Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Use of [Mn(η4-C6H6)(CO)3] prepared by anthracenide reduction of [Mn(η6-C6H6)(CO)3]PF6 provides access to the title compound, (4,7,13,16,21,24-hexaoxa-1,l0-di­aza­bi­cyclo­­[8.8.8]­hexa­cosane)­potassium tri­carbonyl­(cyclo­penta­di­ene)­manganate(I), [K(C18H36N2O6)][Mn(C5H6)(CO)3], by reaction of [Mn(η4-C6H6)(CO)3] with excess of the cyclo­penta­diene monomer (C5H6) at 195 K. In the title compound, there is octacoordination of potassium by two N and six O atoms of the 4,7,13,16,21,24-hexaoxa-1,l0-di­aza­bi­cyclo­[8.8.8]­hexa­co­sane and η4-coordination of the diene in an envelope conformation to the Mn(CO)3 center, with the methyl­ene group folded out of the coordination plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802023024/na6170sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802023024/na6170Isup2.hkl
Contains datablock I

CCDC reference: 204659

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.036
  • wR factor = 0.101
  • Data-to-parameter ratio = 26.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 32.47 From the CIF: _reflns_number_total 9907 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 10733 Completeness (_total/calc) 92.30% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

We have previously reported that the η4-benzene ligand in [Mn(η4-C6H6)(CO)3] is activated with respect to substitution of the η4-benzene by polyaromatic hydrocarbons to give products such as the η4-naphthalene complex [Mn(η4-C10H8)(CO)3] (Thompson et al., 1991). η4-Benzene substitution by anthracene is much slower than substitution by naphthalene (Lee et al., 1995), and [Mn(η4-C6H6)(CO)3] prepared by anthracenide reduction can therefore provide access to the title compound, (4,7,13,16,21,24-hexaoxa-1,l0-diazabicyclo[8.8.8]hexacosane)potassium tricarbonyl(cyclopentadiene)manganese(I), by competitive substitution with excess cyclopentadiene monomer (C5H6). To the best of our knowledge, while there are several crystal structures of η4-complexes of heterosubstituted cyclic dienes with manganese(I) (Lindner et al., 1979, 1981a,b, 1988, 1996; Chen et al., 1996), the title compound, (I), is the first crystallographically characterized [Mn(η4-diene)(CO)3] complex of an aliphatic diene (Fig. 1), although a methyl-substituted analog has been spectroscopically characterized prior to this study (Lee & Cooper, 1991).

The C5H6 ligand coordinated to Mn(CO)3 has an envelope conformation (Duax et al., 1976) with the CH2 bent out of the plane by 34.6 (1)°. There is a plane of symmetry that includes the CH2 group and the Mn center. This contrasts sharply with the structure of uncoordinated C5H6 (Liebling & Marsh, 1965) in which the C5H6 ring is almost planar but lacks a plane of symmetry that would render the methylene H atoms equivalent.

Experimental top

Reactions and manipulations were carried out under a dry oxygen-free nitrogen atmosphere using standard Schlenk and cannula techniques or a dry box. A 0.2 M potassium anthracenide/THF solution (7.3 ml, 1.46 mmol, 2.1 equivalents per Mn metal) was added into a slurry of 0.25 g (0.69 mmol) [Mn(η6-C6H6)(CO)3]PF6 in 15 ml THF at 195 K to form a yellow–green slurry. After 15 min, excess distilled cyclopentadiene C5H6 monomer (2.0 ml) was added to the stirred solution to give a yellow slurry. The yellow solution was collected by filtration at 195 K and mixed with 0.21 g (0.56 mmol) 4,7,13,16,21,24-hexaoxa-1,l0-diazabicyclo[8.8.8]hexacosane. Solvent THF was removed under vacuum at ambient temperature, and the residue rinsed with pentane (50 ml) and toluene (50 ml), and then redissolved into a small amount of DME and layered with Et2O to give orange crystals suitable for diffraction studies (0.26 g, yield 41%) at 243 K. IR absorptions for the title compound [νco only, THF, 1925 (s), 1830 (s), 1811(s) cm−1] are in the same range as those of [Mn(η4-cyclohexadiene)(CO)3] (Brookhart et al., 1983) and [Mn(η4-butadiene)(CO)3] (Brookhart et al., 1987), while the 1H NMR spectrum of (I) has three peaks [in CD3CN, 273 K, δ 5.0 (s, 2CH), 2.70 (s, 2CH), 1.86 (s, CH2)] for the C5H6 ligand. This implies that the endo- and exo-H of the CH2 cannot be distinguished. A similar observation has been reported for [Mn(η4-cyclohexadiene)(CO)3]. In the 13C–1H-coupled NMR spectrum, the different coupling constants (121.3 and 136.6 Hz) of the two H atoms on the CH2 peak (δ 46.03), did, however, finally distinguish between the endo- and exo-H.

Refinement top

Idealized atomic positions were calculated for the cryptate H atoms [d(C—H) = 0.96 Å, Uiso = 1.2Ueq of the attached atom]. The remaining H atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are shown at the 50% probability level.
Cyclopentadienylmangenesetricarbonyl top
Crystal data top
[K(C18H36N2O6)][Mn(C5H6)(CO)3]F(000) = 656
Mr = 620.66Dx = 1.386 Mg m3
Triclinic, P1Melting point: not measured K
a = 11.5443 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7528 (5) ÅCell parameters from 6417 reflections
c = 12.5534 (6) Åθ = 2.0–30.0°
α = 110.307 (1)°µ = 0.64 mm1
β = 109.523 (1)°T = 150 K
γ = 91.279 (1)°Block, yellow
V = 1486.98 (11) Å30.38 × 0.35 × 0.35 mm
Z = 2
Data collection top
Bruker AXS SMART APEX
diffractometer
9907 independent reflections
Radiation source: fine-focus sealed tube9068 reflections with I > σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 32.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.794, Tmax = 0.808k = 1717
19143 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
9907 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[K(C18H36N2O6)][Mn(C5H6)(CO)3]γ = 91.279 (1)°
Mr = 620.66V = 1486.98 (11) Å3
Triclinic, P1Z = 2
a = 11.5443 (5) ÅMo Kα radiation
b = 11.7528 (5) ŵ = 0.64 mm1
c = 12.5534 (6) ÅT = 150 K
α = 110.307 (1)°0.38 × 0.35 × 0.35 mm
β = 109.523 (1)°
Data collection top
Bruker AXS SMART APEX
diffractometer
9907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
9068 reflections with I > σ(I)
Tmin = 0.794, Tmax = 0.808Rint = 0.016
19143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 0.58 e Å3
9907 reflectionsΔρmin = 0.18 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles, correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.073656 (14)0.328066 (14)0.185712 (14)0.02325 (5)
K0.311026 (19)0.023124 (19)0.341090 (18)0.02019 (5)
N10.22965 (9)0.23896 (8)0.52244 (9)0.02416 (17)
C10.20342 (12)0.39963 (12)0.17244 (11)0.0358 (3)
O10.29054 (11)0.44537 (13)0.16734 (11)0.0599 (3)
N20.39412 (8)0.28671 (8)0.16344 (8)0.02378 (17)
O20.16087 (10)0.08856 (10)0.12744 (11)0.0505 (3)
C20.12828 (11)0.18434 (12)0.15126 (11)0.0326 (2)
O30.16474 (9)0.41558 (8)0.45338 (8)0.03592 (19)
C30.12936 (10)0.38160 (9)0.34776 (10)0.0260 (2)
O40.45540 (8)0.16178 (7)0.29975 (7)0.02735 (16)
C40.13604 (11)0.40260 (11)0.21725 (12)0.0298 (2)
H4A0.1047 (15)0.4391 (14)0.3076 (15)0.036 (4)*
H4B0.2252 (15)0.4125 (14)0.1839 (14)0.035 (4)*
C50.05629 (11)0.45414 (11)0.16505 (11)0.0299 (2)
H50.0424 (15)0.5420 (15)0.1844 (14)0.034 (4)*
O50.50114 (7)0.07602 (8)0.11340 (7)0.02846 (16)
C60.06702 (12)0.36331 (12)0.05066 (11)0.0336 (2)
H60.0525 (16)0.3766 (16)0.0110 (16)0.043 (4)*
O60.28242 (7)0.03294 (7)0.58491 (7)0.02385 (15)
C70.10192 (11)0.24805 (11)0.05290 (11)0.0320 (2)
H70.1115 (16)0.1737 (16)0.0121 (16)0.043 (4)*
O70.39506 (7)0.20819 (7)0.41324 (7)0.02394 (14)
C80.11232 (10)0.27155 (10)0.16822 (11)0.0286 (2)
H80.1380 (14)0.2085 (14)0.1931 (14)0.033 (4)*
O80.09608 (7)0.10738 (7)0.36839 (8)0.02576 (15)
O90.14773 (7)0.14620 (7)0.22804 (7)0.02495 (15)
C90.33522 (11)0.30661 (10)0.50031 (11)0.0302 (2)
H9A0.30480.39540.54760.036*
H9B0.39610.28090.53070.036*
C100.40056 (13)0.28671 (11)0.36766 (12)0.0338 (2)
H10A0.46570.33990.35970.041*
H10B0.34010.30920.33520.041*
C110.51163 (13)0.13878 (13)0.17287 (11)0.0361 (3)
H11A0.44640.14860.14040.043*
H11B0.56820.19910.16110.043*
C120.58308 (11)0.01210 (13)0.10510 (10)0.0344 (3)
H12A0.64610.00110.13970.041*
H12B0.62710.00050.01840.041*
C130.57018 (10)0.19619 (12)0.06483 (10)0.0312 (2)
H13A0.63680.20990.01450.037*
H13B0.60970.20450.12120.037*
C140.48529 (11)0.28994 (11)0.04777 (10)0.0300 (2)
H14A0.53590.37270.00250.036*
H14B0.44040.27570.00240.036*
C150.19019 (11)0.24063 (10)0.64683 (10)0.0281 (2)
H15A0.18440.32550.70380.034*
H15B0.10600.21740.66880.034*
C160.27630 (11)0.15566 (10)0.66364 (10)0.0273 (2)
H16A0.24520.16200.74950.033*
H16B0.36040.17930.64450.033*
C170.35049 (11)0.05164 (10)0.60892 (10)0.0276 (2)
H17A0.43950.04230.58320.033*
H17B0.31890.03440.69750.033*
C180.33667 (10)0.17979 (10)0.54075 (10)0.0257 (2)
H18A0.24730.18730.56110.031*
H18B0.37570.23820.56440.031*
C190.38644 (12)0.33098 (10)0.34606 (11)0.0305 (2)
H19A0.42490.38860.37100.037*
H19B0.29800.34100.36260.037*
C200.45295 (12)0.35864 (10)0.21229 (10)0.0305 (2)
H20A0.45680.44710.16630.037*
H20B0.53950.34240.19850.037*
C210.12411 (11)0.29466 (10)0.50661 (11)0.0293 (2)
H21A0.07910.36750.58140.035*
H21B0.15650.32310.43810.035*
C220.03412 (10)0.20761 (10)0.48144 (11)0.0283 (2)
H22A0.03770.25100.47730.034*
H22B0.00270.17660.54810.034*
C230.00880 (10)0.04312 (10)0.32326 (11)0.0290 (2)
H23A0.04480.01200.38370.035*
H23B0.04500.09940.30980.035*
C240.07702 (11)0.06175 (10)0.20605 (11)0.0294 (2)
H24A0.13310.03100.14670.035*
H24B0.01700.10350.17120.035*
C250.20205 (11)0.25426 (10)0.12142 (10)0.0274 (2)
H25A0.13580.29740.09940.033*
H25B0.25220.23200.05250.033*
C260.28375 (11)0.33746 (10)0.14462 (11)0.0281 (2)
H26A0.31150.41700.07440.034*
H26B0.23390.35360.21770.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.01901 (8)0.02373 (9)0.02428 (9)0.00295 (6)0.00686 (6)0.00688 (6)
K0.01859 (10)0.02118 (10)0.02170 (10)0.00230 (7)0.00824 (7)0.00831 (7)
N10.0245 (4)0.0192 (4)0.0297 (4)0.0018 (3)0.0134 (3)0.0071 (3)
C10.0328 (6)0.0391 (6)0.0293 (5)0.0028 (5)0.0126 (5)0.0049 (5)
O10.0490 (6)0.0704 (8)0.0513 (6)0.0204 (6)0.0275 (5)0.0054 (6)
N20.0244 (4)0.0230 (4)0.0220 (4)0.0004 (3)0.0091 (3)0.0057 (3)
O20.0419 (6)0.0417 (5)0.0573 (6)0.0237 (5)0.0151 (5)0.0081 (5)
C20.0215 (5)0.0373 (6)0.0325 (6)0.0076 (4)0.0080 (4)0.0070 (5)
O30.0470 (5)0.0296 (4)0.0280 (4)0.0056 (4)0.0081 (4)0.0125 (3)
C30.0244 (5)0.0200 (4)0.0324 (5)0.0041 (4)0.0078 (4)0.0109 (4)
O40.0329 (4)0.0294 (4)0.0258 (4)0.0100 (3)0.0129 (3)0.0150 (3)
C40.0236 (5)0.0281 (5)0.0386 (6)0.0079 (4)0.0120 (4)0.0126 (5)
C50.0269 (5)0.0263 (5)0.0370 (6)0.0060 (4)0.0087 (4)0.0152 (4)
O50.0208 (3)0.0372 (4)0.0267 (4)0.0100 (3)0.0075 (3)0.0121 (3)
C60.0297 (6)0.0418 (6)0.0286 (5)0.0066 (5)0.0065 (4)0.0164 (5)
O60.0275 (4)0.0226 (3)0.0231 (3)0.0000 (3)0.0135 (3)0.0067 (3)
C70.0221 (5)0.0309 (6)0.0308 (5)0.0033 (4)0.0020 (4)0.0047 (4)
O70.0279 (4)0.0223 (3)0.0222 (3)0.0038 (3)0.0082 (3)0.0099 (3)
C80.0198 (5)0.0246 (5)0.0393 (6)0.0038 (4)0.0074 (4)0.0129 (4)
O80.0187 (3)0.0238 (3)0.0338 (4)0.0017 (3)0.0130 (3)0.0066 (3)
O90.0265 (4)0.0235 (3)0.0256 (3)0.0011 (3)0.0136 (3)0.0064 (3)
C90.0303 (5)0.0223 (5)0.0391 (6)0.0060 (4)0.0170 (5)0.0087 (4)
C100.0379 (6)0.0285 (5)0.0439 (7)0.0106 (5)0.0183 (5)0.0205 (5)
C110.0477 (7)0.0464 (7)0.0292 (5)0.0264 (6)0.0209 (5)0.0243 (5)
C120.0302 (6)0.0535 (7)0.0223 (5)0.0221 (5)0.0106 (4)0.0157 (5)
C130.0200 (5)0.0449 (6)0.0250 (5)0.0017 (4)0.0064 (4)0.0108 (5)
C140.0295 (5)0.0328 (5)0.0210 (5)0.0006 (4)0.0074 (4)0.0041 (4)
C150.0281 (5)0.0243 (5)0.0262 (5)0.0021 (4)0.0105 (4)0.0028 (4)
C160.0302 (5)0.0269 (5)0.0236 (5)0.0022 (4)0.0140 (4)0.0044 (4)
C170.0313 (5)0.0317 (5)0.0229 (5)0.0021 (4)0.0134 (4)0.0109 (4)
C180.0259 (5)0.0283 (5)0.0245 (5)0.0008 (4)0.0066 (4)0.0145 (4)
C190.0426 (6)0.0224 (5)0.0320 (5)0.0065 (4)0.0176 (5)0.0126 (4)
C200.0366 (6)0.0219 (5)0.0295 (5)0.0050 (4)0.0139 (5)0.0045 (4)
C210.0308 (5)0.0188 (4)0.0389 (6)0.0017 (4)0.0176 (5)0.0072 (4)
C220.0215 (5)0.0258 (5)0.0343 (5)0.0029 (4)0.0115 (4)0.0066 (4)
C230.0199 (5)0.0288 (5)0.0407 (6)0.0032 (4)0.0165 (4)0.0105 (4)
C240.0305 (5)0.0281 (5)0.0360 (6)0.0039 (4)0.0213 (5)0.0108 (4)
C250.0289 (5)0.0259 (5)0.0268 (5)0.0045 (4)0.0146 (4)0.0049 (4)
C260.0316 (5)0.0207 (4)0.0311 (5)0.0049 (4)0.0142 (4)0.0060 (4)
Geometric parameters (Å, º) top
Mn—C21.778 (1)O9—C241.4256 (13)
Mn—C31.780 (1)C9—C101.5096 (18)
Mn—C11.785 (1)C9—H9A0.9900
Mn—C72.083 (1)C9—H9B0.9900
Mn—C62.088 (1)C10—H10A0.9900
Mn—C52.149 (1)C10—H10B0.9900
Mn—C82.149 (1)C11—C121.489 (2)
K—O82.7431 (8)C11—H11A0.9900
K—O62.7976 (8)C11—H11B0.9900
K—O52.8082 (8)C12—H12A0.9900
K—O42.8524 (8)C12—H12B0.9900
K—O92.8539 (8)C13—C141.4982 (17)
K—O72.8901 (8)C13—H13A0.9900
K—N13.0212 (9)C13—H13B0.9900
K—N23.0220 (9)C14—H14A0.9900
N1—C151.4659 (15)C14—H14B0.9900
N1—C91.4713 (14)C15—C161.5074 (15)
N1—C211.4728 (13)C15—H15A0.9900
C1—O11.161 (2)C15—H15B0.9900
N2—C141.4684 (14)C16—H16A0.9900
N2—C201.4713 (14)C16—H16B0.9900
N2—C261.4739 (14)C17—C181.4945 (16)
O2—C21.166 (2)C17—H17A0.9900
O3—C31.161 (1)C17—H17B0.9900
O4—C101.419 (2)C18—H18A0.9900
O4—C111.4261 (14)C18—H18B0.9900
C4—C81.516 (2)C19—C201.5045 (17)
C4—C51.516 (2)C19—H19A0.9900
C4—H4A0.992 (16)C19—H19B0.9900
C4—H4B1.000 (16)C20—H20A0.9900
C5—C61.424 (2)C20—H20B0.9900
C5—H50.972 (16)C21—C221.5061 (16)
O5—C131.4244 (15)C21—H21A0.9900
O5—C121.4251 (14)C21—H21B0.9900
C6—C71.417 (2)C22—H22A0.9900
C6—H60.907 (17)C22—H22B0.9900
O6—C161.4218 (13)C23—C241.4925 (17)
O6—C171.4240 (12)C23—H23A0.9900
C7—C81.424 (2)C23—H23B0.9900
C7—H70.939 (17)C24—H24A0.9900
O7—C191.4218 (13)C24—H24B0.9900
O7—C181.4233 (12)C25—C261.5069 (15)
C8—H80.974 (15)C25—H25A0.9900
O8—C231.4230 (13)C25—H25B0.9900
O8—C221.4272 (13)C26—H26A0.9900
O9—C251.4217 (13)C26—H26B0.9900
C2—Mn—C3100.39 (5)C25—O9—K116.91 (6)
C2—Mn—C191.43 (6)C24—O9—K109.99 (6)
C3—Mn—C197.59 (5)N1—C9—C10113.67 (9)
C2—Mn—C791.42 (5)N1—C9—H9A108.8
C3—Mn—C7131.99 (5)C10—C9—H9A108.8
C1—Mn—C7128.71 (6)N1—C9—H9B108.8
C2—Mn—C6120.19 (5)C10—C9—H9B108.8
C3—Mn—C6135.92 (5)H9A—C9—H9B107.7
C1—Mn—C697.84 (6)O4—C10—C9109.86 (9)
C7—Mn—C639.72 (5)O4—C10—H10A109.7
C2—Mn—C5156.57 (5)C9—C10—H10A109.7
C3—Mn—C597.12 (5)O4—C10—H10B109.7
C1—Mn—C5101.60 (6)C9—C10—H10B109.7
C7—Mn—C565.23 (5)H10A—C10—H10B108.2
C6—Mn—C539.25 (5)O4—C11—C12110.40 (10)
C2—Mn—C8100.57 (5)O4—C11—H11A109.6
C3—Mn—C892.72 (5)C12—C11—H11A109.6
C1—Mn—C8162.53 (6)O4—C11—H11B109.6
C7—Mn—C839.27 (5)C12—C11—H11B109.6
C6—Mn—C865.17 (5)H11A—C11—H11B108.1
C5—Mn—C862.97 (4)O5—C12—C11110.15 (10)
O8—K—O6100.91 (2)O5—C12—H12A109.6
O8—K—O5113.35 (3)C11—C12—H12A109.6
O6—K—O5139.47 (2)O5—C12—H12B109.6
O8—K—O492.97 (2)C11—C12—H12B109.6
O6—K—O498.11 (2)H12A—C12—H12B108.1
O5—K—O460.50 (2)O5—C13—C14109.76 (9)
O8—K—O960.32 (2)O5—C13—H13A109.7
O6—K—O9125.20 (2)C14—C13—H13A109.7
O5—K—O991.49 (2)O5—C13—H13B109.7
O4—K—O9131.07 (2)C14—C13—H13B109.7
O8—K—O7140.79 (2)H13A—C13—H13B108.2
O6—K—O759.98 (2)N2—C14—C13113.05 (9)
O5—K—O7100.31 (2)N2—C14—H14A109.0
O4—K—O7121.87 (2)C13—C14—H14A109.0
O9—K—O7100.87 (2)N2—C14—H14B109.0
O8—K—N160.67 (2)C13—C14—H14B109.0
O6—K—N159.68 (2)H14A—C14—H14B107.8
O5—K—N1119.72 (3)N1—C15—C16113.87 (9)
O4—K—N160.19 (3)N1—C15—H15A108.8
O9—K—N1120.25 (2)C16—C15—H15A108.8
O7—K—N1119.00 (2)N1—C15—H15B108.8
O8—K—N2120.26 (2)C16—C15—H15B108.8
O6—K—N2119.16 (2)H15A—C15—H15B107.7
O5—K—N260.85 (2)O6—C16—C15109.30 (8)
O4—K—N2120.15 (3)O6—C16—H16A109.8
O9—K—N260.54 (2)C15—C16—H16A109.8
O7—K—N259.81 (2)O6—C16—H16B109.8
N1—K—N2178.80 (2)C15—C16—H16B109.8
C15—N1—C9109.83 (9)H16A—C16—H16B108.3
C15—N1—C21109.16 (9)O6—C17—C18109.56 (8)
C9—N1—C21110.61 (9)O6—C17—H17A109.8
C15—N1—K109.66 (6)C18—C17—H17A109.8
C9—N1—K108.66 (6)O6—C17—H17B109.8
C21—N1—K108.91 (6)C18—C17—H17B109.8
O1—C1—Mn177.58 (14)H17A—C17—H17B108.2
C14—N2—C20108.79 (9)O7—C18—C17109.22 (9)
C14—N2—C26110.47 (9)O7—C18—H18A109.8
C20—N2—C26110.18 (9)C17—C18—H18A109.8
C14—N2—K109.09 (6)O7—C18—H18B109.8
C20—N2—K110.17 (6)C17—C18—H18B109.8
C26—N2—K108.13 (6)H18A—C18—H18B108.3
O2—C2—Mn178.20 (11)O7—C19—C20108.77 (9)
O3—C3—Mn179.26 (11)O7—C19—H19A109.9
C10—O4—C11111.06 (9)C20—C19—H19A109.9
C10—O4—K118.38 (7)O7—C19—H19B109.9
C11—O4—K111.57 (6)C20—C19—H19B109.9
C8—C4—C595.52 (9)H19A—C19—H19B108.3
C8—C4—H4A112.8 (9)N2—C20—C19114.00 (9)
C5—C4—H4A112.5 (9)N2—C20—H20A108.8
C8—C4—H4B113.8 (9)C19—C20—H20A108.8
C5—C4—H4B112.2 (9)N2—C20—H20B108.8
H4A—C4—H4B109.5 (12)C19—C20—H20B108.8
C6—C5—C4108.30 (10)H20A—C20—H20B107.6
C6—C5—Mn68.07 (7)N1—C21—C22113.10 (9)
C4—C5—Mn93.19 (7)N1—C21—H21A109.0
C6—C5—H5123.9 (9)C22—C21—H21A109.0
C4—C5—H5120.0 (9)N1—C21—H21B109.0
Mn—C5—H5130.6 (9)C22—C21—H21B109.0
C13—O5—C12110.45 (9)H21A—C21—H21B107.8
C13—O5—K112.78 (6)O8—C22—C21109.17 (9)
C12—O5—K116.61 (7)O8—C22—H22A109.8
C7—C6—C5106.86 (11)C21—C22—H22A109.8
C7—C6—Mn69.96 (7)O8—C22—H22B109.8
C5—C6—Mn72.69 (7)C21—C22—H22B109.8
C7—C6—H6126.6 (11)H22A—C22—H22B108.3
C5—C6—H6126.5 (11)O8—C23—C24109.35 (9)
Mn—C6—H6121.4 (11)O8—C23—H23A109.8
C16—O6—C17110.89 (8)C24—C23—H23A109.8
C16—O6—K120.98 (6)O8—C23—H23B109.8
C17—O6—K116.61 (6)C24—C23—H23B109.8
C6—C7—C8106.94 (11)H23A—C23—H23B108.3
C6—C7—Mn70.33 (7)O9—C24—C23109.28 (9)
C8—C7—Mn72.86 (7)O9—C24—H24A109.8
C6—C7—H7122.2 (10)C23—C24—H24A109.8
C8—C7—H7130.8 (10)O9—C24—H24B109.8
Mn—C7—H7120.0 (10)C23—C24—H24B109.8
C19—O7—C18110.46 (8)H24A—C24—H24B108.3
C19—O7—K115.45 (6)O9—C25—C26109.54 (8)
C18—O7—K111.81 (6)O9—C25—H25A109.8
C7—C8—C4108.35 (10)C26—C25—H25A109.8
C7—C8—Mn67.87 (6)O9—C25—H25B109.8
C4—C8—Mn93.17 (7)C26—C25—H25B109.8
C7—C8—H8124.3 (9)H25A—C25—H25B108.2
C4—C8—H8122.0 (9)N2—C26—C25113.64 (9)
Mn—C8—H8126.3 (9)N2—C26—H26A108.8
C23—O8—C22110.95 (8)C25—C26—H26A108.8
C23—O8—K119.14 (6)N2—C26—H26B108.8
C22—O8—K117.77 (6)C25—C26—H26B108.8
C25—O9—C24110.79 (8)H26A—C26—H26B107.7

Experimental details

Crystal data
Chemical formula[K(C18H36N2O6)][Mn(C5H6)(CO)3]
Mr620.66
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)11.5443 (5), 11.7528 (5), 12.5534 (6)
α, β, γ (°)110.307 (1), 109.523 (1), 91.279 (1)
V3)1486.98 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.38 × 0.35 × 0.35
Data collection
DiffractometerBruker AXS SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.794, 0.808
No. of measured, independent and
observed [I > σ(I)] reflections
19143, 9907, 9068
Rint0.016
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.26
No. of reflections9907
No. of parameters376
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.18

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2001), SHELXTL (Bruker, 2001), SHELXTL.

Selected bond lengths (Å) top
Mn—C21.778 (1)O2—C21.166 (2)
Mn—C31.780 (1)O3—C31.161 (1)
Mn—C11.785 (1)C4—C81.516 (2)
Mn—C72.083 (1)C4—C51.516 (2)
Mn—C62.088 (1)C5—C61.424 (2)
Mn—C52.149 (1)C6—C71.417 (2)
Mn—C82.149 (1)C7—C81.424 (2)
C1—O11.161 (2)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds