Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C19H17NO3S, crystallizes in the monoclinic space group P21/c, with four mol­ecules in the unit cell. The structure contains a spiro-carbon connecting a bi­cyclo-octane group, consisting of two fused five-membered rings, to an ace­naphthyl­ene moiety. The five-membered ring containing the S atom is in an envelope conformation. The conformation of the other five-membered ring of the bi­cyclo-octane moiety is close to a half-chair. The methoxycarbonyl group is equatorially substituted.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020846/na6181sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020846/na6181Isup2.hkl
Contains datablock I

CCDC reference: 202342

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.104
  • Data-to-parameter ratio = 13.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
CELLV_02 Alert A The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 8 Calculated cell volume su = 11.65 Cell volume su given = 3.00
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

We are interested in the X-ray structure determination of some novel polycyclic spiro-heterocyclic compounds as they can be used as precursors for the total synthesis of naturally occurring alkaloids (Grundon, 1988). The bicyclo-octane ring has three chiral atoms, viz. C5, C7 and C8, and the present coordinates of the atoms correspond to 5R, 7R and 8S. However, the compound crystallizes as a racemic mixture in the space group P21/c. The angles around spiro atom C8 are C7—C8—N1 = 103.34 (12)°, C9—C8—C18 = 102.40 (12)°, N1—C8—C18 = 116.20 (13)° and C7—C8—C9 = 111.24 (13)°. The methoxycarbonyl group is equatorially substituted at C7. The acenaphthylene moiety is bisectionally substituted at C8.

The Csp2Csp2 distances in the acenaphthylene group range from 1.366 (3) (C15—C16) to 1.570 (2) Å (C8—C9) and the C—C—C bond angles range from 102.40 (12) (C9—C8—C18) to 133.02 (14)° (C8—C18—C17). These values compare well with those of previously reported related structures (Hazell, 1976; Hazell & Hazell, 1977; Hazell & Weigelt, 1976; Jones et al., 1992).

Both the fused five-membered rings of the bicyclo-octane moiety are puckered. The N1/C2/S3/C4/C5 five-membered ring of the bicyclo-octane group is in envelope conformation [puckering parameters Q = 0.498 (2) Å and ϕ = 176.2 (2)° for the atom sequence S3—C2—N1—C5—C4; Cremer & Pople, 1975], with atom S3 in the flap position. The torsion angle C2—S3—C4—C5 is −39.58 (12)°, while the angle C4—S3—C2—N1 is 38.80 (12)°. The conformation of the other five-membered ring (N1/C5/C6/C7/C8) of the bicyclo-octane group is close to a half-chair [puckering parameters Q = 0.384 (2) Å and ϕ = 86.4 (3)° for the atom sequence N1—C5—C6—C7—C8]. The dihedral angle between the least-squares planes of the above two rings is 51.96 (10)°.

The C5—N1 bond distance is 1.488 (2) Å. This is comparable to the Csp3—Nsp3 distances found in similar structures (Sussman & Wodak, 1973; Wodak, 1975). The geometry around the N atom is pyramidal. The bond distance C2—S3 is 1.8323 (18) Å and S3—C4 is 1.8044 (18) Å. The angle C2—S3—C4 is 86.99 (8)°. The structure is stabilized mainly by van der Waals interactions.

Experimental top

A mixture of acenaphthylene-1,2-dione (0.364 g, 2 mmol), (R)-(-)-thiazolidine-4-carboxylic acid (0.27 g, 2 mmol) and methyl acrylate (0.172 g, 2 mmol), in an equimolar ratio, was refluxed for 22 h in acetonitrile under a nitrogen atmosphere. After completion of the reaction, monitored by the disappearance of the acenaphthylene-1,2-dione spot in TLC analysis, the reaction mixture was filtered to remove the unreacted acid. The filtrate was concentrated in vaccuo and kept at 273 K. A yellow crystalline solid was obtained and recrystallized from chloroform/n-hexane as yellow cuboidal crystals (0.604 g, 75%; m.p. 445 K). A small amount of the compound (0.2 g; code: sp1) was dissolved in chloroform (2 ml). N-Hexane (8 ml) was layered carefully down the side of the test tube on to the solution. The volume ratio of solvent-to-precipitant was 1:4. The test tube was corked with cotton wool and left to stand undisturbed for 24 h. As the precipitant (n-hexane) diffused into the solution, crystals were formed at the interface.

Refinement top

All H atoms were treated as riding; C—H = 0.93–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all others.

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64.02; Farrugia, 1999) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[rac-5RS,7RS,8SR]-Spiro-{7-methoxycarbonyl-1-aza-3-thia-bicyclo[3.3.0] octane-8,1'-acenaphthylene}-2'-one top
Crystal data top
C19H17NO3SF(000) = 712
Mr = 339.40Dx = 1.398 Mg m3
Monoclinic, P21/cMelting point: 445 K K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54180 Å
a = 9.3597 (1) ÅCell parameters from 9012 reflections
b = 14.7896 (2) Åθ = 2.2–68.3°
c = 14.9199 (1) ŵ = 1.93 mm1
β = 128.660 (5)°T = 293 K
V = 1612.73 (3) Å3Cuboidal, yellow
Z = 40.32 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
2926 independent reflections
Radiation source: fine-focus sealed tube2567 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 68.2°, θmin = 4.8°
CCD scansh = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1717
Tmin = 0.583, Tmax = 0.707l = 1617
21038 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.4649P]
where P = (Fo2 + 2Fc2)/3
2926 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H17NO3SV = 1612.73 (3) Å3
Mr = 339.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.3597 (1) ŵ = 1.93 mm1
b = 14.7896 (2) ÅT = 293 K
c = 14.9199 (1) Å0.32 × 0.20 × 0.18 mm
β = 128.660 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2926 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2567 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.707Rint = 0.051
21038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2926 reflectionsΔρmin = 0.34 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.26303 (6)0.08386 (3)0.06725 (4)0.05249 (16)
O220.74525 (19)0.27439 (9)0.46087 (13)0.0619 (4)
O230.58168 (17)0.27574 (9)0.52329 (11)0.0546 (3)
O240.27064 (19)0.08378 (9)0.44632 (12)0.0574 (4)
N10.28855 (18)0.07423 (9)0.25458 (11)0.0401 (3)
C20.1478 (2)0.08038 (12)0.13113 (15)0.0475 (4)
H2A0.07530.13460.11140.057*
H2B0.06720.02840.10280.057*
C40.4218 (3)0.00210 (12)0.17430 (15)0.0484 (4)
H4A0.36960.05820.15170.058*
H4B0.53480.00230.18450.058*
C50.4570 (2)0.03062 (11)0.28494 (14)0.0426 (4)
H50.48660.02280.33270.051*
C60.6051 (2)0.10149 (12)0.35478 (15)0.0456 (4)
H6A0.72460.07370.40820.055*
H6B0.60780.14290.30550.055*
C70.5478 (2)0.14936 (11)0.41771 (14)0.0409 (4)
H70.57710.11000.48000.049*
C80.3359 (2)0.15526 (10)0.32627 (14)0.0381 (4)
C90.2410 (2)0.14539 (11)0.38304 (14)0.0419 (4)
C100.1118 (2)0.22119 (11)0.34306 (14)0.0414 (4)
C110.0125 (2)0.24317 (13)0.36030 (16)0.0506 (4)
H110.02690.20690.40510.061*
C120.1166 (3)0.32196 (14)0.30814 (17)0.0576 (5)
H120.20210.33710.31830.069*
C130.0974 (3)0.37766 (13)0.24282 (16)0.0545 (5)
H130.16870.42960.21050.065*
C140.0299 (2)0.35699 (11)0.22402 (14)0.0446 (4)
C150.0636 (3)0.40655 (11)0.15746 (15)0.0491 (4)
H150.00200.46050.12280.059*
C160.1868 (2)0.37492 (12)0.14433 (15)0.0483 (4)
H160.20570.40790.09950.058*
C170.2870 (2)0.29369 (11)0.19641 (14)0.0436 (4)
H170.36990.27400.18580.052*
C180.2595 (2)0.24480 (10)0.26252 (13)0.0376 (3)
C190.1313 (2)0.27712 (10)0.27512 (13)0.0383 (3)
C200.6378 (2)0.23927 (12)0.46830 (14)0.0429 (4)
C210.6547 (3)0.36344 (14)0.5738 (2)0.0668 (6)
H21A0.77910.36730.60240.100*
H21B0.65050.37210.63600.100*
H21C0.58300.40940.51690.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0547 (3)0.0557 (3)0.0444 (3)0.0032 (2)0.0297 (2)0.00345 (19)
O220.0651 (8)0.0608 (8)0.0780 (9)0.0171 (7)0.0536 (8)0.0156 (7)
O230.0581 (8)0.0573 (8)0.0582 (8)0.0050 (6)0.0411 (7)0.0122 (6)
O240.0713 (9)0.0543 (8)0.0657 (8)0.0088 (6)0.0521 (8)0.0171 (6)
N10.0376 (7)0.0389 (7)0.0435 (7)0.0004 (5)0.0253 (6)0.0014 (6)
C20.0390 (9)0.0483 (10)0.0469 (10)0.0027 (7)0.0228 (8)0.0053 (7)
C40.0530 (10)0.0428 (9)0.0540 (10)0.0014 (7)0.0357 (9)0.0009 (8)
C50.0432 (9)0.0383 (8)0.0466 (9)0.0052 (7)0.0282 (8)0.0037 (7)
C60.0361 (8)0.0481 (9)0.0499 (10)0.0051 (7)0.0256 (8)0.0005 (7)
C70.0384 (8)0.0429 (9)0.0401 (8)0.0013 (7)0.0239 (7)0.0018 (7)
C80.0383 (8)0.0372 (8)0.0423 (8)0.0003 (6)0.0269 (7)0.0025 (6)
C90.0428 (9)0.0437 (9)0.0426 (9)0.0021 (7)0.0283 (8)0.0005 (7)
C100.0398 (8)0.0441 (9)0.0425 (9)0.0021 (7)0.0269 (7)0.0040 (7)
C110.0496 (10)0.0609 (11)0.0510 (10)0.0022 (8)0.0361 (9)0.0056 (8)
C120.0509 (10)0.0683 (12)0.0615 (11)0.0072 (9)0.0390 (10)0.0082 (10)
C130.0491 (10)0.0542 (11)0.0531 (11)0.0109 (8)0.0285 (9)0.0062 (8)
C140.0418 (9)0.0406 (9)0.0409 (9)0.0016 (7)0.0208 (8)0.0053 (7)
C150.0517 (10)0.0373 (9)0.0451 (9)0.0026 (7)0.0237 (8)0.0027 (7)
C160.0535 (10)0.0413 (9)0.0455 (9)0.0059 (7)0.0286 (9)0.0033 (7)
C170.0441 (9)0.0420 (9)0.0480 (9)0.0035 (7)0.0303 (8)0.0005 (7)
C180.0360 (8)0.0373 (8)0.0377 (8)0.0022 (6)0.0222 (7)0.0011 (6)
C190.0366 (8)0.0386 (8)0.0366 (8)0.0024 (6)0.0214 (7)0.0045 (6)
C200.0382 (8)0.0486 (9)0.0388 (9)0.0027 (7)0.0226 (7)0.0012 (7)
C210.0752 (14)0.0593 (12)0.0702 (13)0.0049 (10)0.0475 (12)0.0184 (10)
Geometric parameters (Å, º) top
S3—C41.8044 (18)C8—C91.570 (2)
S3—C21.8323 (18)C9—C101.475 (2)
O22—C201.197 (2)C10—C111.378 (2)
O23—C201.333 (2)C10—C191.406 (2)
O23—C211.440 (2)C11—C121.402 (3)
O24—C91.213 (2)C11—H110.9300
N1—C21.451 (2)C12—C131.371 (3)
N1—C81.478 (2)C12—H120.9300
N1—C51.488 (2)C13—C141.417 (2)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C191.405 (2)
C4—C51.527 (2)C14—C151.420 (3)
C4—H4A0.9700C15—C161.366 (3)
C4—H4B0.9700C15—H150.9300
C5—C61.517 (2)C16—C171.420 (2)
C5—H50.9800C16—H160.9300
C6—C71.517 (2)C17—C181.370 (2)
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700C18—C191.409 (2)
C7—C201.501 (2)C21—H21A0.9600
C7—C81.556 (2)C21—H21B0.9600
C7—H70.9800C21—H21C0.9600
C8—C181.523 (2)
C4—S3—C286.99 (8)O24—C9—C8123.94 (15)
C20—O23—C21116.51 (15)C10—C9—C8107.97 (13)
C2—N1—C8119.47 (13)C11—C10—C19120.05 (16)
C2—N1—C5111.25 (13)C11—C10—C9132.75 (16)
C8—N1—C5110.46 (12)C19—C10—C9107.20 (13)
N1—C2—S3107.44 (11)C10—C11—C12117.86 (17)
N1—C2—H2A110.2C10—C11—H11121.1
S3—C2—H2A110.2C12—C11—H11121.1
N1—C2—H2B110.2C13—C12—C11122.68 (16)
S3—C2—H2B110.2C13—C12—H12118.7
H2A—C2—H2B108.5C11—C12—H12118.7
C5—C4—S3105.92 (11)C12—C13—C14120.71 (17)
C5—C4—H4A110.6C12—C13—H13119.6
S3—C4—H4A110.6C14—C13—H13119.6
C5—C4—H4B110.6C19—C14—C13116.15 (16)
S3—C4—H4B110.6C19—C14—C15116.32 (15)
H4A—C4—H4B108.7C13—C14—C15127.52 (16)
N1—C5—C6104.44 (12)C16—C15—C14119.98 (16)
N1—C5—C4108.56 (14)C16—C15—H15120.0
C6—C5—C4114.91 (14)C14—C15—H15120.0
N1—C5—H5109.6C15—C16—C17122.62 (16)
C6—C5—H5109.6C15—C16—H16118.7
C4—C5—H5109.6C17—C16—H16118.7
C7—C6—C5102.89 (13)C18—C17—C16118.92 (15)
C7—C6—H6A111.2C18—C17—H17120.5
C5—C6—H6A111.2C16—C17—H17120.5
C7—C6—H6B111.2C17—C18—C19118.37 (15)
C5—C6—H6B111.2C17—C18—C8133.02 (14)
H6A—C6—H6B109.1C19—C18—C8108.56 (13)
C20—C7—C6114.87 (14)C14—C19—C10122.53 (15)
C20—C7—C8113.49 (13)C14—C19—C18123.78 (15)
C6—C7—C8103.50 (13)C10—C19—C18113.68 (14)
C20—C7—H7108.2O22—C20—O23123.93 (16)
C6—C7—H7108.2O22—C20—C7125.30 (16)
C8—C7—H7108.2O23—C20—C7110.77 (14)
N1—C8—C18116.20 (13)O23—C21—H21A109.5
N1—C8—C7103.34 (12)O23—C21—H21B109.5
C18—C8—C7116.12 (12)H21A—C21—H21B109.5
N1—C8—C9107.46 (12)O23—C21—H21C109.5
C18—C8—C9102.40 (12)H21A—C21—H21C109.5
C7—C8—C9111.24 (13)H21B—C21—H21C109.5
O24—C9—C10128.07 (15)
C8—N1—C2—S3103.82 (13)C19—C10—C11—C120.1 (3)
C5—N1—C2—S326.76 (15)C9—C10—C11—C12179.82 (18)
C4—S3—C2—N138.80 (12)C10—C11—C12—C130.9 (3)
C2—S3—C4—C539.58 (12)C11—C12—C13—C140.6 (3)
C2—N1—C5—C6120.18 (15)C12—C13—C14—C190.4 (3)
C8—N1—C5—C614.93 (17)C12—C13—C14—C15178.87 (17)
C2—N1—C5—C42.86 (18)C19—C14—C15—C161.2 (2)
C8—N1—C5—C4137.97 (13)C13—C14—C15—C16177.27 (17)
S3—C4—C5—N131.53 (15)C14—C15—C16—C170.9 (3)
S3—C4—C5—C684.95 (15)C15—C16—C17—C180.0 (3)
N1—C5—C6—C733.55 (16)C16—C17—C18—C190.5 (2)
C4—C5—C6—C7152.37 (14)C16—C17—C18—C8177.52 (16)
C5—C6—C7—C20163.65 (14)N1—C8—C18—C1764.0 (2)
C5—C6—C7—C839.38 (16)C7—C8—C18—C1757.9 (2)
C2—N1—C8—C1812.0 (2)C9—C8—C18—C17179.26 (17)
C5—N1—C8—C18118.98 (14)N1—C8—C18—C19113.25 (14)
C2—N1—C8—C7140.33 (14)C7—C8—C18—C19124.91 (14)
C5—N1—C8—C79.40 (15)C9—C8—C18—C193.52 (16)
C2—N1—C8—C9101.97 (15)C13—C14—C19—C101.2 (2)
C5—N1—C8—C9127.10 (13)C15—C14—C19—C10179.85 (15)
C20—C7—C8—N1155.29 (13)C13—C14—C19—C18177.99 (15)
C6—C7—C8—N130.13 (15)C15—C14—C19—C180.6 (2)
C20—C7—C8—C1826.86 (19)C11—C10—C19—C141.0 (2)
C6—C7—C8—C1898.30 (15)C9—C10—C19—C14179.09 (14)
C20—C7—C8—C989.70 (16)C11—C10—C19—C18178.29 (15)
C6—C7—C8—C9145.14 (13)C9—C10—C19—C181.63 (19)
N1—C8—C9—O2460.1 (2)C17—C18—C19—C140.2 (2)
C18—C8—C9—O24176.97 (16)C8—C18—C19—C14177.89 (14)
C7—C8—C9—O2452.3 (2)C17—C18—C19—C10179.06 (14)
N1—C8—C9—C10118.42 (14)C8—C18—C19—C101.38 (19)
C18—C8—C9—C104.47 (16)C21—O23—C20—O221.3 (3)
C7—C8—C9—C10129.15 (14)C21—O23—C20—C7178.63 (15)
O24—C9—C10—C112.4 (3)C6—C7—C20—O221.1 (2)
C8—C9—C10—C11176.05 (18)C8—C7—C20—O22117.75 (19)
O24—C9—C10—C19177.65 (17)C6—C7—C20—O23179.05 (14)
C8—C9—C10—C193.86 (17)C8—C7—C20—O2362.13 (18)

Experimental details

Crystal data
Chemical formulaC19H17NO3S
Mr339.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3597 (1), 14.7896 (2), 14.9199 (1)
β (°) 128.660 (5)
V3)1612.73 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.93
Crystal size (mm)0.32 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.583, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
21038, 2926, 2567
Rint0.051
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.04
No. of reflections2926
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.34

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Version 1.64.02; Farrugia, 1999) and PLATON (Spek, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
C6—C71.517 (2)
C2—N1—C8119.47 (13)C8—N1—C5110.46 (12)
C2—N1—C5111.25 (13)C7—C6—C5102.89 (13)
N1—C5—C6—C733.55 (16)C5—C6—C7—C20163.65 (14)
C4—C5—C6—C7152.37 (14)C6—C7—C8—N130.13 (15)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds