Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The imino­diacetate dianion in di­aqua­imino­diacetato­nickel(II), [Ni(C4H5NO4)(H2O)2], chelates to the Ni atom through two carboxyl O and one imino N atoms; the six-fold coordination coordination environment comprises these three atoms, the water mol­ecules and the carbonyl O atom of an adjacent dianionic group. The dative Ni\leftarrow O linkage leads to the formation of a helical chain running along the a axis of the orthorhombic crystal; adjacent chains are held in a network motif by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803011279/na6238sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803011279/na6238Isup2.hkl
Contains datablock I

CCDC reference: 214799

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.054
  • wR factor = 0.105
  • Data-to-parameter ratio = 13.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.30 From the CIF: _reflns_number_total 1613 Count of symmetry unique reflns 943 Completeness (_total/calc) 171.05% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 670 Fraction of Friedel pairs measured 0.710 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Unlike iminodiacetatocopper(II), a compound that forms a large number of coordination complexes, as well as complexes with metal salts (Román-Alpiste et al., 1999), the nickel(II) analog is much less studied, and even the crystal structure of iminodiacetatonickel(II) has not been reported. The limited number of derivatives of this compound comprise the trihydrated 1:1 complex of dipotassium bis(iminodiacetato)nickelate (Agre et al., 1984), caesium bis(iminodiacetato)nickelate tetrahydrate (Mammano et al., 1997), lithium bis(iminodiacetato)nickelate tetrahydrate (Kramarenko et al., 1974; Mammano et al., 1997) and the only N-heterocycle adduct, tris(imidazole)iminodiacetatonickel hydrate (Polyakova et al., 2000).

Iminodiacetatonickel crystallizes as a dihydrate, (I), in which the Ni atom exits in an octahedral environment this is comprised of the O,N,O'-chelating iminodiacetate ligand, the two water molecules and the carbonyl O atom of an adjacent molecule. The dative Ni\left arrow O linkage [2.011 (4) Å] leads to the formation of a helical chain running along the a axis of the orthorhombic crystal (Fig. 2). The other carbonyl O atom does not participate in bonding to the Ni atom but is instead engaged in hydrogen bonding with a water molecule and the imino N atom of an adjacent molecule. The extensive hydrogen bonds consolidate the structure into a tightly-held network.

Experimental top

Nickel nitrate hexahydrate (0.29 g, 1 mmol) dissolved in water (2 ml) was reacted with iminodiacetic acid (0.13 g, 1 mmol) dissolved in ethanol (8 ml). The pH of the solution was adjusted to 5 by the addition of aqueous sodium hydroxide. The solution was then sealed in a Teflon-lined Parr stainless-steel vessel, which was heated to 433 K for 2 h. The title compound separated as plates.

Refinement top

The H atoms of the imino N and water O atoms were located and refined, subject to O—H = N—H = 0.85±0.01 Å; for the water H atoms, H···H = 1.39±0.01 Å. The C-bound H atoms were generated geometrically (C—H = 0.97 Å). The displacement parameters of all H atoms were set to 1.2 times those of their parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the repeat unit of diaquaiminodiacetatonickel with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) plot depicting the helical chain propagating along the a axis.
Diaquaiminodiacetatonickel(II) top
Crystal data top
[Ni(C4H5NO4)(H2O)2]Dx = 2.08 Mg m3
Mr = 225.83Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21caCell parameters from 1988 reflections
a = 9.7610 (3) Åθ = 2.9–28.3°
b = 5.2219 (2) ŵ = 2.68 mm1
c = 14.1713 (4) ÅT = 298 K
V = 722.32 (4) Å3Plate, green
Z = 40.34 × 0.07 × 0.04 mm
F(000) = 464
Data collection top
Bruker SMART area-detector
diffractometer
1613 independent reflections
Radiation source: fine-focus sealed tube1585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.728, Tmax = 0.898k = 62
4084 measured reflectionsl = 1618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.7011P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max = 0.001
1613 reflectionsΔρmax = 0.89 e Å3
124 parametersΔρmin = 1.03 e Å3
6 restraintsAbsolute structure: Flack (1983), 718 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (3)
Crystal data top
[Ni(C4H5NO4)(H2O)2]V = 722.32 (4) Å3
Mr = 225.83Z = 4
Orthorhombic, P21caMo Kα radiation
a = 9.7610 (3) ŵ = 2.68 mm1
b = 5.2219 (2) ÅT = 298 K
c = 14.1713 (4) Å0.34 × 0.07 × 0.04 mm
Data collection top
Bruker SMART area-detector
diffractometer
1613 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1585 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.898Rint = 0.035
4084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Δρmax = 0.89 e Å3
S = 1.25Δρmin = 1.03 e Å3
1613 reflectionsAbsolute structure: Flack (1983), 718 Friedel pairs
124 parametersAbsolute structure parameter: 0.12 (3)
6 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000 (9)0.1153 (1)0.43427 (4)0.0168 (2)
O10.6934 (4)0.0469 (7)0.4677 (3)0.021 (1)
O20.9125 (4)0.0798 (7)0.4593 (3)0.021 (1)
O30.4498 (4)0.1789 (7)0.3476 (3)0.024 (1)
O40.4995 (9)0.3509 (7)0.2083 (3)0.035 (1)
O1w0.3319 (5)0.3334 (8)0.3915 (3)0.024 (1)
O2w0.5573 (5)0.4165 (7)0.5256 (3)0.024 (1)
N10.6147 (5)0.2352 (8)0.3210 (3)0.015 (1)
C10.7881 (6)0.088 (1)0.4347 (4)0.018 (1)
C20.7530 (6)0.279 (1)0.3572 (4)0.019 (1)
C30.5101 (8)0.1780 (9)0.2680 (4)0.022 (1)
C40.6093 (6)0.038 (1)0.2470 (4)0.022 (1)
H1w10.272 (5)0.29 (1)0.431 (4)0.028*
H1w20.336 (7)0.494 (3)0.382 (5)0.028*
H2w10.537 (7)0.574 (4)0.526 (5)0.029*
H2w20.540 (7)0.36 (1)0.580 (2)0.029*
H1n0.595 (7)0.382 (6)0.298 (4)0.018*
H2a0.75930.45200.38210.022*
H2b0.81850.26340.30600.022*
H4a0.70030.03410.23890.027*
H4b0.58330.11740.18790.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0148 (3)0.0174 (3)0.0183 (3)0.0020 (4)0.0005 (4)0.0024 (2)
O10.012 (2)0.023 (2)0.028 (2)0.002 (2)0.002 (2)0.012 (2)
O20.014 (2)0.029 (2)0.020 (2)0.001 (2)0.000 (2)0.006 (2)
O30.033 (3)0.017 (2)0.021 (2)0.008 (2)0.004 (2)0.001 (2)
O40.054 (3)0.025 (2)0.026 (2)0.005 (3)0.002 (3)0.001 (2)
O1w0.020 (2)0.022 (2)0.028 (2)0.002 (2)0.002 (2)0.006 (2)
O2w0.031 (2)0.018 (2)0.023 (2)0.001 (2)0.001 (2)0.003 (2)
N10.013 (2)0.014 (2)0.019 (2)0.002 (2)0.001 (2)0.007 (2)
C10.018 (3)0.019 (3)0.017 (3)0.002 (2)0.002 (2)0.009 (2)
C20.013 (3)0.026 (3)0.016 (3)0.003 (2)0.001 (2)0.010 (2)
C30.020 (3)0.017 (2)0.028 (3)0.006 (3)0.003 (3)0.000 (2)
C40.015 (3)0.030 (3)0.022 (3)0.009 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
Ni1—O12.123 (4)C1—C21.525 (7)
Ni1—O2i2.011 (4)C3—C41.514 (9)
Ni1—O32.027 (4)O1w—H1w10.85 (5)
Ni1—O1w2.087 (4)O1w—H1w20.85 (2)
Ni1—O2w2.112 (4)O2w—H2w10.85 (2)
Ni1—N12.055 (5)O2w—H2w20.85 (3)
O1—C11.251 (7)N1—H1n0.85 (5)
O2—C11.264 (7)C2—H2a0.97
O3—C31.273 (7)C2—H2b0.97
O4—C31.242 (6)C4—H4a0.97
N1—C21.463 (7)C4—H4b0.97
N1—C41.472 (7)
O1—Ni1—O2i90.5 (2)N1—C2—C1110.9 (4)
O1—Ni1—O392.8 (2)O4—C3—O3124.2 (6)
O1—Ni1—O1w169.0 (2)O4—C3—C4117.4 (6)
O1—Ni1—O2w85.7 (2)O3—C3—C4118.2 (5)
O1—Ni1—N179.1 (2)N1—C4—C3113.8 (5)
O2i—Ni1—O388.2 (2)Ni1—O1w—H1w1101 (5)
O2i—Ni1—N1166.4 (2)Ni1—O1w—H1w2123 (5)
O2i—Ni1—O1w99.2 (2)H1w1—O1w—H1w2115 (7)
O2i—Ni1—O2w91.7 (2)Ni1—O2w—H2w1132 (5)
O3—Ni1—O1w92.7 (2)Ni1—O2w—H2w2104 (5)
O3—Ni1—N183.6 (2)H2w1—O2w—H2w2107 (6)
O3—Ni1—O2w178.5 (2)C2—N1—H1n102 (4)
O1w—Ni1—O2w88.8 (2)C4—N1—H1n111 (4)
O1w—Ni1—N192.0 (2)Ni1—N1—H1n116 (4)
O2w—Ni1—N196.2 (2)N1—C2—H2a109.5
C1—O1—Ni1110.5 (3)C1—C2—H2a109.5
C1—O2—Ni1ii129.1 (4)N1—C2—H2b109.5
C3—O3—Ni1115.0 (4)C1—C2—H2b109.5
C2—N1—C4113.1 (4)H2a—C2—H2b108.1
C2—N1—Ni1106.1 (3)N1—C4—H4a108.8
C4—N1—Ni1108.8 (3)C3—C4—H4a108.8
O1—C1—O2126.0 (5)N1—C4—H4b108.8
O1—C1—C2118.1 (5)C3—C4—H4b108.8
O2—C1—C2115.8 (5)H4a—C4—H4b107.7
O2i—Ni1—O1—C1159.1 (4)O2w—Ni1—N1—C4172.6 (4)
O3—Ni1—O1—C1112.7 (4)O1—Ni1—N1—C488.2 (4)
N1—Ni1—O1—C129.7 (4)Ni1—O1—C1—O2162.6 (4)
O1w—Ni1—O1—C17.1 (11)Ni1—O1—C1—C217.7 (6)
O2w—Ni1—O1—C167.5 (4)Ni1ii—O2—C1—O17.0 (8)
O2i—Ni1—O3—C3165.5 (4)Ni1ii—O2—C1—C2173.3 (3)
N1—Ni1—O3—C33.6 (4)C4—N1—C2—C184.7 (5)
O1w—Ni1—O3—C395.4 (4)Ni1—N1—C2—C134.6 (5)
O1—Ni1—O3—C375.1 (4)O1—C1—C2—N111.5 (7)
O2i—Ni1—N1—C274.6 (9)O2—C1—C2—N1168.2 (5)
O3—Ni1—N1—C2127.8 (4)Ni1—O3—C3—O4175.0 (6)
O1w—Ni1—N1—C2139.6 (3)Ni1—O3—C3—C40.4 (7)
O2w—Ni1—N1—C250.6 (4)C2—N1—C4—C3124.8 (5)
O1—Ni1—N1—C233.8 (3)Ni1—N1—C4—C37.1 (6)
O2i—Ni1—N1—C447.5 (9)O4—C3—C4—N1179.5 (6)
O3—Ni1—N1—C45.8 (4)O3—C3—C4—N14.8 (8)
O1w—Ni1—N1—C498.3 (4)
Symmetry codes: (i) x1/2, y, z+1; (ii) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1i0.85 (5)2.05 (5)2.837 (6)154 (5)
O1w—H1w2···O3iii0.85 (2)2.10 (4)2.863 (6)150 (2)
O2w—H2w1···O2iv0.85 (2)2.19 (4)2.994 (6)159 (2)
O2w—H2w2···O4v0.85 (3)1.86 (3)2.673 (6)160 (3)
N1—H1n···O4iii0.85 (5)2.11 (5)2.913 (7)157 (3)
Symmetry codes: (i) x1/2, y, z+1; (iii) x, y+1, z; (iv) x1/2, y+1, z+1; (v) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C4H5NO4)(H2O)2]
Mr225.83
Crystal system, space groupOrthorhombic, P21ca
Temperature (K)298
a, b, c (Å)9.7610 (3), 5.2219 (2), 14.1713 (4)
V3)722.32 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.34 × 0.07 × 0.04
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.728, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
4084, 1613, 1585
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.105, 1.25
No. of reflections1613
No. of parameters124
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 1.03
Absolute structureFlack (1983), 718 Friedel pairs
Absolute structure parameter0.12 (3)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O12.123 (4)Ni1—O1w2.087 (4)
Ni1—O2i2.011 (4)Ni1—O2w2.112 (4)
Ni1—O32.027 (4)Ni1—N12.055 (5)
O1—Ni1—O2i90.5 (2)O2i—Ni1—O2w91.7 (2)
O1—Ni1—O392.8 (2)O3—Ni1—O1w92.7 (2)
O1—Ni1—O1w169.0 (2)O3—Ni1—N183.6 (2)
O1—Ni1—O2w85.7 (2)O3—Ni1—O2w178.5 (2)
O1—Ni1—N179.1 (2)O1w—Ni1—O2w88.8 (2)
O2i—Ni1—O388.2 (2)O1w—Ni1—N192.0 (2)
O2i—Ni1—N1166.4 (2)O2w—Ni1—N196.2 (2)
O2i—Ni1—O1w99.2 (2)
Symmetry code: (i) x1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1i0.85 (5)2.05 (5)2.837 (6)154 (5)
O1w—H1w2···O3ii0.85 (2)2.10 (4)2.863 (6)150 (2)
O2w—H2w1···O2iii0.85 (2)2.19 (4)2.994 (6)159 (2)
O2w—H2w2···O4iv0.85 (3)1.86 (3)2.673 (6)160 (3)
N1—H1n···O4ii0.85 (5)2.11 (5)2.913 (7)157 (3)
Symmetry codes: (i) x1/2, y, z+1; (ii) x, y+1, z; (iii) x1/2, y+1, z+1; (iv) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds