Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecule of the title compound, C11H6ClO3P, is essentially planar, except for the P, Cl and carbonyl O atoms. Bond lengths at phospho­rus are P—O = 1.6110 (18) and 1.6290 (18) Å, and P—Cl = 2.0890 (9) Å. The mol­ecules are linked to form ribbons parallel to the b axis by two C—H...O and one P...O interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021189/na6183sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021189/na6183Isup2.hkl
Contains datablock I

CCDC reference: 202354

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.035
  • wR factor = 0.083
  • Data-to-parameter ratio = 16.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.54 From the CIF: _reflns_number_total 2367 Count of symmetry unique reflns 1396 Completeness (_total/calc) 169.56% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 971 Fraction of Friedel pairs measured 0.696 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

The title compound, (I), was obtained as a synthetic intermediate en route to phosphorus-substituted calix[4]arenes (Kunze, 2002).

The structure of (I) is shown in Fig. 1. Bond lengths and angles may be considered normal (Table 1). All non-H atoms, except P, Cl and O3, are coplanar (r.m.s. deviation 0.028 Å); these three atoms lie 0.491 (1), 2.525 (1) and −0.256 (2) Å, respectively, out of the mean plane (the minus sign indicating the opposite side of the plane).

The molecular packing involves three contacts, namely two `weak' C—H···O hydrogen bonds (Table 2) and a P···O3 contact of 3.072 (2) Å (operator of O3: −x + 2, y + 1/2, −z + 1/2). The overall effect of these is to link the molecules in ribbons parallel to the y axis (Fig. 2). The Cl···Cl contact between ribbons is, at 3.897 (1) Å (operator x + 1/2, −y + 1/2, −z), probably too long to be regarded as significant.

The structure of an isomeric material is presented in the following paper (Jones et al., 2002).

Experimental top

The title compound was prepared by the reaction of 3-hydroxynaphthalene-2-carboxylic acid with phosphorus trichloride in toluene (Hoechst, 1966) and recrystallized from dichloromethane/diethyl ether (2:1 v/v) (Kunze, 2002).

Refinement top

The absolute structure was determined on the basis of 974 Friedel pairs. The bulk material is racemic, so that the concept of absolute configuration is not applicable. H atoms were included using a riding model with fixed C—H bond lengths of 0.95 Å; Uiso(H) values were fixed at 1.2 times the Ueq value of the parent atom.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Ellipsoids represent 30% probability levels. H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed parallel to the x axis. Secondary interactions are indicated by dashed bonds.
2-Chloro-1,3-dioxa-2σ3λ3-phosphaanthracen-4-one top
Crystal data top
C11H6ClO3PDx = 1.630 Mg m3
Mr = 252.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 56 reflections
a = 6.0031 (15) Åθ = 10–11.5°
b = 10.0697 (15) ŵ = 0.51 mm1
c = 17.028 (3) ÅT = 173 K
V = 1029.3 (4) Å3Prism, colourless
Z = 40.5 × 0.3 × 0.2 mm
F(000) = 512
Data collection top
Stoe Stadi-4
diffractometer
Rint = 0.038
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.1°
Graphite monochromatorh = 73
ω/θ scansk = 130
3936 measured reflectionsl = 2222
2367 independent reflections3 standard reflections every 90 min
2114 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.1959P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2367 reflectionsΔρmax = 0.22 e Å3
145 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 971 Friedel pairs [Please check]
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (10)
Crystal data top
C11H6ClO3PV = 1029.3 (4) Å3
Mr = 252.58Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0031 (15) ŵ = 0.51 mm1
b = 10.0697 (15) ÅT = 173 K
c = 17.028 (3) Å0.5 × 0.3 × 0.2 mm
Data collection top
Stoe Stadi-4
diffractometer
Rint = 0.038
3936 measured reflections3 standard reflections every 90 min
2367 independent reflections intensity decay: none
2114 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.22 e Å3
S = 1.06Δρmin = 0.26 e Å3
2367 reflectionsAbsolute structure: Flack (1983), 971 Friedel pairs [Please check]
145 parametersAbsolute structure parameter: 0.03 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded distances:

3.0719 (0.0019) O3 - P_$1 3.8970 (0.0010) Cl - Cl_$2

Operators for generating equivalent atoms:

$1 − x + 2, y + 1/2, −z + 1/2 $2 x + 1/2, −y + 1/2, −z

#=============================================

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 2.9424 (0.0025) x + 1.3706 (0.0034) y + 14.6602 (0.0050) z = 1.4424 (0.0035)

* −0.0145 (0.0020) C1 * −0.0041 (0.0019) C2 * −0.0181 (0.0019) C3 * −0.0225 (0.0018) C4 * 0.0206 (0.0018) C5 * 0.0283 (0.0020) C6 * 0.0042 (0.0020) C7 * −0.0254 (0.0019) C8 * −0.0215 (0.0019) C9 * −0.0041 (0.0020) C10 * 0.0768 (0.0018) C11 * 0.0122 (0.0015) O1 * −0.0319 (0.0016) O2 − 0.4905 (0.0014) P −2.5248 (0.0014) Cl 0.2556 (0.0023) O3

Rms deviation of fitted atoms = 0.0284

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.67867 (10)0.24783 (6)0.17797 (4)0.03157 (15)
Cl0.85239 (13)0.26700 (7)0.07228 (4)0.04888 (19)
O10.4731 (3)0.34694 (16)0.16174 (10)0.0324 (4)
O20.8378 (3)0.34102 (15)0.23247 (9)0.0319 (4)
O31.0008 (3)0.52884 (17)0.26724 (9)0.0378 (4)
C10.7046 (4)0.6836 (2)0.17491 (13)0.0249 (5)
H10.83090.72800.19590.030*
C20.6850 (4)0.5482 (2)0.18433 (12)0.0243 (4)
C30.4976 (4)0.4830 (2)0.15187 (12)0.0260 (5)
C40.3362 (4)0.5502 (2)0.11288 (12)0.0257 (4)
H40.21280.50360.09140.031*
C50.1849 (4)0.7650 (2)0.06539 (12)0.0275 (4)
H50.05740.72160.04460.033*
C60.2063 (4)0.8993 (2)0.05764 (13)0.0335 (5)
H60.09300.94860.03180.040*
C70.3940 (5)0.9654 (2)0.08749 (13)0.0349 (6)
H70.40651.05890.08160.042*
C80.5586 (4)0.8968 (2)0.12493 (13)0.0307 (5)
H80.68540.94250.14450.037*
C90.5411 (4)0.7575 (2)0.13470 (11)0.0242 (4)
C100.3511 (4)0.6898 (2)0.10407 (12)0.0243 (4)
C110.8551 (4)0.4777 (2)0.23058 (12)0.0283 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0306 (3)0.0249 (3)0.0392 (3)0.0022 (3)0.0020 (3)0.0030 (3)
Cl0.0529 (4)0.0518 (4)0.0419 (3)0.0004 (4)0.0091 (3)0.0059 (3)
O10.0262 (9)0.0256 (8)0.0453 (9)0.0053 (7)0.0047 (8)0.0056 (7)
O20.0326 (9)0.0279 (7)0.0353 (8)0.0032 (8)0.0060 (8)0.0047 (6)
O30.0299 (9)0.0377 (9)0.0457 (10)0.0024 (9)0.0137 (9)0.0064 (8)
C10.0220 (11)0.0279 (10)0.0249 (10)0.0029 (9)0.0010 (10)0.0024 (8)
C20.0184 (10)0.0288 (10)0.0257 (10)0.0021 (9)0.0002 (9)0.0013 (8)
C30.0259 (12)0.0235 (10)0.0284 (10)0.0024 (10)0.0021 (9)0.0023 (8)
C40.0180 (10)0.0317 (11)0.0273 (10)0.0045 (10)0.0012 (9)0.0016 (8)
C50.0212 (10)0.0363 (11)0.0249 (9)0.0005 (11)0.0033 (9)0.0025 (9)
C60.0329 (13)0.0341 (12)0.0334 (11)0.0077 (12)0.0091 (10)0.0009 (10)
C70.0412 (15)0.0261 (11)0.0375 (12)0.0009 (11)0.0076 (11)0.0009 (10)
C80.0323 (12)0.0286 (12)0.0313 (11)0.0030 (11)0.0070 (10)0.0024 (9)
C90.0233 (10)0.0261 (10)0.0231 (9)0.0013 (10)0.0006 (8)0.0002 (9)
C100.0210 (11)0.0289 (10)0.0231 (9)0.0008 (10)0.0020 (10)0.0009 (8)
C110.0254 (12)0.0300 (11)0.0293 (10)0.0012 (11)0.0006 (10)0.0031 (9)
Geometric parameters (Å, º) top
P—O11.6110 (18)C4—C101.417 (3)
P—O21.6290 (18)C4—H40.9500
P—Cl2.0890 (9)C5—C61.365 (3)
O1—C31.388 (3)C5—C101.415 (3)
O2—C111.381 (3)C5—H50.9500
O3—C111.191 (3)C6—C71.404 (4)
C1—C21.379 (3)C6—H60.9500
C1—C91.410 (3)C7—C81.364 (3)
C1—H10.9500C7—H70.9500
C2—C31.414 (3)C8—C91.416 (3)
C2—C111.472 (3)C8—H80.9500
C3—C41.356 (3)C9—C101.428 (3)
O1—P—O2100.95 (9)C10—C5—H5119.7
O1—P—Cl100.21 (7)C5—C6—C7120.7 (2)
O2—P—Cl98.33 (7)C5—C6—H6119.7
C3—O1—P123.43 (16)C7—C6—H6119.7
C11—O2—P127.24 (15)C8—C7—C6120.7 (2)
C2—C1—C9121.3 (2)C8—C7—H7119.6
C2—C1—H1119.4C6—C7—H7119.6
C9—C1—H1119.4C7—C8—C9120.2 (2)
C1—C2—C3118.8 (2)C7—C8—H8119.9
C1—C2—C11118.7 (2)C9—C8—H8119.9
C3—C2—C11122.49 (19)C1—C9—C8121.9 (2)
C4—C3—O1118.4 (2)C1—C9—C10118.8 (2)
C4—C3—C2121.9 (2)C8—C9—C10119.30 (19)
O1—C3—C2119.7 (2)C5—C10—C4122.4 (2)
C3—C4—C10120.1 (2)C5—C10—C9118.57 (19)
C3—C4—H4119.9C4—C10—C9119.0 (2)
C10—C4—H4119.9O3—C11—O2118.3 (2)
C6—C5—C10120.6 (2)O3—C11—C2125.5 (2)
C6—C5—H5119.7O2—C11—C2116.1 (2)
O2—P—O1—C335.57 (18)C2—C1—C9—C100.6 (3)
Cl—P—O1—C365.07 (17)C7—C8—C9—C1178.2 (2)
O1—P—O2—C1129.7 (2)C7—C8—C9—C100.8 (3)
Cl—P—O2—C1172.5 (2)C6—C5—C10—C4179.5 (2)
C9—C1—C2—C30.8 (3)C6—C5—C10—C90.0 (3)
C9—C1—C2—C11176.72 (19)C3—C4—C10—C5178.6 (2)
P—O1—C3—C4157.61 (16)C3—C4—C10—C91.9 (3)
P—O1—C3—C224.2 (3)C1—C9—C10—C5178.53 (19)
C1—C2—C3—C40.9 (3)C8—C9—C10—C50.5 (3)
C11—C2—C3—C4176.5 (2)C1—C9—C10—C42.0 (3)
C1—C2—C3—O1179.0 (2)C8—C9—C10—C4179.0 (2)
C11—C2—C3—O11.6 (3)P—O2—C11—O3170.25 (17)
O1—C3—C4—C10177.7 (2)P—O2—C11—C211.4 (3)
C2—C3—C4—C100.4 (3)C1—C2—C11—O37.1 (4)
C10—C5—C6—C70.4 (4)C3—C2—C11—O3170.3 (2)
C5—C6—C7—C80.1 (4)C1—C2—C11—O2174.6 (2)
C6—C7—C8—C90.5 (3)C3—C2—C11—O27.9 (3)
C2—C1—C9—C8179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.603.542 (3)174
C8—H8···O3i0.952.563.484 (3)164
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H6ClO3P
Mr252.58
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.0031 (15), 10.0697 (15), 17.028 (3)
V3)1029.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3936, 2367, 2114
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.06
No. of reflections2367
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26
Absolute structureFlack (1983), 971 Friedel pairs [Please check]
Absolute structure parameter0.03 (10)

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
P—O11.6110 (18)P—Cl2.0890 (9)
P—O21.6290 (18)
O1—P—O2100.95 (9)C3—O1—P123.43 (16)
O1—P—Cl100.21 (7)C11—O2—P127.24 (15)
O2—P—Cl98.33 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.603.542 (3)174
C8—H8···O3i0.952.563.484 (3)164
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds