Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C21H23N3O, has a supramolecular structure which is determined by a very weak C—H...O(methoxy) hydrogen bond and a similarly weak C—H...π interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001909/na6198sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001909/na6198Isup2.hkl
Contains datablock I

CCDC reference: 204722

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.052
  • wR factor = 0.135
  • Data-to-parameter ratio = 16.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.45 From the CIF: _reflns_number_total 3762 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4088 Completeness (_total/calc) 92.03% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), was prepared as an intermediate in the preparation of new pyrazole fused derivatives (see Scheme below).

There are no unusual bonds or angles (Table 1) in the pyrazole ring, which is planar to within experimental error.

The mean plane of the phenyl ring attached to N2 is tilted at 26.70 (9)° to the mean plane of the pyrazole ring. The torsion angles involving the methoxy carbon, C341, show that the methoxy group is almost but not quite coplanar with the phenyl ring to which it is attached [C33–C34–O34–C341 = 5.1 (2)°], there is a tendency for methoxy groups to be coplanar with the phenyl ring in anisoles [see Domiano et al. (1979)]

The supramolecular structure is determined by two very weak interactions involving phenyl H atoms (Table 2). The C4—H4···O34 bond links the molecules at (x, y, z) and (1 − x, −y, −z) into a a head-to-tail centrosymmetric R22(20) dimer (Bernstein et al., 1995), formed about the centre of symmetry at (1/2, 0,0) (Fig. 2). These dimers are then linked by a C—H···π interaction into a ribbon which runs parallel to the b axis, this is formed by the interaction C25—H25···centroid of the phenyl ring attached to N2 (Fig. 3).

Examination of the structure with PLATON (Spek, 2002) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental top

A mixture of 3-amino-5-(tert-butyl)-2-phenyl-2H-pyrazole (0.11 g, 0.512 mmol), p-methoxybenzaldehyde (0.07 g, 0.514 mmol) and ethanol (10 ml) was heated to reflux for 5 min. After cooling, the pale yellow solid which formed was filtered off and washed with ethanol (85% yield; m.p. 394 K). 1H NMR (300 MHz, CDCl3, p.p.m.): 1.39 (9H, s), 3.85 (3H, s), 6.20 (1H, s), 6.95 (2H, d, J = 9.0 Hz), 7.26 (1H, t, J = 9.0 Hz), 7.42 (2H, br t), 7.79 (4H, br d), 8.58 (1H, s, NCH); 13C NMR (75 MHz, CDCl3, p.p.m.): 30.4, 32.5, 55.4, 89.7, 114.3, 124.1, 126.1, 128.4, 129.0, 130.8, 139.9, 150.4, 159.2 (NCH), 162.1, 162.6; MS (70 eV): m/e (%) 333 (95), 318 (73), 291 (44), 77 (100), 51 (48), 41 (77). Crystals suitable for single-crystal X-ray diffraction were grown from a solution in ethanol.

Refinement top

H atoms were treated as riding atoms, with C—H distances in the range 0.95–0.98 Å. The data shows a completness of 0.92 at τ of 27.50° and 0.933 at θ of 25.00°; examination of the data shows that data at high θ values is very weak or absent. The methyl atoms of the tert-butyl group, particularly C54, have higher displacement parameters than the other atoms in the structure, indicating a degree of rotational disorder in this group.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the the R22(20) centrosymmetric dimer.
[Figure 3] Fig. 3. Stereoview showing the dimers linked by the C—H···π interaction. Methyl H atoms have been omitted for clarity.
3-tert-butyl-5-[(4-methoxybenzylidene)amino]-1-phenylpyrazole top
Crystal data top
C21H23N3OF(000) = 712
Mr = 333.42Dx = 1.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0744 (3) ÅCell parameters from 3762 reflections
b = 6.2583 (2) Åθ = 3.2–27.5°
c = 28.9244 (9) ŵ = 0.08 mm1
β = 101.0410 (13)°T = 120 K
V = 1789.89 (10) Å3Block, brown
Z = 40.40 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
3762 independent reflections
Radiation source: fine-focus sealed X-ray tube2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 1113
Tmin = 0.970, Tmax = 0.992k = 84
9156 measured reflectionsl = 3731
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.7158P]
where P = (Fo2 + 2Fc2)/3
3762 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C21H23N3OV = 1789.89 (10) Å3
Mr = 333.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0744 (3) ŵ = 0.08 mm1
b = 6.2583 (2) ÅT = 120 K
c = 28.9244 (9) Å0.40 × 0.20 × 0.10 mm
β = 101.0410 (13)°
Data collection top
Nonius KappaCCD
diffractometer
3762 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
2710 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.992Rint = 0.056
9156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
3762 reflectionsΔρmin = 0.33 e Å3
230 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.21013 (14)0.6008 (2)0.17069 (5)0.0215 (3)
N20.32887 (13)0.5996 (2)0.15426 (5)0.0195 (3)
C210.43008 (17)0.7516 (3)0.17282 (6)0.0201 (4)
C220.56627 (17)0.7080 (3)0.17514 (6)0.0241 (4)
C230.66133 (18)0.8601 (3)0.19416 (7)0.0286 (4)
C240.62257 (18)1.0517 (3)0.21143 (7)0.0274 (4)
C250.48641 (18)1.0928 (3)0.20909 (6)0.0248 (4)
C260.38998 (18)0.9439 (3)0.18996 (6)0.0218 (4)
C30.33061 (17)0.4384 (3)0.12247 (6)0.0193 (4)
N30.43791 (14)0.4147 (2)0.09877 (5)0.0213 (3)
C370.46951 (17)0.2236 (3)0.08898 (6)0.0216 (4)
C310.57039 (16)0.1785 (3)0.06040 (6)0.0194 (4)
C320.62042 (17)0.3385 (3)0.03502 (6)0.0221 (4)
C330.71205 (17)0.2945 (3)0.00625 (6)0.0228 (4)
C340.75693 (16)0.0856 (3)0.00348 (6)0.0206 (4)
O340.84677 (12)0.0230 (2)0.02368 (4)0.0255 (3)
C3410.90609 (19)0.1862 (3)0.04779 (7)0.0307 (5)
C350.70938 (17)0.0763 (3)0.02908 (6)0.0227 (4)
C360.61608 (17)0.0306 (3)0.05694 (6)0.0223 (4)
C40.20824 (17)0.3353 (3)0.11775 (6)0.0224 (4)
C50.13743 (17)0.4415 (3)0.14827 (6)0.0216 (4)
C510.00362 (18)0.4000 (3)0.15686 (7)0.0265 (4)
C520.0148 (2)0.4669 (4)0.20646 (8)0.0433 (6)
C530.1036 (2)0.5377 (4)0.12246 (8)0.0459 (6)
C540.0413 (3)0.1673 (4)0.14818 (14)0.0711 (10)
H220.59400.57590.16390.029*
H230.75460.83230.19530.034*
H240.68871.15390.22470.033*
H250.45901.22440.22070.030*
H260.29670.97280.18850.026*
H370.42540.10730.10080.026*
H320.59090.48150.03750.027*
H330.74380.40520.01130.027*
H34A0.83570.25410.07130.046*
H34B0.97450.12260.06350.046*
H34C0.94870.29360.02510.046*
H350.74120.21840.02740.027*
H360.58270.14210.07390.027*
H40.17790.21690.09800.027*
H52A0.04730.38100.22940.065*
H52B0.10770.44460.21100.065*
H52C0.00880.61840.21100.065*
H53A0.08080.68900.12790.069*
H53B0.19570.51220.12760.069*
H53C0.09810.49960.09000.069*
H54A0.03840.13060.11540.107*
H54B0.13270.14330.15400.107*
H54C0.02300.07750.16940.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0182 (7)0.0242 (8)0.0231 (8)0.0008 (6)0.0068 (6)0.0003 (6)
N20.0180 (7)0.0210 (8)0.0203 (8)0.0005 (6)0.0053 (6)0.0015 (6)
C210.0218 (9)0.0217 (9)0.0164 (8)0.0039 (7)0.0028 (6)0.0019 (7)
C220.0229 (9)0.0263 (10)0.0234 (10)0.0006 (7)0.0056 (7)0.0033 (8)
C230.0205 (9)0.0364 (11)0.0287 (10)0.0040 (8)0.0040 (7)0.0025 (9)
C240.0289 (10)0.0307 (11)0.0225 (10)0.0103 (8)0.0045 (8)0.0033 (8)
C250.0326 (10)0.0218 (9)0.0199 (9)0.0017 (8)0.0046 (7)0.0001 (7)
C260.0228 (9)0.0234 (10)0.0191 (9)0.0017 (7)0.0034 (7)0.0020 (7)
C30.0217 (9)0.0191 (9)0.0170 (9)0.0015 (7)0.0035 (7)0.0003 (7)
N30.0204 (7)0.0239 (8)0.0194 (8)0.0007 (6)0.0029 (6)0.0021 (6)
C370.0215 (9)0.0230 (9)0.0194 (9)0.0016 (7)0.0012 (7)0.0008 (7)
C310.0194 (8)0.0220 (9)0.0161 (8)0.0008 (7)0.0014 (7)0.0025 (7)
C320.0238 (9)0.0182 (9)0.0241 (10)0.0008 (7)0.0039 (7)0.0017 (7)
C330.0237 (9)0.0224 (9)0.0221 (9)0.0032 (7)0.0040 (7)0.0014 (7)
C340.0190 (8)0.0243 (9)0.0182 (9)0.0009 (7)0.0028 (7)0.0026 (7)
O340.0283 (7)0.0251 (7)0.0264 (7)0.0021 (5)0.0130 (5)0.0005 (6)
C3410.0328 (10)0.0335 (11)0.0291 (11)0.0023 (8)0.0143 (8)0.0052 (9)
C350.0250 (9)0.0183 (9)0.0247 (10)0.0017 (7)0.0042 (7)0.0020 (7)
C360.0245 (9)0.0205 (9)0.0213 (9)0.0014 (7)0.0026 (7)0.0014 (7)
C40.0231 (9)0.0202 (9)0.0239 (10)0.0013 (7)0.0044 (7)0.0014 (7)
C50.0205 (9)0.0213 (9)0.0229 (9)0.0003 (7)0.0036 (7)0.0026 (7)
C510.0226 (9)0.0272 (10)0.0316 (11)0.0041 (8)0.0101 (8)0.0020 (8)
C520.0272 (11)0.0749 (17)0.0300 (12)0.0071 (11)0.0107 (9)0.0017 (11)
C530.0223 (10)0.0754 (18)0.0394 (13)0.0031 (10)0.0044 (9)0.0060 (12)
C540.0517 (16)0.0371 (14)0.140 (3)0.0178 (12)0.0583 (18)0.0176 (16)
Geometric parameters (Å, º) top
N1—C51.330 (2)C33—H330.9500
N1—N21.369 (2)C34—O341.365 (2)
N2—C31.367 (2)C34—C351.393 (2)
N2—C211.422 (2)O34—C3411.430 (2)
C21—C221.388 (2)C341—H34A0.9800
C21—C261.391 (2)C341—H34B0.9800
C22—C231.387 (2)C341—H34C0.9800
C22—H220.9500C35—C361.380 (3)
C23—C241.384 (3)C35—H350.9500
C23—H230.9500C36—H360.9500
C24—C251.385 (3)C4—C51.404 (2)
C24—H240.9500C4—H40.9500
C25—C261.383 (2)C5—C511.511 (2)
C25—H250.9500C51—C541.513 (3)
C26—H260.9500C51—C521.519 (3)
C3—C41.375 (2)C51—C531.537 (3)
C3—N31.394 (2)C52—H52A0.9800
N3—C371.283 (2)C52—H52B0.9800
C37—C311.455 (2)C52—H52C0.9800
C37—H370.9500C53—H53A0.9800
C31—C321.392 (2)C53—H53B0.9800
C31—C361.397 (2)C53—H53C0.9800
C32—C331.384 (3)C54—H54A0.9800
C32—H320.9500C54—H54B0.9800
C33—C341.391 (2)C54—H54C0.9800
C5—N1—N2105.23 (14)O34—C341—H34A109.5
C3—N2—N1111.23 (13)O34—C341—H34B109.5
C3—N2—C21130.29 (14)H34A—C341—H34B109.5
N1—N2—C21118.43 (14)O34—C341—H34C109.5
C22—C21—C26120.33 (16)H34A—C341—H34C109.5
C22—C21—N2121.16 (15)H34B—C341—H34C109.5
C26—C21—N2118.49 (15)C36—C35—C34120.10 (16)
C23—C22—C21119.03 (17)C36—C35—H35119.9
C23—C22—H22120.5C34—C35—H35119.9
C21—C22—H22120.5C35—C36—C31120.44 (17)
C24—C23—C22121.11 (17)C35—C36—H36119.8
C24—C23—H23119.4C31—C36—H36119.8
C22—C23—H23119.4C3—C4—C5105.61 (16)
C23—C24—C25119.28 (17)C3—C4—H4127.2
C23—C24—H24120.4C5—C4—H4127.2
C25—C24—H24120.4N1—C5—C4111.28 (15)
C26—C25—C24120.49 (17)N1—C5—C51119.74 (16)
C26—C25—H25119.8C4—C5—C51128.96 (16)
C24—C25—H25119.8C5—C51—C54110.61 (16)
C25—C26—C21119.74 (16)C5—C51—C52110.49 (15)
C25—C26—H26120.1C54—C51—C52111.1 (2)
C21—C26—H26120.1C5—C51—C53108.49 (16)
N2—C3—C4106.64 (15)C54—C51—C53108.6 (2)
N2—C3—N3121.34 (15)C52—C51—C53107.38 (17)
C4—C3—N3131.76 (16)C51—C52—H52A109.5
C37—N3—C3117.14 (15)C51—C52—H52B109.5
N3—C37—C31122.41 (16)H52A—C52—H52B109.5
N3—C37—H37118.8C51—C52—H52C109.5
C31—C37—H37118.8H52A—C52—H52C109.5
C32—C31—C36118.58 (16)H52B—C52—H52C109.5
C32—C31—C37121.52 (16)C51—C53—H53A109.5
C36—C31—C37119.87 (16)C51—C53—H53B109.5
C33—C32—C31121.65 (16)H53A—C53—H53B109.5
C33—C32—H32119.2C51—C53—H53C109.5
C31—C32—H32119.2H53A—C53—H53C109.5
C32—C33—C34118.92 (16)H53B—C53—H53C109.5
C32—C33—H33120.5C51—C54—H54A109.5
C34—C33—H33120.5C51—C54—H54B109.5
O34—C34—C33124.19 (16)H54A—C54—H54B109.5
O34—C34—C35115.52 (15)C51—C54—H54C109.5
C33—C34—C35120.29 (16)H54A—C54—H54C109.5
C34—O34—C341117.44 (14)H54B—C54—H54C109.5
C5—N1—N2—C31.01 (18)C37—C31—C32—C33177.22 (16)
C5—N1—N2—C21178.66 (14)C31—C32—C33—C341.3 (3)
C3—N2—C21—C2225.9 (3)C32—C33—C34—O34179.87 (16)
N1—N2—C21—C22151.18 (16)C32—C33—C34—C350.4 (3)
C3—N2—C21—C26155.84 (17)C33—C34—O34—C3415.1 (2)
N1—N2—C21—C2627.0 (2)C35—C34—O34—C341175.37 (15)
C26—C21—C22—C230.9 (3)O34—C34—C35—C36178.71 (15)
N2—C21—C22—C23179.08 (16)C33—C34—C35—C360.8 (3)
C21—C22—C23—C241.1 (3)C34—C35—C36—C311.2 (3)
C22—C23—C24—C250.8 (3)C32—C31—C36—C350.3 (2)
C23—C24—C25—C260.4 (3)C37—C31—C36—C35178.49 (16)
C24—C25—C26—C210.2 (3)N2—C3—C4—C50.63 (19)
C22—C21—C26—C250.5 (3)N3—C3—C4—C5174.66 (18)
N2—C21—C26—C25178.70 (15)N2—N1—C5—C40.59 (19)
N1—N2—C3—C41.04 (19)N2—N1—C5—C51178.14 (15)
C21—N2—C3—C4178.32 (16)C3—C4—C5—N10.0 (2)
N1—N2—C3—N3175.83 (14)C3—C4—C5—C51178.60 (17)
C21—N2—C3—N36.9 (3)N1—C5—C51—C54153.1 (2)
N2—C3—N3—C37146.59 (16)C4—C5—C51—C5428.4 (3)
C4—C3—N3—C3740.1 (3)N1—C5—C51—C5229.6 (2)
C3—N3—C37—C31173.83 (15)C4—C5—C51—C52151.9 (2)
N3—C37—C31—C3211.9 (3)N1—C5—C51—C5387.9 (2)
N3—C37—C31—C36170.00 (16)C4—C5—C51—C5390.6 (2)
C36—C31—C32—C330.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O34i0.952.593.487 (2)157
C25—H25···Cg1ii0.952.733.472 (2)135
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H23N3O
Mr333.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)10.0744 (3), 6.2583 (2), 28.9244 (9)
β (°) 101.0410 (13)
V3)1789.89 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.970, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
9156, 3762, 2710
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 1.04
No. of reflections3762
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.33

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2002), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N1—C51.330 (2)C3—N31.394 (2)
N1—N21.369 (2)N3—C371.283 (2)
N2—C31.367 (2)C37—C311.455 (2)
C3—C41.375 (2)C4—C51.404 (2)
C5—N1—N2105.23 (14)C3—C4—C5105.61 (16)
C3—N2—N1111.23 (13)N1—C5—C4111.28 (15)
N2—C3—C4106.64 (15)
C3—N2—C21—C2225.9 (3)C3—N3—C37—C31173.83 (15)
N1—N2—C21—C22151.18 (16)N3—C37—C31—C3211.9 (3)
C3—N2—C21—C26155.84 (17)N3—C37—C31—C36170.00 (16)
N1—N2—C21—C2627.0 (2)C33—C34—O34—C3415.1 (2)
N2—C3—N3—C37146.59 (16)C35—C34—O34—C341175.37 (15)
C4—C3—N3—C3740.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O34i0.952.593.487 (2)157
C25—H25···Cg1ii0.952.733.472 (2)135
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds