121.371 (8)C29—H290.9300
N2—C101.328 (9)C30—H300.9300
N2—C111.359 (8)C31—C321.438 (10)
N3—C141.298 (8)C33—C341.478 (9)
N4—C151.270 (8)C33—H33A0.9600
N5—C181.287 (8)C33—H33B0.9600
N6—C191.286 (8)C33—H33C0.9600
N7—C211.335 (9)C34—C351.481 (10)
N7—C321.374 (8)C35—C361.498 (9)
N8—C301.321 (9)C36—H36A0.9600
N8—C311.352 (9)C36—H36B0.9600
N9—C341.293 (8)C36—H36C0.9600
N10—C351.277 (9)C37—C381.486 (10)
N11—C381.293 (9)C37—H37A0.9600
N12—C391.276 (9)C37—H37B0.9600
C1—C21.381 (10)C37—H37C0.9600
C1—H10.9300C38—C391.494 (10)
C2—C31.352 (11)C39—C401.493 (10)
C2—H20.9300C40—H40A0.9600
C3—C41.392 (11)C40—H40B0.9600
C3—H30.9300C40—H40C0.9600
C4—C121.383 (10)Cl1—O101.326 (11)
C4—C51.439 (10)Cl1—O131.338 (8)
C5—C61.356 (11)Cl1—O121.357 (9)
C5—H50.9300Cl1—O111.379 (9)
C6—C71.407 (10)Cl2—O161.402 (8)
C6—H60.9300Cl2—O171.414 (8)
C7—C111.402 (9)Cl2—O151.415 (7)
C7—C81.409 (11)Cl2—O141.419 (6)
C8—C91.352 (11)Cl2—O16'1.422 (8)
C8—H80.9300Cl2—O17'1.430 (9)
C9—C101.393 (10)Cl2—O15'1.432 (9)
C9—H90.9300O18—C411.387 (11)
C10—H100.9300C41—C421.93 (4)
C11—C121.426 (10)C42—O191.405 (10)
C13—C141.497 (9)O19—O19iii1.38 (6)
C13—H13A0.9600
O1—Cu1—O3103.55 (19)N4—C15—C14113.8 (6)
O1—Cu1—N2160.4 (2)C16—C15—C14121.2 (6)
O3—Cu1—N286.7 (2)C15—C16—H16A109.5
O1—Cu1—N186.1 (2)C15—C16—H16B109.5
O3—Cu1—N1165.0 (2)H16A—C16—H16B109.5
N2—Cu1—N180.9 (2)C15—C16—H16C109.5
O1—Cu1—O4i97.27 (19)H16A—C16—H16C109.5
O3—Cu1—O4i93.24 (18)H16B—C16—H16C109.5
N2—Cu1—O4i98.8 (2)C18—C17—H17A109.5
N1—Cu1—O4i96.9 (2)C18—C17—H17B109.5
N5—Cu2—N681.2 (2)H17A—C17—H17B109.5
N5—Cu2—N3102.4 (2)C18—C17—H17C109.5
N6—Cu2—N3174.5 (2)H17A—C17—H17C109.5
N5—Cu2—N4176.6 (2)H17B—C17—H17C109.5
N6—Cu2—N496.4 (2)N5—C18—C19114.6 (5)
N3—Cu2—N480.2 (2)N5—C18—C17123.3 (6)
O7—Cu3—O5101.6 (2)C19—C18—C17122.2 (6)
O7—Cu3—N7162.2 (2)N6—C19—C20124.3 (6)
O5—Cu3—N788.5 (2)N6—C19—C18114.1 (6)
O7—Cu3—N885.6 (2)C20—C19—C18121.6 (6)
O5—Cu3—N8161.3 (2)C19—C20—H20A109.5
N7—Cu3—N880.6 (2)C19—C20—H20B109.5
O7—Cu3—O6ii102.5 (2)H20A—C20—H20B109.5
O5—Cu3—O6ii96.1 (2)C19—C20—H20C109.5
N7—Cu3—O6ii90.8 (2)H20A—C20—H20C109.5
N8—Cu3—O6ii99.1 (2)H20B—C20—H20C109.5
N9—Cu4—N1081.4 (2)N7—C21—C22122.1 (7)
N9—Cu4—N12176.6 (3)N7—C21—H21119.0
N10—Cu4—N1295.8 (2)C22—C21—H21119.0
N9—Cu4—N11102.7 (2)C23—C22—C21121.6 (8)
N10—Cu4—N11169.4 (2)C23—C22—H22119.2
N12—Cu4—N1179.7 (2)C21—C22—H22119.2
N9—Cu4—O994.3 (2)C22—C23—C24118.0 (8)
N10—Cu4—O991.4 (2)C22—C23—H23121.0
N12—Cu4—O987.7 (2)C24—C23—H23121.0
N11—Cu4—O998.0 (2)C32—C24—C23117.7 (7)
N3—O1—Cu1125.3 (4)C32—C24—C25118.6 (7)
N4—O2—H2A109.5C23—C24—C25123.6 (7)
N5—O3—Cu1123.7 (4)C26—C25—C24121.7 (8)
N9—O5—Cu3118.3 (4)C26—C25—H25119.1
N10—O6—Cu3ii118.6 (4)C24—C25—H25119.1
N11—O7—Cu3122.7 (4)C25—C26—C27120.2 (7)
N12—O8—H8A109.5C25—C26—H26119.9
Cu4—O9—H109120.8C27—C26—H26119.9
Cu4—O9—H209120.3C31—C27—C28115.7 (7)
H109—O9—H209107.7C31—C27—C26120.2 (7)
C1—N1—C12116.7 (6)C28—C27—C26124.2 (7)
C1—N1—Cu1130.2 (5)C29—C28—C27119.6 (7)
C12—N1—Cu1113.1 (5)C29—C28—H28120.2
C10—N2—C11118.0 (6)C27—C28—H28120.2
C10—N2—Cu1129.3 (5)C28—C29—C30120.1 (8)
C11—N2—Cu1112.6 (5)C28—C29—H29120.0
C14—N3—O1117.1 (5)C30—C29—H29120.0
C14—N3—Cu2115.2 (4)N8—C30—C29122.5 (8)
O1—N3—Cu2127.7 (4)N8—C30—H30118.8
C15—N4—O2118.5 (5)C29—C30—H30118.8
C15—N4—Cu2116.4 (5)N8—C31—C27124.0 (7)
O2—N4—Cu2124.9 (4)N8—C31—C32117.7 (6)
C18—N5—O3118.1 (5)C27—C31—C32118.3 (7)
C18—N5—Cu2114.6 (4)N7—C32—C24123.8 (7)
O3—N5—Cu2127.2 (4)N7—C32—C31115.2 (7)
C19—N6—O4121.1 (5)C24—C32—C31121.0 (7)
C19—N6—Cu2114.7 (4)C34—C33—H33A109.5
O4—N6—Cu2123.8 (4)C34—C33—H33B109.5
C21—N7—C32116.8 (6)H33A—C33—H33B109.5
C21—N7—Cu3129.4 (5)C34—C33—H33C109.5
C32—N7—Cu3113.8 (5)H33A—C33—H33C109.5
C30—N8—C31118.1 (6)H33B—C33—H33C109.5
C30—N8—Cu3129.5 (5)N9—C34—C33124.6 (6)
C31—N8—Cu3112.3 (5)N9—C34—C35115.1 (6)
C34—N9—O5119.2 (6)C33—C34—C35120.3 (6)
C34—N9—Cu4113.5 (5)N10—C35—C34114.4 (6)
O5—N9—Cu4127.1 (4)N10—C35—C36122.9 (7)
C35—N10—O6121.3 (6)C34—C35—C36122.6 (6)
C35—N10—Cu4114.2 (5)C35—C36—H36A109.5
O6—N10—Cu4123.8 (4)C35—C36—H36B109.5
C38—N11—O7118.4 (6)H36A—C36—H36B109.5
C38—N11—Cu4115.0 (5)C35—C36—H36C109.5
O7—N11—Cu4126.5 (4)H36A—C36—H36C109.5
C39—N12—O8118.4 (6)H36B—C36—H36C109.5
C39—N12—Cu4116.9 (5)C38—C37—H37A109.5
O8—N12—Cu4124.1 (5)C38—C37—H37B109.5
N1—C1—C2123.1 (7)H37A—C37—H37B109.5
N1—C1—H1118.4C38—C37—H37C109.5
C2—C1—H1118.4H37A—C37—H37C109.5
C3—C2—C1119.7 (8)H37B—C37—H37C109.5
C3—C2—H2120.1N11—C38—C37124.5 (7)
C1—C2—H2120.1N11—C38—C39114.5 (6)
C2—C3—C4119.9 (7)C37—C38—C39120.9 (7)
C2—C3—H3120.1N12—C39—C40125.6 (7)
C4—C3—H3120.1N12—C39—C38112.9 (6)
C12—C4—C3116.8 (7)C40—C39—C38121.4 (7)
C12—C4—C5118.2 (7)C39—C40—H40A109.5
C3—C4—C5125.0 (7)C39—C40—H40B109.5
C6—C5—C4121.2 (7)H40A—C40—H40B109.5
C6—C5—H5119.4C39—C40—H40C109.5
C4—C5—H5119.4H40A—C40—H40C109.5
C5—C6—C7121.0 (7)H40B—C40—H40C109.5
C5—C6—H6119.5O10—Cl1—O13117.6 (9)
C7—C6—H6119.5O10—Cl1—O12101.6 (9)
C11—C7—C6119.2 (7)O13—Cl1—O12109.1 (7)
C11—C7—C8116.6 (7)O10—Cl1—O11105.6 (8)
C6—C7—C8124.1 (7)O13—Cl1—O11110.1 (7)
C9—C8—C7120.5 (7)O12—Cl1—O11112.8 (7)
C9—C8—H8119.7O16—Cl2—O17112.8 (8)
C7—C8—H8119.8O16—Cl2—O15106.6 (7)
C8—C9—C10119.0 (8)O17—Cl2—O15110.0 (7)
C8—C9—H9120.5O16—Cl2—O14107.8 (8)
C10—C9—H9120.5O17—Cl2—O14108.5 (6)
N2—C10—C9123.0 (7)O15—Cl2—O14111.1 (5)
N2—C10—H10118.5O16—Cl2—O16'51.4 (10)
C9—C10—H10118.5O17—Cl2—O16'62.8 (10)
N2—C11—C7122.8 (7)O15—Cl2—O16'134.7 (8)
N2—C11—C12117.5 (6)O14—Cl2—O16'113.4 (7)
C7—C11—C12119.7 (6)O16—Cl2—O17'142.5 (12)
N1—C12—C4123.7 (7)O17—Cl2—O17'49.8 (14)
N1—C12—C11115.6 (6)O15—Cl2—O17'63.5 (15)
C4—C12—C11120.7 (7)O14—Cl2—O17'109.4 (9)
C14—C13—H13A109.5O16'—Cl2—O17'107.9 (10)
C14—C13—H13B109.5O16—Cl2—O15'62.1 (13)
H13A—C13—H13B109.5O17—Cl2—O15'140.3 (11)
C14—C13—H13C109.5O15—Cl2—O15'46.9 (14)
H13A—C13—H13C109.5O14—Cl2—O15'110.3 (9)
H13B—C13—H13C109.5O16'—Cl2—O15'107.8 (9)
N3—C14—C15114.1 (6)O17'—Cl2—O15'107.9 (10)
N3—C14—C13124.6 (6)O18—C41—C42142 (2)
C15—C14—C13121.3 (6)O19—C42—C41128 (3)
N4—C15—C16125.0 (7)O19iii—O19—C42131 (5)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O40.821.792.575 (7)161
O8—H8A···O60.821.762.549 (7)162
C13—H13A···O10.962.342.762 (9)106
C16—H16A···O20.962.352.775 (9)106
C17—H17A···O30.962.402.742 (9)101
C33—H33C···O50.962.382.795 (9)105
C40—H40A···O80.962.392.794 (10)105
C22—H22···O16iv0.932.353.198 (15)152
O9—H109···O4iv0.851.942.788 (7)178
O9—H209···O18v0.851.922.754 (10)168
Symmetry codes: (iv) x1, y, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2(H2O)2] [Cu4(C4H6N2O2)2(C4H7N2O2)2(C12H8N2)2](ClO4)4·2CH4O
Mr2643.94
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)13.922 (3), 14.841 (4), 15.024 (4)
α, β, γ (°)65.547 (5), 70.265 (5), 67.182 (4)
V3)2545.8 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.32 × 0.18 × 0.04
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.675, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
13013, 8911, 5441
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.03
No. of reflections8911
No. of parameters749
No. of restraints75
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
(Δ/σ)max0.119
Δρmax, Δρmin (e Å3)0.96, 0.83

Computer programs: SMART (Bruker, 1997), SMART, SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O11.900 (5)Cu3—O51.947 (5)
Cu1—O31.917 (5)Cu3—N72.033 (6)
Cu1—N22.037 (5)Cu3—N82.066 (5)
Cu1—N12.042 (6)Cu3—O6ii2.372 (5)
Cu1—O4i2.453 (5)Cu4—N91.961 (6)
Cu2—N51.957 (5)Cu4—N101.963 (6)
Cu2—N61.959 (5)Cu4—N121.967 (6)
Cu2—N31.962 (5)Cu4—N111.977 (6)
Cu2—N41.962 (5)Cu4—O92.287 (5)
Cu3—O71.919 (5)
O1—Cu1—O3103.55 (19)O5—Cu3—N788.5 (2)
O1—Cu1—N2160.4 (2)O7—Cu3—N885.6 (2)
O3—Cu1—N286.7 (2)O5—Cu3—N8161.3 (2)
O1—Cu1—N186.1 (2)N7—Cu3—N880.6 (2)
O3—Cu1—N1165.0 (2)O7—Cu3—O6ii102.5 (2)
N2—Cu1—N180.9 (2)O5—Cu3—O6ii96.1 (2)
O1—Cu1—O4i97.27 (19)N7—Cu3—O6ii90.8 (2)
O3—Cu1—O4i93.24 (18)N8—Cu3—O6ii99.1 (2)
N2—Cu1—O4i98.8 (2)N9—Cu4—N1081.4 (2)
N1—Cu1—O4i96.9 (2)N9—Cu4—N12176.6 (3)
N5—Cu2—N681.2 (2)N10—Cu4—N1295.8 (2)
N5—Cu2—N3102.4 (2)N9—Cu4—N11102.7 (2)
N6—Cu2—N3174.5 (2)N10—Cu4—N11169.4 (2)
N5—Cu2—N4176.6 (2)N12—Cu4—N1179.7 (2)
N6—Cu2—N496.4 (2)N9—Cu4—O994.3 (2)
N3—Cu2—N480.2 (2)N10—Cu4—O991.4 (2)
O7—Cu3—O5101.6 (2)N12—Cu4—O987.7 (2)
O7—Cu3—N7162.2 (2)N11—Cu4—O998.0 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O40.821.792.575 (7)161
O8—H8A···O60.821.762.549 (7)162
C13—H13A···O10.962.342.762 (9)106
C16—H16A···O20.962.352.775 (9)106
C17—H17A···O30.962.402.742 (9)101
C33—H33C···O50.962.382.795 (9)105
C40—H40A···O80.962.392.794 (10)105
C22—H22···O16iii0.932.353.198 (15)152
O9—H109···O4iii0.851.942.788 (7)178
O9—H209···O18iv0.851.922.754 (10)168
Symmetry codes: (iii) x1, y, z; (iv) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds