Download citation
Download citation
link to html
The crystal structure of carbamoylmethyl 3,4,5-tri­hydroxy­benzoate 0.33-hydrate, C9H9NO6·0.33H2O, is reported. Three crystallographically independent mol­ecules with different conformations are observed, with two having the amide group in the plane of the benzoate unit and the third lying out of the plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020147/na6179sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020147/na6179Isup2.hkl
Contains datablock I

CCDC reference: 202321

Key indicators

  • Single-crystal X-ray study
  • T = 220 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.043
  • wR factor = 0.122
  • Data-to-parameter ratio = 9.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 69.94 From the CIF: _reflns_number_total 5000 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 5362 Completeness (_total/calc) 93.25% Alert C: < 95% complete General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C9 H9.67 N1 O6.33 Atom count from _chemical_formula_moiety:C9 H9.66 N1 O6.33
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), crystallizes with three molecules of carbamoylmethyl 3,4,5-trihydroxybenzoate and one molecule of water per asymmetric unit. Unusually, all three crystallographically independent molecules of the organic compound adopt different conformations (Fig. 1).

Two of the molecules are approximately planar, with the only difference between them being the position of the phenolic H atoms. A third molecule has the amide group lying nearly perpendicular to the plane of the gallate (3,4,5-trihydroxybenzoate), with a dihedral angle between the benzoate and amide planes of 70.80 (7)°.

With each of the molecules possessing five hydrogen-bond donor groups and six acceptor atoms, many different hydrogen-bonding combinations are possible. Graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), using only hydrogen bonds with a H–acceptor distance of 2.5 Å or less (Table 1) is used to characterize the hydrogen-bond patterns. The molecules adopt a pattern of chains of crystallographically identical molecules linked by hydrogen bonds. Each chain is crosslinked to other chains of crystallographically independent molecules to form sheets, in which the water molecules are inserted (Fig. 2; symmetry-related molecules are shown in the same colour). Two types of intramolecular pattern are observed, both S11(5). The first of these is observed in all three crystallographically independent title molecules, being formed by the adjacent hydroxyl groups. Two of these interactions are observed in each of molecules B and C, with only one in the non-planar molecule A. The second S11(5) pattern is observed only in molecules B and C, and is formed by the amide–ester N—H···O interaction. Both the blue and red chains containing the planar molecular units (molecules B and C, respectively) are linked by phenol–amide O—H···O hydrogen bonds, with the red molecules forming C11(10) chains and the blue molecules forming C11(11) chains, the difference arising from which hydroxyl moiety is involved. The green non-planar molecules (molecule A) are linked by amide–phenol N—H···O hydrogen bonds in a C11(10) chain. The red and blue chains are linked in the sheet by R22(8) patterns formed by amide–amide N—H···O hydrogen bonds. The green and blue chains are linked in the sheet by C22(9) patterns formed by hydroxyl–carbonyl and hydroxyl–hydroxyl O—H···O hydrogen bonds. A second hydroxyl–hydroxyl interaction forms R22(7) and R33(14) patterns with these groups. The red and green chains are connected directly and through the water molecule, giving rise to three ring graph sets, viz. R32(14), R33(14) and R44(18).

Links between sheets form double layers and these are provided by the three hydrogen bonds O1W—H2W···O9Civ, N9A—H92A···O4Civ and O4B—H4B···O9Av (Fig. 3; see Table 2 for symmetry codes). No hydrogen bonds are observed between adjacent double layers (Fig. 4).

Experimental top

The title compound was synthesized by the method of Christiansen (1926). A single-crystal suitable for X-ray diffraction was grown by the slow diffusion of diethyl ether into an ethanol solution.

Refinement top

H atoms bound to carbon were placed in calculated positions and refined as riding or rotating groups. The amide, hydroxyl and water H atoms were placed in a difference map and freely refined, giving N—H bond lengths of between 0.85 (3) and 0.97 (3) Å, and O—H bond lengths of between 0.84 (3) and 1.02 (4) Å.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1990); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1990); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and CAMERON (Watkin et al., 1993).

Figures top
[Figure 1] Fig. 1. The three crystallographically independent title molecules, showing the atom labels used in tables and figures. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded sheet. The three crystallographically independent molecules C1A to N9A, C1B to N9B and C1C to N9C, are shown in green, blue and red, respectively. The water molecule is shown in yellow.
[Figure 3] Fig. 3. The linking of the sheets by the water (yellow) and the non-planar conformer of title molecule (green). The colour scheme used is identical to Fig. 2.
[Figure 4] Fig. 4. The double-layers of sheets are not connected by any hydrogen bonds.
carbamoylmethyl 3,4,5-trihydroxybenzoate hydrate top
Crystal data top
C9H9NO6·0.33H2OZ = 6
Mr = 233.18F(000) = 728
Triclinic, P1Dx = 1.639 Mg m3
a = 8.266 (5) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.515 (4) ÅCell parameters from 54 reflections
c = 20.614 (7) Åθ = 20–22°
α = 87.08 (3)°µ = 1.23 mm1
β = 86.56 (3)°T = 220 K
γ = 78.32 (3)°Prism, colourless
V = 1417.2 (12) Å30.62 × 0.28 × 0.24 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
4192 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 69.9°, θmin = 4.3°
ωθ scansh = 910
Absorption correction: numerical
(SHELXTL; Sheldrick 1997)
k = 1010
Tmin = 0.617, Tmax = 0.777l = 2025
8429 measured reflections3 standard reflections every 60 min
5000 independent reflections intensity decay: 7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom and difmap
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.3171P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5000 reflectionsΔρmax = 0.28 e Å3
511 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (4)
Crystal data top
C9H9NO6·0.33H2Oγ = 78.32 (3)°
Mr = 233.18V = 1417.2 (12) Å3
Triclinic, P1Z = 6
a = 8.266 (5) ÅCu Kα radiation
b = 8.515 (4) ŵ = 1.23 mm1
c = 20.614 (7) ÅT = 220 K
α = 87.08 (3)°0.62 × 0.28 × 0.24 mm
β = 86.56 (3)°
Data collection top
Stoe Stadi-4 four-circle
diffractometer
4192 reflections with I > 2σ(I)
Absorption correction: numerical
(SHELXTL; Sheldrick 1997)
Rint = 0.020
Tmin = 0.617, Tmax = 0.7773 standard reflections every 60 min
8429 measured reflections intensity decay: 7%
5000 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
5000 reflectionsΔρmin = 0.26 e Å3
511 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.8090 (2)0.0285 (2)0.34038 (9)0.0315 (4)
H1A0.85390.10460.37250.038*
C2A0.6854 (2)0.0994 (2)0.35695 (8)0.0304 (4)
O2A0.62251 (18)0.12295 (18)0.42016 (6)0.0382 (3)
H2A0.688 (4)0.047 (4)0.4491 (16)0.079 (10)*
C3A0.6147 (2)0.2113 (2)0.30965 (9)0.0306 (4)
O3A0.48697 (19)0.33521 (18)0.32253 (7)0.0424 (4)
H3A0.462 (4)0.345 (4)0.3668 (18)0.091 (11)*
C4A0.6751 (2)0.1948 (2)0.24507 (9)0.0303 (4)
O4A0.60357 (18)0.30928 (17)0.20013 (7)0.0372 (3)
H4A0.617 (4)0.267 (4)0.1619 (18)0.087 (11)*
C5A0.8011 (2)0.0692 (2)0.22804 (9)0.0323 (4)
H5A0.84230.06010.18460.039*
C6A0.8674 (2)0.0446 (2)0.27552 (9)0.0303 (4)
C7A0.9994 (2)0.1788 (2)0.25603 (9)0.0315 (4)
O71A1.05966 (18)0.20099 (18)0.20091 (6)0.0393 (3)
O72A1.05175 (17)0.28241 (16)0.30562 (6)0.0352 (3)
C8A1.1765 (3)0.4183 (2)0.28774 (10)0.0355 (4)
H8A11.20930.48460.32690.043*
H8A21.27420.38100.26870.043*
C9A1.1168 (3)0.5200 (2)0.23915 (9)0.0337 (4)
O9A0.96965 (18)0.52324 (19)0.23523 (7)0.0430 (4)
N9A1.2354 (2)0.6094 (2)0.20389 (9)0.0430 (4)
H91A1.350 (4)0.609 (4)0.2097 (15)0.073 (9)*
H92A1.206 (4)0.687 (4)0.1790 (17)0.082 (10)*
C1B0.1411 (2)0.3870 (2)0.50778 (9)0.0315 (4)
H1B0.11240.34680.54980.038*
C2B0.2663 (2)0.5188 (2)0.49925 (9)0.0322 (4)
O2B0.3507 (2)0.5983 (2)0.55142 (7)0.0454 (4)
H2B0.427 (4)0.675 (4)0.5337 (15)0.072 (10)*
C3B0.3090 (2)0.5818 (2)0.43746 (9)0.0317 (4)
O3B0.43152 (18)0.71313 (18)0.43427 (7)0.0415 (4)
H3B0.467 (4)0.741 (4)0.3880 (19)0.098 (11)*
C4B0.2233 (2)0.5096 (2)0.38268 (9)0.0309 (4)
O4B0.26940 (18)0.57799 (18)0.32376 (6)0.0399 (4)
H4B0.182 (4)0.540 (4)0.2934 (15)0.073 (9)*
C5B0.1002 (2)0.3763 (2)0.39068 (9)0.0313 (4)
H5B0.04390.32630.35390.038*
C6B0.0574 (2)0.3139 (2)0.45271 (8)0.0300 (4)
C7B0.0772 (2)0.1744 (2)0.45963 (8)0.0297 (4)
O71B0.13071 (18)0.11058 (18)0.51029 (6)0.0397 (3)
O72B0.14066 (17)0.11948 (17)0.40129 (6)0.0366 (3)
C8B0.2704 (3)0.0185 (2)0.40203 (9)0.0351 (4)
H8B10.23070.10880.42450.042*
H8B20.36270.00300.42560.042*
C9B0.3286 (2)0.0609 (2)0.33294 (9)0.0322 (4)
O9B0.4357 (2)0.18176 (19)0.32475 (7)0.0472 (4)
N9B0.2633 (2)0.0320 (2)0.28415 (8)0.0401 (4)
H91B0.187 (4)0.111 (4)0.2939 (14)0.060 (8)*
H92B0.308 (3)0.004 (3)0.2428 (14)0.057 (7)*
C1C0.9154 (2)0.3219 (2)0.03830 (8)0.0283 (4)
H1C0.86530.36470.07680.034*
C2C1.0497 (2)0.1965 (2)0.04056 (8)0.0280 (4)
O2C1.12347 (18)0.12840 (18)0.09604 (6)0.0386 (3)
H2C1.065 (4)0.162 (3)0.1294 (15)0.062 (8)*
C3C1.1243 (2)0.1315 (2)0.01644 (8)0.0264 (4)
O3C1.25885 (17)0.01017 (17)0.01717 (7)0.0342 (3)
H3C1.289 (4)0.023 (4)0.0215 (16)0.078 (10)*
C4C1.0621 (2)0.1968 (2)0.07579 (8)0.0268 (4)
O4C1.13858 (18)0.13663 (17)0.13178 (6)0.0340 (3)
H4C1.215 (3)0.057 (3)0.1253 (13)0.050 (8)*
C5C0.9284 (2)0.3223 (2)0.07911 (8)0.0280 (4)
H5C0.88770.36520.11940.034*
C6C0.8536 (2)0.3854 (2)0.02167 (8)0.0262 (4)
C7C0.7137 (2)0.5228 (2)0.02106 (8)0.0264 (4)
O71C0.64805 (17)0.58456 (17)0.02767 (6)0.0340 (3)
O72C0.66345 (16)0.57723 (16)0.08082 (6)0.0316 (3)
C8C0.5361 (2)0.7193 (2)0.08231 (9)0.0310 (4)
H8C10.43280.69490.06840.037*
H8C20.56770.80180.05210.037*
C9C0.5098 (2)0.7812 (2)0.15035 (9)0.0296 (4)
O9C0.42826 (17)0.91960 (16)0.15725 (6)0.0350 (3)
N9C0.5696 (2)0.6858 (2)0.19900 (8)0.0415 (4)
H91C0.543 (4)0.719 (3)0.2402 (15)0.064 (8)*
H92C0.623 (3)0.592 (3)0.1919 (12)0.046 (7)*
O1W0.56996 (18)0.16137 (19)0.08780 (7)0.0360 (3)
H1W0.491 (4)0.241 (4)0.0669 (15)0.064 (8)*
H2W0.518 (4)0.091 (4)0.1062 (15)0.066 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0339 (10)0.0344 (10)0.0240 (9)0.0007 (8)0.0057 (7)0.0018 (7)
C2A0.0316 (10)0.0366 (10)0.0214 (8)0.0021 (8)0.0021 (7)0.0048 (7)
O2A0.0398 (8)0.0463 (9)0.0212 (6)0.0082 (7)0.0002 (5)0.0028 (6)
C3A0.0297 (10)0.0325 (10)0.0268 (9)0.0023 (8)0.0043 (7)0.0043 (7)
O3A0.0445 (9)0.0453 (9)0.0272 (7)0.0164 (7)0.0009 (6)0.0073 (6)
C4A0.0326 (10)0.0308 (10)0.0247 (9)0.0014 (8)0.0059 (7)0.0005 (7)
O4A0.0455 (8)0.0351 (8)0.0235 (7)0.0098 (6)0.0043 (6)0.0005 (6)
C5A0.0355 (10)0.0355 (11)0.0222 (8)0.0017 (9)0.0007 (7)0.0028 (7)
C6A0.0317 (10)0.0321 (10)0.0251 (9)0.0001 (8)0.0043 (7)0.0032 (7)
C7A0.0349 (10)0.0332 (10)0.0238 (9)0.0012 (8)0.0052 (7)0.0034 (7)
O71A0.0423 (8)0.0432 (8)0.0252 (7)0.0084 (7)0.0001 (6)0.0033 (6)
O72A0.0408 (8)0.0338 (7)0.0250 (6)0.0093 (6)0.0073 (5)0.0030 (5)
C8A0.0363 (11)0.0322 (10)0.0320 (10)0.0104 (9)0.0083 (8)0.0053 (8)
C9A0.0376 (11)0.0341 (10)0.0253 (9)0.0033 (9)0.0041 (7)0.0013 (7)
O9A0.0368 (8)0.0578 (10)0.0328 (7)0.0036 (7)0.0001 (6)0.0113 (7)
N9A0.0379 (10)0.0471 (11)0.0393 (10)0.0072 (9)0.0041 (8)0.0171 (8)
C1B0.0334 (10)0.0348 (10)0.0238 (9)0.0006 (9)0.0021 (7)0.0023 (7)
C2B0.0329 (10)0.0365 (11)0.0248 (9)0.0010 (9)0.0036 (7)0.0071 (8)
O2B0.0501 (9)0.0511 (10)0.0249 (7)0.0139 (8)0.0043 (6)0.0094 (6)
C3B0.0278 (10)0.0339 (10)0.0297 (9)0.0032 (8)0.0011 (7)0.0045 (8)
O3B0.0393 (8)0.0447 (9)0.0304 (7)0.0166 (7)0.0028 (6)0.0041 (6)
C4B0.0311 (10)0.0359 (10)0.0231 (9)0.0001 (8)0.0036 (7)0.0007 (7)
O4B0.0377 (8)0.0498 (9)0.0227 (7)0.0130 (7)0.0023 (6)0.0024 (6)
C5B0.0320 (10)0.0359 (10)0.0229 (8)0.0012 (8)0.0012 (7)0.0045 (7)
C6B0.0310 (10)0.0338 (10)0.0240 (9)0.0030 (8)0.0019 (7)0.0040 (7)
C7B0.0339 (10)0.0320 (10)0.0218 (8)0.0018 (8)0.0034 (7)0.0040 (7)
O71B0.0469 (8)0.0424 (8)0.0234 (7)0.0077 (7)0.0070 (6)0.0009 (6)
O72B0.0404 (8)0.0387 (8)0.0231 (6)0.0112 (6)0.0021 (5)0.0044 (5)
C8B0.0364 (11)0.0357 (11)0.0273 (9)0.0076 (9)0.0027 (8)0.0041 (8)
C9B0.0321 (10)0.0337 (10)0.0283 (9)0.0013 (9)0.0046 (7)0.0058 (8)
O9B0.0500 (9)0.0496 (9)0.0300 (7)0.0212 (8)0.0057 (6)0.0094 (6)
N9B0.0473 (11)0.0404 (10)0.0252 (8)0.0095 (9)0.0024 (7)0.0024 (7)
C1C0.0298 (10)0.0329 (10)0.0207 (8)0.0019 (8)0.0045 (7)0.0008 (7)
C2C0.0310 (10)0.0300 (9)0.0209 (8)0.0005 (8)0.0002 (7)0.0057 (7)
O2C0.0415 (8)0.0454 (8)0.0214 (7)0.0115 (7)0.0034 (6)0.0097 (6)
C3C0.0241 (9)0.0263 (9)0.0265 (9)0.0008 (7)0.0017 (7)0.0029 (7)
O3C0.0339 (7)0.0367 (8)0.0259 (7)0.0087 (6)0.0039 (5)0.0045 (6)
C4C0.0278 (9)0.0304 (9)0.0205 (8)0.0017 (8)0.0037 (6)0.0000 (7)
O4C0.0365 (8)0.0376 (8)0.0212 (6)0.0102 (7)0.0063 (5)0.0018 (5)
C5C0.0289 (9)0.0327 (10)0.0208 (8)0.0024 (8)0.0001 (7)0.0034 (7)
C6C0.0256 (9)0.0286 (9)0.0228 (8)0.0019 (8)0.0008 (6)0.0022 (7)
C7C0.0280 (9)0.0277 (9)0.0224 (8)0.0022 (8)0.0012 (7)0.0033 (7)
O71C0.0370 (7)0.0361 (7)0.0237 (6)0.0064 (6)0.0056 (5)0.0024 (5)
O72C0.0358 (7)0.0328 (7)0.0206 (6)0.0074 (6)0.0023 (5)0.0038 (5)
C8C0.0307 (10)0.0322 (10)0.0249 (9)0.0074 (8)0.0034 (7)0.0041 (7)
C9C0.0290 (10)0.0324 (10)0.0237 (9)0.0031 (8)0.0023 (7)0.0018 (7)
O9C0.0408 (8)0.0320 (7)0.0259 (6)0.0084 (6)0.0021 (5)0.0044 (5)
N9C0.0544 (12)0.0367 (10)0.0231 (8)0.0163 (9)0.0048 (7)0.0036 (7)
O1W0.0372 (8)0.0368 (8)0.0302 (7)0.0023 (7)0.0054 (6)0.0004 (6)
Geometric parameters (Å, º) top
C1A—C2A1.375 (3)C6B—C7B1.461 (3)
C1A—C6A1.398 (3)C7B—O71B1.217 (2)
C1A—H1A0.9400C7B—O72B1.350 (2)
C2A—O2A1.383 (2)O72B—C8B1.422 (2)
C2A—C3A1.396 (3)C8B—C9B1.513 (3)
O2A—H2A0.96 (3)C8B—H8B10.9800
C3A—O3A1.357 (2)C8B—H8B20.9800
C3A—C4A1.397 (3)C9B—O9B1.226 (2)
O3A—H3A0.93 (4)C9B—N9B1.319 (3)
C4A—C5A1.376 (3)N9B—H92B0.93 (3)
C4A—O4A1.378 (2)N9B—H91B0.85 (3)
O4A—H4A0.87 (4)C1C—C2C1.376 (3)
C5A—C6A1.397 (3)C1C—C6C1.401 (2)
C5A—H5A0.9400C1C—H1C0.9400
C6A—C7A1.465 (3)C2C—O2C1.363 (2)
C7A—O71A1.221 (2)C2C—C3C1.396 (3)
C7A—O72A1.348 (2)O2C—H2C0.87 (3)
O72A—C8A1.433 (2)C3C—O3C1.356 (2)
C8A—C9A1.522 (3)C3C—C4C1.396 (2)
C8A—H8A10.9800O3C—H3C0.87 (3)
C8A—H8A20.9800C4C—C5C1.374 (3)
C9A—O9A1.230 (3)C4C—O4C1.375 (2)
C9A—N9A1.318 (3)O4C—H4C0.84 (3)
N9A—H91A0.97 (3)C5C—C6C1.400 (3)
N9A—H92A0.94 (3)C5C—H5C0.9400
C1B—C2B1.376 (3)C6C—C7C1.470 (3)
C1B—C6B1.399 (3)C7C—O71C1.215 (2)
C1B—H1B0.9400C7C—O72C1.351 (2)
C2B—O2B1.376 (2)O72C—C8C1.434 (2)
C2B—C3B1.394 (3)C8C—C9C1.512 (2)
O2B—H2B0.89 (3)C8C—H8C10.9800
C3B—O3B1.350 (2)C8C—H8C20.9800
C3B—C4B1.397 (3)C9C—O9C1.244 (2)
O3B—H3B1.02 (4)C9C—N9C1.313 (3)
C4B—O4B1.361 (2)N9C—H91C0.91 (3)
C4B—C5B1.373 (3)N9C—H92C0.85 (3)
O4B—H4B0.94 (3)O1W—H1W0.95 (3)
C5B—C6B1.397 (3)O1W—H2W0.87 (3)
C5B—H5B0.9400
C2A—C1A—C6A119.58 (18)C5B—C6B—C7B119.63 (17)
C2A—C1A—H1A120.2C1B—C6B—C7B120.39 (17)
C6A—C1A—H1A120.2O71B—C7B—O72B121.53 (18)
C1A—C2A—O2A122.58 (17)O71B—C7B—C6B126.75 (17)
C1A—C2A—C3A120.92 (17)O72B—C7B—C6B111.72 (16)
O2A—C2A—C3A116.49 (17)C7B—O72B—C8B116.71 (15)
C2A—O2A—H2A109.5 (19)O72B—C8B—C9B109.52 (16)
O3A—C3A—C2A123.59 (17)O72B—C8B—H8B1109.8
O3A—C3A—C4A117.42 (17)C9B—C8B—H8B1109.8
C2A—C3A—C4A118.98 (17)O72B—C8B—H8B2109.8
C3A—O3A—H3A112 (2)C9B—C8B—H8B2109.8
C5A—C4A—O4A122.25 (16)H8B1—C8B—H8B2108.2
C5A—C4A—C3A120.67 (17)O9B—C9B—N9B122.55 (18)
O4A—C4A—C3A117.08 (17)O9B—C9B—C8B117.96 (17)
C4A—O4A—H4A108 (2)N9B—C9B—C8B119.49 (18)
C4A—C5A—C6A119.78 (17)C9B—N9B—H92B116.2 (17)
C4A—C5A—H5A120.1C9B—N9B—H91B117 (2)
C6A—C5A—H5A120.1H92B—N9B—H91B127 (3)
C5A—C6A—C1A120.03 (18)C2C—C1C—C6C119.68 (16)
C5A—C6A—C7A118.79 (16)C2C—C1C—H1C120.2
C1A—C6A—C7A121.18 (17)C6C—C1C—H1C120.2
O71A—C7A—O72A120.79 (17)O2C—C2C—C1C124.90 (17)
O71A—C7A—C6A125.65 (17)O2C—C2C—C3C114.50 (17)
O72A—C7A—C6A113.56 (16)C1C—C2C—C3C120.58 (16)
C7A—O72A—C8A114.96 (15)C2C—O2C—H2C111.2 (19)
O72A—C8A—C9A112.12 (17)O3C—C3C—C4C117.65 (16)
O72A—C8A—H8A1109.2O3C—C3C—C2C123.26 (16)
C9A—C8A—H8A1109.2C4C—C3C—C2C119.06 (17)
O72A—C8A—H8A2109.2C3C—O3C—H3C112 (2)
C9A—C8A—H8A2109.2C5C—C4C—O4C119.45 (16)
H8A1—C8A—H8A2107.9C5C—C4C—C3C121.29 (16)
O9A—C9A—N9A122.8 (2)O4C—C4C—C3C119.24 (17)
O9A—C9A—C8A122.35 (18)C4C—O4C—H4C112.6 (18)
N9A—C9A—C8A114.76 (19)C4C—C5C—C6C119.09 (16)
C9A—N9A—H91A121.0 (19)C4C—C5C—H5C120.5
C9A—N9A—H92A118 (2)C6C—C5C—H5C120.5
H91A—N9A—H92A120 (3)C5C—C6C—C1C120.29 (17)
C2B—C1B—C6B118.65 (17)C5C—C6C—C7C122.25 (16)
C2B—C1B—H1B120.7C1C—C6C—C7C117.42 (16)
C6B—C1B—H1B120.7O71C—C7C—O72C121.99 (17)
C1B—C2B—O2B121.45 (17)O71C—C7C—C6C124.61 (16)
C1B—C2B—C3B121.57 (17)O72C—C7C—C6C113.40 (15)
O2B—C2B—C3B116.94 (18)C7C—O72C—C8C115.49 (14)
C2B—O2B—H2B105 (2)O72C—C8C—C9C110.03 (15)
O3B—C3B—C2B117.04 (17)O72C—C8C—H8C1109.7
O3B—C3B—C4B123.47 (17)C9C—C8C—H8C1109.7
C2B—C3B—C4B119.47 (18)O72C—C8C—H8C2109.7
C3B—O3B—H3B112 (2)C9C—C8C—H8C2109.7
O4B—C4B—C5B123.98 (17)H8C1—C8C—H8C2108.2
O4B—C4B—C3B116.65 (18)O9C—C9C—N9C123.49 (17)
C5B—C4B—C3B119.37 (17)O9C—C9C—C8C117.67 (16)
C4B—O4B—H4B106.8 (19)N9C—C9C—C8C118.82 (17)
C4B—C5B—C6B120.96 (17)C9C—N9C—H91C118.8 (19)
C4B—C5B—H5B119.5C9C—N9C—H92C120.0 (17)
C6B—C5B—H5B119.5H91C—N9C—H92C121 (3)
C5B—C6B—C1B119.96 (19)H1W—O1W—H2W108 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O71Bi0.96 (3)1.99 (3)2.931 (2)165 (3)
O3A—H3A···O2A0.93 (4)2.34 (3)2.766 (2)107 (3)
O3A—H3A···O2Bii0.93 (4)1.91 (4)2.807 (2)163 (3)
O4A—H4A···O1W0.87 (4)1.91 (4)2.746 (2)160 (3)
N9A—H91A···O4Aiii0.97 (3)2.07 (3)2.978 (3)156 (3)
N9A—H92A···O4Civ0.94 (3)2.01 (4)2.950 (3)176 (3)
O2B—H2B···O3B0.89 (3)2.06 (3)2.631 (2)121 (3)
O2B—H2B···O2Aii0.89 (3)2.31 (3)2.975 (3)131 (3)
O3B—H3B···O4B1.02 (4)2.31 (4)2.754 (2)105 (2)
O3B—H3B···O9Bv1.02 (4)1.61 (4)2.607 (2)164 (3)
O4B—H4B···O9Av0.94 (3)1.71 (3)2.649 (2)177 (3)
N9B—H91B···O72B0.85 (3)2.23 (3)2.645 (2)111 (2)
N9B—H92B···O9Civ0.93 (3)2.06 (3)2.986 (2)172 (2)
O2C—H2C···O71Avi0.87 (3)1.83 (3)2.688 (2)172 (3)
O3C—H3C···O2C0.87 (3)2.29 (3)2.707 (2)110 (3)
O3C—H3C···O1Wvi0.87 (3)2.01 (3)2.817 (2)155 (3)
O4C—H4C···O3C0.84 (3)2.28 (3)2.697 (2)111 (2)
O4C—H4C···O9Ciii0.84 (3)2.03 (3)2.772 (2)147 (2)
N9C—H91C···O4Bvii0.91 (3)2.48 (3)2.984 (2)115 (2)
N9C—H91C···O9Bviii0.91 (3)2.05 (3)2.943 (3)167 (3)
N9C—H92C···O72C0.85 (3)2.30 (2)2.665 (2)106 (2)
O1W—H1W···O71Cix0.95 (3)1.86 (3)2.807 (2)173 (3)
O1W—H2W···O9Civ0.87 (3)1.99 (3)2.852 (2)171 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y1, z; (iv) x, y1, z; (v) x1, y+1, z; (vi) x+2, y, z; (vii) x+1, y, z; (viii) x, y+1, z; (ix) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H9NO6·0.33H2O
Mr233.18
Crystal system, space groupTriclinic, P1
Temperature (K)220
a, b, c (Å)8.266 (5), 8.515 (4), 20.614 (7)
α, β, γ (°)87.08 (3), 86.56 (3), 78.32 (3)
V3)1417.2 (12)
Z6
Radiation typeCu Kα
µ (mm1)1.23
Crystal size (mm)0.62 × 0.28 × 0.24
Data collection
DiffractometerStoe Stadi-4 four-circle
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick 1997)
Tmin, Tmax0.617, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
8429, 5000, 4192
Rint0.020
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.03
No. of reflections5000
No. of parameters511
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: DIF4 (Stoe & Cie, 1990), DIF4, REDU4 (Stoe & Cie, 1990), SHELXTL (Sheldrick, 1997), SHELXTL and CAMERON (Watkin et al., 1993).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O71Bi0.96 (3)1.99 (3)2.931 (2)165 (3)
O3A—H3A···O2A0.93 (4)2.34 (3)2.766 (2)107 (3)
O3A—H3A···O2Bii0.93 (4)1.91 (4)2.807 (2)163 (3)
O4A—H4A···O1W0.87 (4)1.91 (4)2.746 (2)160 (3)
N9A—H91A···O4Aiii0.97 (3)2.07 (3)2.978 (3)156 (3)
N9A—H92A···O4Civ0.94 (3)2.01 (4)2.950 (3)176 (3)
O2B—H2B···O3B0.89 (3)2.06 (3)2.631 (2)121 (3)
O2B—H2B···O2Aii0.89 (3)2.31 (3)2.975 (3)131 (3)
O3B—H3B···O4B1.02 (4)2.31 (4)2.754 (2)105 (2)
O3B—H3B···O9Bv1.02 (4)1.61 (4)2.607 (2)164 (3)
O4B—H4B···O9Av0.94 (3)1.71 (3)2.649 (2)177 (3)
N9B—H91B···O72B0.85 (3)2.23 (3)2.645 (2)111 (2)
N9B—H92B···O9Civ0.93 (3)2.06 (3)2.986 (2)172 (2)
O2C—H2C···O71Avi0.87 (3)1.83 (3)2.688 (2)172 (3)
O3C—H3C···O2C0.87 (3)2.29 (3)2.707 (2)110 (3)
O3C—H3C···O1Wvi0.87 (3)2.01 (3)2.817 (2)155 (3)
O4C—H4C···O3C0.84 (3)2.28 (3)2.697 (2)111 (2)
O4C—H4C···O9Ciii0.84 (3)2.03 (3)2.772 (2)147 (2)
N9C—H91C···O4Bvii0.91 (3)2.48 (3)2.984 (2)115 (2)
N9C—H91C···O9Bviii0.91 (3)2.05 (3)2.943 (3)167 (3)
N9C—H92C···O72C0.85 (3)2.30 (2)2.665 (2)106 (2)
O1W—H1W···O71Cix0.95 (3)1.86 (3)2.807 (2)173 (3)
O1W—H2W···O9Civ0.87 (3)1.99 (3)2.852 (2)171 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y1, z; (iv) x, y1, z; (v) x1, y+1, z; (vi) x+2, y, z; (vii) x+1, y, z; (viii) x, y+1, z; (ix) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds