Download citation
Download citation
link to html
The title compound, [Pd2(C8H18P)2(C6H15P)2], has been obtained by the reaction of di-tert-butyl­phosphine–phos­phanyl­idene–σ4-di-tert-butyl­(methyl)­phospho­rane and bis­(tri­ethyl­phosphine)­palladium(II) chloride with sodium naphthalide. [{Pd(μ-PtBu2)(PEt3)}2](PdPd) is not a primary product. It crystallizes in space group P\overline 1 with one mol­ecule in the unit cell. The molecule has a centre of symmetry at the mid-point of the Pd—Pd bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301081X/na6236sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301081X/na6236Isup2.hkl
Contains datablock I

CCDC reference: 214794

Key indicators

  • Single-crystal X-ray study
  • T = 233 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.043
  • wR factor = 0.134
  • Data-to-parameter ratio = 22.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Di-tert-butylphosphine–phosphanylidene–σ4-di-tert- butyl(methyl)phosphorane, tBu2P—PPtBu2(Me) is a convenient source for the di-tert-butylphosphine-phosphanylidene ligand tBu2P—P (Fritz & Scheer, 2000; Olkowska-Oetzel & Pikies, 2003). Up to now only the Pt0 d10 ML2 metal centre was found to be capable to stabilize this ligand (Krautscheid et al., 1997). Despite of many quite similar properties, the Pt0 d10 ML2 centre does not stabilize this species. In the reaction of tBu2P—P=PtBu2(Me) and (Et3P)2PdCl2 with Na/naphthalide, instead of the expected product (Et3P)2Pd(η2-tBu2P—P), crystalline [{Pd(µ-PtBu2)(PEt3)}2](Pd—Pd), (I), was isolated among other products which could not be fully characterized. The molecular structure of (I) is shown in Fig. 1. To the best of our knowledge, only three similar examples are known, viz. [{Pd(µ-PtBu2)(PMe3)}2](Pd—Pd) (Arif et al., 1987), [{Pd(µ-PtBu2)(PtBu2H)}2](Pd—Pd) (Leoni et al., 1992) and [{Pd(µ-PcHex2)(PcHex2OPh)}2](Pd—Pd) (Sommovigo et al., 1994). The Pd—Pd distance of 2.5782 (9) Å in (I) is slightly longer than in [{Pd(µ-PtBu2)(PMe3)}2](Pd—Pd) (2.571 Å). The P2—Pd—Pd angle of 179.95 (6)° in (I) is similar to the Me3P—Pd—Pd angle in [{Pd(µ-PtBu2)(PMe3)}2](Pd—Pd) (178.4°). For related complexes with bulky phosphine ligands, an essential deviation of the R3P—Pd—Pd—PR3 moiety from linearity was observed. For [{Pd(µ-PtBu2)(PtBu2H)}2](Pd—Pd) the tBu2(H)P—Pd—Pd angle is 173.2° and for [{Pd(µ-PcHex2)(PcHex2OPh)}2](Pd—Pd) the corresponding P—Pd—Pd angle is 170.5°.

Experimental top

The title compound was obtained using standard Schlenk methods under an atmosphere of carefully purified nitrogen: 4.1 ml of 0.18 M solution of Na/naphthalide was added dropwise to a solution of 0.144 g (0.439 mmol) (Et3P)2PdCl2 and 0.059 g (0.174 mmol) tBu2P—P=PtBu2(Me) in 6 ml tetrahydrofuran. This solution turned slowly dark while it was stirred for 2 d at room temperature. The reaction mixture was evaporated to dryness in vacuum and naphthalene was sublimed from the residue. The residue was dissolved in Et2O, filtered and recrystallized three times at 229 K from Et2O, yielding a small amount of [{Pd(µ-PtBu2)(PEt3)}2](Pd—Pd). 1H NMR(C6D6): δ 1.86 [PCH2, d of quartets, 2J(H,H) = 5 Hz, 2J(P,H) = 3 Hz], δ 1.52 (tBu2P, pseudo-t, J = 5.7 and 6.1 Hz), δ 1.12 [CH3, d of t, 2J(H,H) = 5 Hz, 3J(P,H) = 7.6 Hz]; 31P {1H} NMR (C6D6): δ 284.9 [PEt3, t, 2J(P,P) = 38.1 Hz], δ 14.6 (tBu2P, t) 13C {1H} (C6D6): δ 34.2 (PtBu2, CH3, t, J = 6.1 Hz), δ 30.9 [tBu2P, C, s), δ 23.5 (PCH2, d of t), δ 10.2 (CH3, s).

Refinement top

Backgrounds were obtained from analysis of the scan profile (Blessing et al., 1974).

Computing details top

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: PROCESS MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) (Johnson, 1976), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and all H atoms have been omitted.
[Bis(µ-di-tert-butylphosphido)bis(triethylphosphine)palladium(I)] top
Crystal data top
[Pd2(C8H18P)2(C6H15P)2]Z = 1.0
Mr = 739.53F(000) = 386.00
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9820 (9) ÅCell parameters from 24 reflections
b = 10.935 (2) Åθ = 11–14°
c = 11.296 (2) ŵ = 1.16 mm1
α = 114.15 (1)°T = 233 K
β = 103.67 (1)°Cut fragment, red
γ = 101.72 (1)°0.40 × 0.25 × 0.25 mm
V = 925.8 (3) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.019
θ/2θ scansθmax = 26.0°, θmin = 3.3°
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
h = 1111
Tmin = 0.695, Tmax = 0.749k = 1313
4955 measured reflectionsl = 134
3623 independent reflections3 standard reflections every 120 min
3266 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.04P)2 + 8P]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max = 0.003
163 parametersΔρmax = 1.30 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Pd2(C8H18P)2(C6H15P)2]γ = 101.72 (1)°
Mr = 739.53V = 925.8 (3) Å3
Triclinic, P1Z = 1.0
a = 8.9820 (9) ÅMo Kα radiation
b = 10.935 (2) ŵ = 1.16 mm1
c = 11.296 (2) ÅT = 233 K
α = 114.15 (1)°0.40 × 0.25 × 0.25 mm
β = 103.67 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3266 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.019
Tmin = 0.695, Tmax = 0.7493 standard reflections every 120 min
4955 measured reflections intensity decay: 0.5%
3623 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 1.30 e Å3
3617 reflectionsΔρmin = 0.55 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.53266 (5)0.93446 (5)0.56989 (4)0.02742 (15)
P10.35742 (18)0.82055 (16)0.33932 (15)0.0300 (3)
P20.5901 (2)0.81973 (17)0.69239 (17)0.0347 (4)
C10.4247 (8)0.7051 (7)0.2006 (6)0.0382 (14)
C20.3496 (12)0.6947 (12)0.0612 (8)0.072 (3)
H2A0.36470.79060.07220.094*
H2B0.23300.64010.02250.094*
H2C0.40240.64680.00180.094*
C30.3926 (17)0.5565 (10)0.1821 (11)0.092 (4)
H3A0.42150.49910.10400.119*
H3B0.27700.51330.16320.119*
H3C0.45860.56050.26700.119*
C40.6061 (11)0.7793 (12)0.2528 (11)0.085 (3)
H4A0.65670.78710.34380.111*
H4B0.62780.87470.26160.111*
H4C0.65180.72410.18710.111*
C50.1329 (8)0.7433 (7)0.2995 (6)0.0398 (14)
C60.0284 (9)0.7211 (11)0.1605 (9)0.068 (2)
H6A0.08650.69390.15090.089*
H6B0.04460.64540.08530.089*
H6C0.05950.80970.15560.089*
C70.0965 (10)0.8548 (10)0.4130 (9)0.070 (3)
H7A0.13540.94720.41660.091*
H7B0.15200.86230.50280.091*
H7C0.02120.82680.39280.091*
C80.0852 (12)0.6046 (10)0.3040 (13)0.084 (3)
H8A0.03110.57380.28910.109*
H8B0.14850.61870.39490.109*
H8C0.10740.53160.23110.109*
C90.4145 (9)0.7102 (9)0.7022 (9)0.0521 (18)
H9A0.34400.63490.60820.068*
H9B0.45270.66440.75610.068*
C100.3165 (12)0.7967 (13)0.7688 (11)0.078 (3)
H10A0.38560.87010.86390.102*
H10B0.22350.73370.77090.102*
H10C0.27710.84200.71470.102*
C110.6868 (10)0.6887 (8)0.6243 (8)0.0520 (18)
H11A0.70030.64210.68210.068*
H11B0.61390.61550.53030.068*
C120.8496 (13)0.7484 (13)0.6190 (13)0.086 (3)
H12A0.83980.80290.56870.111*
H12B0.88700.67020.57100.111*
H12C0.92820.81100.71370.111*
C130.7248 (10)0.9301 (8)0.8759 (7)0.0543 (19)
H13A0.82680.98660.87880.071*
H13B0.67390.99720.92260.071*
C140.7681 (12)0.8562 (10)0.9613 (9)0.074 (3)
H14A0.66800.79630.95770.097*
H14B0.83330.92801.05790.097*
H14C0.83100.79690.92320.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0306 (2)0.0268 (2)0.0249 (2)0.01086 (17)0.00725 (17)0.01340 (18)
P10.0310 (8)0.0274 (7)0.0271 (7)0.0087 (6)0.0064 (6)0.0118 (6)
P20.0392 (9)0.0369 (8)0.0362 (8)0.0167 (7)0.0126 (7)0.0236 (7)
C10.050 (4)0.031 (3)0.031 (3)0.018 (3)0.015 (3)0.010 (3)
C20.090 (7)0.104 (7)0.041 (4)0.056 (6)0.033 (4)0.036 (5)
C30.174 (12)0.050 (5)0.089 (7)0.064 (7)0.086 (8)0.034 (5)
C40.045 (5)0.110 (8)0.076 (6)0.028 (5)0.029 (5)0.017 (6)
C50.032 (3)0.043 (4)0.033 (3)0.005 (3)0.007 (3)0.015 (3)
C60.034 (4)0.104 (7)0.058 (5)0.014 (4)0.002 (3)0.043 (5)
C70.046 (5)0.079 (6)0.063 (5)0.013 (4)0.031 (4)0.012 (5)
C80.056 (5)0.063 (6)0.127 (9)0.002 (4)0.019 (6)0.056 (6)
C90.049 (4)0.059 (5)0.065 (5)0.021 (4)0.023 (4)0.042 (4)
C100.071 (6)0.125 (9)0.084 (7)0.050 (6)0.045 (5)0.074 (7)
C110.068 (5)0.053 (4)0.060 (5)0.038 (4)0.031 (4)0.037 (4)
C120.078 (7)0.115 (9)0.113 (9)0.063 (7)0.062 (7)0.070 (8)
C130.068 (5)0.050 (4)0.033 (4)0.014 (4)0.002 (3)0.021 (3)
C140.085 (7)0.077 (6)0.047 (5)0.017 (5)0.004 (4)0.038 (5)
Geometric parameters (Å, º) top
Pd—P22.2584 (15)C6—H6C0.9801
Pd—P1i2.3240 (17)C7—H7A0.9801
Pd—P12.3293 (16)C7—H7B0.9801
Pd—Pdi2.5782 (9)C7—H7C0.9801
P1—C51.884 (7)C8—H8A0.9801
P1—C11.884 (6)C8—H8B0.9801
P2—C111.822 (7)C8—H8C0.9801
P2—C91.832 (7)C9—C101.519 (12)
P2—C131.842 (7)C9—H9A0.9800
C1—C21.506 (10)C9—H9B0.9800
C1—C31.507 (10)C10—H10A0.9801
C1—C41.509 (11)C10—H10B0.9801
C2—H2A0.9801C10—H10C0.9801
C2—H2B0.9801C11—C121.500 (12)
C2—H2C0.9801C11—H11A0.9800
C3—H3A0.9801C11—H11B0.9800
C3—H3B0.9801C12—H12A0.9801
C3—H3C0.9801C12—H12B0.9801
C4—H4A0.9801C12—H12C0.9801
C4—H4B0.9801C13—C141.524 (10)
C4—H4C0.9801C13—H13A0.9800
C5—C81.515 (11)C13—H13B0.9800
C5—C61.518 (9)C14—H14A0.9801
C5—C71.523 (10)C14—H14B0.9801
C6—H6A0.9801C14—H14C0.9801
C6—H6B0.9801
P2—Pd—P1i123.52 (6)C5—C6—H6C109.5
P2—Pd—P1123.77 (6)H6A—C6—H6C109.5
P1i—Pd—P1112.71 (5)H6B—C6—H6C109.5
P2—Pd—Pdi179.95 (6)C5—C7—H7A109.5
P1i—Pd—Pdi56.45 (4)C5—C7—H7B109.5
P1—Pd—Pdi56.26 (4)H7A—C7—H7B109.5
C5—P1—C1111.7 (3)C5—C7—H7C109.5
C5—P1—Pdi117.3 (2)H7A—C7—H7C109.5
C1—P1—Pdi117.2 (2)H7B—C7—H7C109.5
C5—P1—Pd118.3 (2)C5—C8—H8A109.5
C1—P1—Pd118.5 (2)C5—C8—H8B109.5
Pdi—P1—Pd67.29 (5)H8A—C8—H8B109.5
C11—P2—C9100.5 (4)C5—C8—H8C109.5
C11—P2—C13102.8 (4)H8A—C8—H8C109.5
C9—P2—C13102.7 (4)H8B—C8—H8C109.5
C11—P2—Pd115.6 (2)C10—C9—P2112.3 (6)
C9—P2—Pd115.8 (2)C10—C9—H9A109.1
C13—P2—Pd117.1 (2)P2—C9—H9A109.1
C2—C1—C3108.4 (7)C10—C9—H9B109.1
C2—C1—C4108.5 (7)P2—C9—H9B109.1
C3—C1—C4109.0 (8)H9A—C9—H9B107.9
C2—C1—P1113.5 (5)C9—C10—H10A109.5
C3—C1—P1112.9 (5)C9—C10—H10B109.5
C4—C1—P1104.2 (5)H10A—C10—H10B109.5
C1—C2—H2A109.5C9—C10—H10C109.5
C1—C2—H2B109.5H10A—C10—H10C109.5
H2A—C2—H2B109.5H10B—C10—H10C109.5
C1—C2—H2C109.5C12—C11—P2114.6 (6)
H2A—C2—H2C109.5C12—C11—H11A108.6
H2B—C2—H2C109.5P2—C11—H11A108.6
C1—C3—H3A109.5C12—C11—H11B108.6
C1—C3—H3B109.5P2—C11—H11B108.6
H3A—C3—H3B109.5H11A—C11—H11B107.6
C1—C3—H3C109.5C11—C12—H12A109.5
H3A—C3—H3C109.5C11—C12—H12B109.5
H3B—C3—H3C109.5H12A—C12—H12B109.5
C1—C4—H4A109.5C11—C12—H12C109.5
C1—C4—H4B109.5H12A—C12—H12C109.5
H4A—C4—H4B109.5H12B—C12—H12C109.5
C1—C4—H4C109.5C14—C13—P2118.5 (6)
H4A—C4—H4C109.5C14—C13—H13A107.7
H4B—C4—H4C109.5P2—C13—H13A107.7
C8—C5—C6108.7 (7)C14—C13—H13B107.7
C8—C5—C7108.6 (7)P2—C13—H13B107.7
C6—C5—C7107.9 (7)H13A—C13—H13B107.1
C8—C5—P1113.6 (5)C13—C14—H14A109.5
C6—C5—P1112.8 (5)C13—C14—H14B109.5
C7—C5—P1104.9 (5)H14A—C14—H14B109.5
C5—C6—H6A109.5C13—C14—H14C109.5
C5—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Pd2(C8H18P)2(C6H15P)2]
Mr739.53
Crystal system, space groupTriclinic, P1
Temperature (K)233
a, b, c (Å)8.9820 (9), 10.935 (2), 11.296 (2)
α, β, γ (°)114.15 (1), 103.67 (1), 101.72 (1)
V3)925.8 (3)
Z1.0
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.695, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
4955, 3623, 3266
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.03
No. of reflections3617
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 0.55

Computer programs: CAD-4 Operations Manual (Enraf-Nonius, 1977), CAD-4 Operations Manual, PROCESS MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Pd—P22.2584 (15)Pd—P12.3293 (16)
Pd—P1i2.3240 (17)Pd—Pdi2.5782 (9)
P2—Pd—P1i123.52 (6)P1i—Pd—Pdi56.45 (4)
P2—Pd—P1123.77 (6)P1—Pd—Pdi56.26 (4)
P1i—Pd—P1112.71 (5)Pdi—P1—Pd67.29 (5)
P2—Pd—Pdi179.95 (6)
Symmetry code: (i) x+1, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds