Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, C21H21ClN4S, comprises a fully substituted pyrimidine ring that packs in a 2-amino­pyrimidine-type hydrogen-bonded polymer chain. However, hindrance from the chloro­phenyl­thio group, in turn altered by the presence of the phenyl ring, creates a convoluted hydrogen-bonded chain. The dihedral angle between the thio­phenyl and pyrimidine rings is 70.10 (7)°, while the dihedral angle between the phenyl and pyrimidine rings is 56.14 (8)°. Neither the S nor the Cl atoms is involved in the hydrogen-bonding network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001405/na6194sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001405/na6194Isup2.hkl
Contains datablock I

CCDC reference: 204712

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.047
  • wR factor = 0.124
  • Data-to-parameter ratio = 13.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.105
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

We recently discussed the occurrence of N—H···S hydrogen-bonding associations in a series of nine 2-amino-4-sulfur-substituted pyrimidines (Lynch et al., 2002). In the packing motifs of the ten structures studied (one compound had two polymorphs), all displayed R22(8) hydrogen-bonded 2-aminopyrimidine dimers, to varying degrees of polymerization, whereas six packing modes additionally included N—H···S interactions, the majority being three-centre with an N—H···N interaction. The title compound, (I), prepared by the sequential addition of piperidine and 4-chlorothiophenol to 2-amino-5-phenylpyrimidine, has the appropriate S-substituent to be compared with these previously studied pyrimidine structures. In (I), the presence of the 5-phenyl ring prevents the thiophenyl group from taking on a similar conformation as in 2-amino-4-(4-chlorophenylthio)-6-morpholinopyrimidine, in which the direction of the thiophenyl group opposes that of the pyrimidine N atoms. Instead, the thiophenyl group adopts a conformation that turns it towards the heterocyclic N atoms (Fig. 1). The dihedral angle between the 5-phenyl and pyrimidine rings is 56.14 (8)°, while the dihedral angle for the thiophenyl and pyrimidine rings is 70.10 (7)°. Previously reported 2-amino-5-phenylpyrimidine-type structures, and their dihedral angle between the 5-phenyl and pyrimidine rings, are 2,4-diamino-5-(3',4'-dichlorophenyl)-6-methylpyrimidinium ethanesulfonate [71.7 (1)°; Cody, 1983], 2,4-diamino-5-(3',4'-dichlorophenyl)-6-methylpyrimidine [78.2 (5) and 88.4 (5)°; De et al., 1989] and methylbenzoprim [75.4 (2) and 73.5 (2)°; Denny et al., 1992]. The latter two compounds have two unique molecules in the asymmetric unit.

Hindrance from the 5-phenyl ring to neighbouring molecules and the conformation of the thiophenyl ring not only prevent any hydrogen-bonding associations to the S atom, but the latter also causes the resultant 2-aminopyrimidine hydrogen-bonded polymer chain to be convoluted (Fig. 2), similar to the packing of both 2-amino-4-chloro-6-(4-fluorophenylthio)pyrimidine and 2-amino-4-[4-(2,3-dimethylphenyl)piperazino]-6-phenylthiopyrimidine (Lynch et al., 2002). However, the hydrogen-bonding pattern for (I) (Table 1) does differ from these two aforementioned structures in that there is a three-centre association from one 2-amino H atom to both the adjacent pyrimidine N atom and the adjacent 2-amino N atom. This is due to the high angle (ca 90°) in which the 2-aminopyrimidines approach each other to form the hydrogen-bonded chain thus allowing one 2-amino H atom closer to both N atoms and not just the pyrimidine N. Such a high angle of incidence is due to hindrance from both the thiophenyl and piperidyl substituents because in lesser-substituted 2-aminopyrimidines any resultant hydrogen-bonded chains have a high occurrence of being essentially planar. In this respect, it is surprising that the packing network of (I) displays any R22(8) dimers, let alone a full chain, especially when the Cl atom is available for hydrogen-bonding associations in an unhindered position [compare this with the structure of 2-amino-4-(4-(2-ethoxyphenyl)piperazino)-6-(4-chlorophenylthio)pyrimidine in Lynch et al. (2002)].

Experimental top

The title compound was obtained from Key Organics Ltd and crystals were grown from ethanol solution.

Refinement top

All H atoms were included in the refinement, at calculated positions, as riding models, with C—H set at 0.95 (Ar—H) and 0.99 Å (CH2), while the isotropic displacement parameters were set equal to 1.25Ueq of the preceeding normal atom except for the 2-amino H atoms, which were located on difference syntheses and for which both positional and displacement parameters refined. An Rint value of 0.105 was the result of weak high-angle data.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the title compound, showing ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram for the title compound, showing the convoluted 2-aminopyrimidine hydrogen-bonded chain.
2-Amino-4-(4-chlorophenylthio)-5-phenyl-6-(1-piperidyl)pyrimidine top
Crystal data top
C21H21ClN4SDx = 1.351 Mg m3
Mr = 396.93Melting point: 461-463 K K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.645 (3) ÅCell parameters from 9868 reflections
b = 6.4302 (13) Åθ = 2.9–27.5°
c = 20.954 (4) ŵ = 0.32 mm1
β = 98.67 (3)°T = 120 K
V = 1950.8 (7) Å3Plate, colourless
Z = 40.40 × 0.12 × 0.02 mm
F(000) = 832
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3422 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scansh = 1716
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 77
Tmin = 0.884, Tmax = 0.994l = 2424
14972 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.0316P]
where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C21H21ClN4SV = 1950.8 (7) Å3
Mr = 396.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.645 (3) ŵ = 0.32 mm1
b = 6.4302 (13) ÅT = 120 K
c = 20.954 (4) Å0.40 × 0.12 × 0.02 mm
β = 98.67 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3422 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2637 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.994Rint = 0.105
14972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.49 e Å3
3422 reflectionsΔρmin = 0.48 e Å3
252 parameters
Special details top

Geometry. Mean plane data ex SHELXL97 for molecule (I) ############################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 11.9374 (0.0104) x − 1.3699 (0.0065) y + 13.7333 (0.0171) z = 1.8469 (0.0113)

* 0.0089 (0.0016) C51 * −0.0072 (0.0016) C52 * 0.0001 (0.0017) C53 * 0.0054 (0.0018) C54 * −0.0036 (0.0018) C55 * −0.0035 (0.0017) C56

Rms deviation of fitted atoms = 0.0056

− 7.7124 (0.0118) x + 4.3870 (0.0044) y + 12.1687 (0.0154) z = 5.5470 (0.0059)

Angle to previous plane (with approximate e.s.d.) = 56.14 (0.08)

* 0.0177 (0.0014) N1 * 0.0091 (0.0015) C2 * −0.0246 (0.0013) N3 * 0.0144 (0.0014) C4 * 0.0115 (0.0014) C5 * −0.0282 (0.0014) C6

Rms deviation of fitted atoms = 0.0189

− 2.0317 (0.0134) x − 1.9801 (0.0061) y + 19.9358 (0.0122) z = 8.2404 (0.0054)

Angle to previous plane (with approximate e.s.d.) = 70.10 (0.07)

* −0.0041 (0.0015) C41 * −0.0002 (0.0016) C42 * 0.0039 (0.0016) C43 * −0.0032 (0.0017) C44 * −0.0013 (0.0017) C45 * 0.0049 (0.0017) C46

Rms deviation of fitted atoms = 0.0034

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14042 (13)0.7168 (3)0.28787 (9)0.0198 (4)
C20.07163 (16)0.5807 (3)0.29266 (11)0.0189 (5)
N210.00284 (14)0.5865 (3)0.24671 (10)0.0240 (5)
H210.051 (2)0.476 (4)0.2458 (13)0.046 (8)*
H220.0060 (17)0.671 (4)0.2138 (13)0.025 (7)*
N30.07005 (12)0.4394 (3)0.33982 (9)0.0178 (4)
C40.14173 (15)0.4429 (3)0.38718 (10)0.0162 (5)
C50.21829 (15)0.5731 (3)0.38854 (10)0.0180 (5)
C60.21426 (16)0.7077 (3)0.33419 (11)0.0178 (5)
S40.13523 (4)0.27665 (9)0.45470 (3)0.02177 (19)
C410.02631 (16)0.1556 (3)0.43127 (10)0.0198 (5)
C420.02266 (17)0.0500 (3)0.41067 (11)0.0232 (6)
H420.07840.12410.40900.029*
C430.06106 (17)0.1474 (4)0.39268 (11)0.0260 (6)
H430.06340.28820.37880.033*
C440.14108 (17)0.0380 (4)0.39503 (11)0.0267 (6)
Cl40.24680 (5)0.16362 (12)0.37349 (4)0.0460 (2)
C450.13980 (17)0.1676 (4)0.41568 (12)0.0284 (6)
H450.19580.24090.41710.035*
C460.05564 (17)0.2630 (4)0.43404 (12)0.0241 (6)
H460.05350.40300.44870.030*
C510.29093 (15)0.5852 (3)0.44639 (10)0.0189 (5)
C520.34052 (16)0.4095 (4)0.47079 (11)0.0233 (5)
H520.33090.28090.44850.029*
C530.40341 (17)0.4205 (4)0.52708 (12)0.0324 (6)
H530.43600.29930.54340.040*
C540.41896 (17)0.6068 (4)0.55958 (12)0.0346 (7)
H540.46190.61420.59830.043*
C550.37173 (17)0.7826 (4)0.53540 (13)0.0329 (6)
H550.38280.91130.55740.041*
C560.30855 (17)0.7729 (4)0.47952 (12)0.0251 (6)
H560.27670.89520.46340.031*
N610.28692 (13)0.8425 (3)0.32815 (9)0.0218 (5)
C620.37844 (16)0.7465 (4)0.32875 (12)0.0248 (6)
H6210.38060.67740.28680.031*
H6220.38820.63900.36290.031*
C630.45467 (17)0.9058 (4)0.34073 (12)0.0298 (6)
H6310.51480.83810.33840.037*
H6320.45680.96490.38460.037*
C640.43878 (18)1.0804 (4)0.29071 (13)0.0341 (6)
H6410.48631.18970.30130.043*
H6420.44401.02480.24730.043*
C650.34343 (18)1.1725 (4)0.29070 (13)0.0306 (6)
H6510.33191.28020.25670.038*
H6520.34091.24040.33280.038*
C660.26846 (18)1.0067 (4)0.27882 (12)0.0298 (6)
H6610.20741.07030.28080.037*
H6620.26740.94580.23530.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0196 (11)0.0188 (10)0.0202 (11)0.0017 (8)0.0005 (8)0.0009 (8)
C20.0226 (13)0.0166 (11)0.0175 (12)0.0011 (10)0.0033 (10)0.0027 (9)
N210.0262 (12)0.0231 (11)0.0205 (12)0.0035 (9)0.0035 (9)0.0037 (9)
N30.0198 (11)0.0170 (10)0.0164 (10)0.0000 (8)0.0023 (8)0.0003 (8)
C40.0182 (13)0.0155 (11)0.0154 (12)0.0021 (9)0.0043 (10)0.0019 (9)
C50.0180 (12)0.0178 (11)0.0183 (12)0.0020 (9)0.0030 (10)0.0002 (9)
C60.0168 (13)0.0157 (11)0.0210 (13)0.0008 (9)0.0027 (10)0.0011 (9)
S40.0201 (4)0.0257 (3)0.0189 (3)0.0032 (2)0.0012 (3)0.0057 (2)
C410.0218 (13)0.0256 (13)0.0121 (12)0.0041 (10)0.0035 (10)0.0038 (9)
C420.0269 (14)0.0218 (13)0.0224 (13)0.0002 (10)0.0087 (11)0.0021 (10)
C430.0344 (16)0.0253 (13)0.0194 (13)0.0049 (11)0.0076 (11)0.0029 (10)
C440.0248 (14)0.0374 (15)0.0183 (13)0.0119 (11)0.0048 (10)0.0015 (11)
Cl40.0312 (4)0.0638 (5)0.0427 (5)0.0213 (3)0.0050 (3)0.0146 (4)
C450.0210 (15)0.0371 (15)0.0279 (14)0.0020 (11)0.0062 (11)0.0015 (11)
C460.0261 (15)0.0228 (13)0.0248 (14)0.0001 (10)0.0081 (11)0.0010 (10)
C510.0136 (12)0.0252 (12)0.0185 (12)0.0021 (10)0.0038 (9)0.0017 (10)
C520.0205 (13)0.0260 (12)0.0236 (13)0.0028 (10)0.0038 (10)0.0042 (10)
C530.0205 (14)0.0441 (16)0.0316 (15)0.0029 (12)0.0010 (12)0.0140 (13)
C540.0225 (15)0.0568 (18)0.0219 (14)0.0034 (13)0.0046 (11)0.0011 (13)
C550.0223 (15)0.0425 (15)0.0332 (15)0.0071 (12)0.0015 (12)0.0139 (13)
C560.0225 (14)0.0273 (13)0.0263 (14)0.0020 (10)0.0060 (11)0.0017 (11)
N610.0200 (11)0.0202 (10)0.0244 (11)0.0014 (8)0.0010 (9)0.0058 (8)
C620.0236 (15)0.0265 (13)0.0252 (14)0.0001 (10)0.0064 (11)0.0031 (10)
C630.0238 (14)0.0351 (14)0.0308 (14)0.0040 (11)0.0056 (11)0.0007 (12)
C640.0373 (17)0.0370 (14)0.0288 (14)0.0169 (13)0.0073 (12)0.0022 (12)
C650.0387 (17)0.0252 (13)0.0271 (14)0.0052 (11)0.0029 (12)0.0077 (11)
C660.0316 (15)0.0249 (13)0.0311 (15)0.0035 (11)0.0010 (12)0.0112 (11)
Geometric parameters (Å, º) top
N1—C61.341 (3)C52—C531.385 (3)
N1—C21.350 (3)C52—H520.95
C2—N211.342 (3)C53—C541.380 (4)
C2—N31.345 (3)C53—H530.95
N21—H211.00 (3)C54—C551.381 (4)
N21—H220.88 (3)C54—H540.95
N3—C41.332 (3)C55—C561.380 (4)
C4—C51.396 (3)C55—H550.95
C4—S41.787 (2)C56—H560.95
C5—C61.425 (3)N61—C661.474 (3)
C5—C511.490 (3)N61—C621.474 (3)
C6—N611.393 (3)C62—C631.508 (3)
S4—C411.776 (2)C62—H6210.99
C41—C421.389 (3)C62—H6220.99
C41—C461.394 (3)C63—C641.530 (3)
C42—C431.378 (3)C63—H6310.99
C42—H420.95C63—H6320.99
C43—C441.374 (4)C64—C651.517 (4)
C43—H430.95C64—H6410.99
C44—C451.390 (3)C64—H6420.99
C44—Cl41.744 (2)C65—C661.524 (3)
C45—C461.379 (3)C65—H6510.99
C45—H450.95C65—H6520.99
C46—H460.95C66—H6610.99
C51—C561.397 (3)C66—H6620.99
C51—C521.398 (3)
C6—N1—C2116.57 (19)C52—C53—H53119.9
N21—C2—N3116.4 (2)C53—C54—C55119.6 (2)
N21—C2—N1117.6 (2)C53—C54—H54120.2
N3—C2—N1126.0 (2)C55—C54—H54120.2
C2—N21—H21119.3 (16)C56—C55—C54120.6 (2)
C2—N21—H22121.6 (17)C56—C55—H55119.7
H21—N21—H22118 (2)C54—C55—H55119.7
C4—N3—C2115.93 (18)C55—C56—C51120.7 (2)
N3—C4—C5124.46 (19)C55—C56—H56119.7
N3—C4—S4116.73 (16)C51—C56—H56119.7
C5—C4—S4118.74 (17)C6—N61—C66116.59 (19)
C4—C5—C6114.3 (2)C6—N61—C62116.41 (18)
C4—C5—C51121.41 (19)C66—N61—C62112.12 (19)
C6—C5—C51123.85 (19)N61—C62—C63111.48 (19)
N1—C6—N61116.8 (2)N61—C62—H621109.3
N1—C6—C5122.5 (2)C63—C62—H621109.3
N61—C6—C5120.7 (2)N61—C62—H622109.3
C41—S4—C4101.31 (11)C63—C62—H622109.3
C42—C41—C46119.4 (2)H621—C62—H622108.0
C42—C41—S4119.59 (18)C62—C63—C64110.6 (2)
C46—C41—S4120.96 (18)C62—C63—H631109.5
C43—C42—C41120.6 (2)C64—C63—H631109.5
C43—C42—H42119.7C62—C63—H632109.5
C41—C42—H42119.7C64—C63—H632109.5
C44—C43—C42119.1 (2)H631—C63—H632108.1
C44—C43—H43120.4C65—C64—C63109.4 (2)
C42—C43—H43120.4C65—C64—H641109.8
C43—C44—C45121.8 (2)C63—C64—H641109.8
C43—C44—Cl4118.85 (19)C65—C64—H642109.8
C45—C44—Cl4119.4 (2)C63—C64—H642109.8
C46—C45—C44118.7 (2)H641—C64—H642108.2
C46—C45—H45120.7C64—C65—C66111.6 (2)
C44—C45—H45120.7C64—C65—H651109.3
C45—C46—C41120.5 (2)C66—C65—H651109.3
C45—C46—H46119.8C64—C65—H652109.3
C41—C46—H46119.8C66—C65—H652109.3
C56—C51—C52118.0 (2)H651—C65—H652108.0
C56—C51—C5120.4 (2)N61—C66—C65109.6 (2)
C52—C51—C5121.6 (2)N61—C66—H661109.8
C53—C52—C51120.8 (2)C65—C66—H661109.8
C53—C52—H52119.6N61—C66—H662109.8
C51—C52—H52119.6C65—C66—H662109.8
C54—C53—C52120.2 (2)H661—C66—H662108.2
C54—C53—H53119.9
C6—N1—C2—N21179.8 (2)C44—C45—C46—C410.6 (4)
C6—N1—C2—N30.9 (3)C42—C41—C46—C450.9 (3)
N21—C2—N3—C4176.21 (18)S4—C41—C46—C45179.94 (18)
N1—C2—N3—C43.2 (3)C4—C5—C51—C56118.6 (2)
C2—N3—C4—C53.7 (3)C6—C5—C51—C5653.4 (3)
C2—N3—C4—S4173.31 (15)C4—C5—C51—C5258.6 (3)
N3—C4—C5—C60.4 (3)C6—C5—C51—C52129.4 (2)
S4—C4—C5—C6176.55 (15)C56—C51—C52—C531.7 (3)
N3—C4—C5—C51173.1 (2)C5—C51—C52—C53175.6 (2)
S4—C4—C5—C513.8 (3)C51—C52—C53—C540.9 (4)
C2—N1—C6—N61177.6 (2)C52—C53—C54—C550.3 (4)
C2—N1—C6—C54.5 (3)C53—C54—C55—C560.7 (4)
C4—C5—C6—N13.9 (3)C54—C55—C56—C510.2 (4)
C51—C5—C6—N1168.6 (2)C52—C51—C56—C551.3 (3)
C4—C5—C6—N61178.32 (19)C5—C51—C56—C55176.0 (2)
C51—C5—C6—N619.2 (3)N1—C6—N61—C6611.1 (3)
N3—C4—S4—C410.55 (18)C5—C6—N61—C66166.8 (2)
C5—C4—S4—C41177.75 (17)N1—C6—N61—C62124.9 (2)
C4—S4—C41—C42105.69 (19)C5—C6—N61—C6257.3 (3)
C4—S4—C41—C4675.2 (2)C6—N61—C62—C63164.0 (2)
C46—C41—C42—C430.4 (3)C66—N61—C62—C6358.1 (3)
S4—C41—C42—C43179.58 (17)N61—C62—C63—C6456.0 (3)
C41—C42—C43—C440.3 (3)C62—C63—C64—C6554.7 (3)
C42—C43—C44—C450.6 (4)C63—C64—C65—C6655.9 (3)
C42—C43—C44—Cl4178.92 (17)C6—N61—C66—C65164.5 (2)
C43—C44—C45—C460.1 (4)C62—N61—C66—C6557.7 (3)
Cl4—C44—C45—C46178.42 (18)C64—C65—C66—N6157.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N1i1.00 (3)2.17 (3)3.130 (3)160 (2)
N21—H21···N21i1.00 (3)2.63 (3)3.219 (3)118 (2)
N21—H22···N3ii0.88 (3)2.19 (3)2.978 (3)150 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H21ClN4S
Mr396.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)14.645 (3), 6.4302 (13), 20.954 (4)
β (°) 98.67 (3)
V3)1950.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.40 × 0.12 × 0.02
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.884, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
14972, 3422, 2637
Rint0.105
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.09
No. of reflections3422
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.48

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N1i1.00 (3)2.17 (3)3.130 (3)160 (2)
N21—H21···N21i1.00 (3)2.63 (3)3.219 (3)118 (2)
N21—H22···N3ii0.88 (3)2.19 (3)2.978 (3)150 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds