Download citation
Download citation
link to html
In the structure of the title compound, [Sn(C10H18O4)I2], Sn lies on a crystallographic twofold axis and the mol­ecule therefore has C2 molecular symmetry. As is usual for an ester-tin compound of this kind, the carbonyl O atom of the carboethoxy moiety bonds to Sn, creating a five-membered chelate ring and, due to the molecular symmetry, renders Sn six-coordinate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007912/na6161sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007912/na6161Isup2.hkl
Contains datablock I

CCDC reference: 189286

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.038
  • wR factor = 0.077
  • Data-to-parameter ratio = 24.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 6.341 Tmax scaled 0.900 Tmin scaled 0.717

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

Bis(2-carboethoxyethyl)diiodotin top
Crystal data top
[Sn(C10H18O4)I2]F(000) = 1064
Mr = 574.73Dx = 2.293 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.9399 (10) ÅCell parameters from 2840 reflections
b = 9.1673 (5) Åθ = 2.9–27.5°
c = 9.6144 (5) ŵ = 5.24 mm1
β = 115.559 (3)°T = 120 K
V = 1664.99 (15) Å3Prism, colourless
Z = 40.05 × 0.02 × 0.02 mm
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
1898 independent reflections
Radiation source: Enraf-Nonius FR591 rotating anode1390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scans to fill the Ewald sphereh = 2722
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1011
Tmin = 0.113, Tmax = 0.142l = 1210
5078 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.89Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2)]
1898 reflections(Δ/σ)max < 0.001
79 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = 1.17 e Å3
Special details top

Experimental. Lattice absent reflections not present in input intensity data so that completeness of data is in fact twice that computed by SHELXL i.e. 93.4%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Assymmetric unit consists of Sn in 4 e s pecial positions and representative I and a complete alkyl ester group in the general (8f) positions.

Anisotropic displacement parameters refined for all non-H atoms. H atoms in calculated positions and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.20062 (6)0.75000.01956 (17)
I10.11478 (2)0.00964 (4)0.64925 (5)0.02590 (15)
C10.0047 (3)0.2568 (6)0.5308 (6)0.0238 (13)
H1A0.01590.16850.46510.029*
H1B0.04310.32850.47980.029*
C20.0652 (3)0.3213 (6)0.5458 (6)0.0249 (13)
H2A0.09780.24100.55100.030*
H2B0.05640.38020.45300.030*
C30.0999 (3)0.4158 (6)0.6870 (6)0.0225 (13)
O10.0838 (2)0.4114 (4)0.7953 (4)0.0259 (9)
O20.1490 (2)0.5013 (4)0.6825 (4)0.0223 (10)
C40.1854 (3)0.5996 (6)0.8135 (6)0.0280 (14)
H4A0.21460.54270.90710.034*
H4B0.15050.65720.83430.034*
C50.2312 (3)0.6983 (6)0.7727 (7)0.0339 (15)
H5A0.26440.64000.74880.051*
H5B0.25770.76300.85990.051*
H5C0.20160.75700.68260.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0238 (3)0.0163 (3)0.0198 (3)0.0000.0105 (2)0.000
I10.0264 (3)0.0228 (2)0.0295 (2)0.00501 (16)0.0131 (2)0.00468 (17)
C10.032 (4)0.021 (3)0.017 (3)0.003 (3)0.010 (3)0.001 (3)
C20.031 (4)0.024 (3)0.022 (3)0.002 (3)0.014 (3)0.002 (3)
C30.023 (3)0.017 (3)0.027 (3)0.002 (3)0.011 (3)0.003 (3)
O10.030 (2)0.030 (2)0.024 (2)0.0114 (18)0.017 (2)0.0028 (19)
O20.027 (2)0.020 (2)0.020 (2)0.0027 (17)0.010 (2)0.0026 (17)
C40.032 (4)0.022 (3)0.030 (3)0.004 (3)0.014 (3)0.003 (3)
C50.031 (4)0.030 (4)0.044 (4)0.007 (3)0.020 (3)0.004 (3)
Geometric parameters (Å, º) top
Sn1—C12.131 (5)C3—O11.226 (6)
Sn1—O12.518 (4)C3—O21.309 (6)
Sn1—I12.7877 (5)O2—C41.467 (6)
C1—C21.526 (8)C4—C51.489 (8)
C1—H1A0.9900C4—H4A0.9900
C1—H1B0.9900C4—H4B0.9900
C2—C31.506 (7)C5—H5A0.9800
C2—H2A0.9900C5—H5B0.9800
C2—H2B0.9900C5—H5C0.9800
C1—Sn1—C1i152.0 (3)C1—C2—H2B109.2
C1—Sn1—O173.55 (17)H2A—C2—H2B107.9
C1—Sn1—O1i84.99 (17)O1—C3—O2123.8 (5)
O1—Sn1—O1i79.80 (18)O1—C3—C2123.0 (5)
C1—Sn1—I1i99.21 (15)O2—C3—C2113.3 (5)
O1—Sn1—I1i89.42 (9)C3—O1—Sn1107.8 (4)
C1—Sn1—I198.24 (15)C3—O2—C4117.7 (4)
O1—Sn1—I1166.87 (9)O2—C4—C5107.6 (4)
I1—Sn1—I1i102.19 (2)O2—C4—H4A110.2
C2—C1—Sn1111.5 (3)C5—C4—H4A110.2
C2—C1—H1A109.3O2—C4—H4B110.2
Sn1—C1—H1A109.3C5—C4—H4B110.2
C2—C1—H1B109.3H4A—C4—H4B108.5
Sn1—C1—H1B109.3C4—C5—H5A109.5
H1A—C1—H1B108.0C4—C5—H5B109.5
C3—C2—C1112.2 (4)H5A—C5—H5B109.5
C3—C2—H2A109.2C4—C5—H5C109.5
C1—C2—H2A109.2H5A—C5—H5C109.5
C3—C2—H2B109.2H5B—C5—H5C109.5
C1i—Sn1—C1—C270.7 (4)C2—C3—O1—Sn17.7 (6)
O1—Sn1—C1—C229.3 (4)C1—Sn1—O1—C321.5 (4)
O1i—Sn1—C1—C2110.1 (4)C1i—Sn1—O1—C3176.6 (4)
I1i—Sn1—C1—C257.3 (4)O1i—Sn1—O1—C3109.2 (4)
I1—Sn1—C1—C2161.2 (4)I1i—Sn1—O1—C378.3 (4)
Sn1—C1—C2—C336.8 (6)I1—Sn1—O1—C374.0 (6)
C1—C2—C3—O117.3 (8)O1—C3—O2—C41.5 (8)
C1—C2—C3—O2163.3 (5)C2—C3—O2—C4179.1 (4)
O2—C3—O1—Sn1171.7 (4)C3—O2—C4—C5172.6 (5)
Symmetry code: (i) x, y, z+3/2.
Comparison of selected parameters of the molecular geometry (Å, °) of (I), (II), (III) and (IV) of general formula [RC(O)CH2CH2]2SnX2 with R = EtO, MeO or NH2 and X = Cl or I. top
(I)(II)a(III)b(IV)c
R = EtO, X = IR = MeO, X = IR = MeO, X = ClR = NH2, X = Cl
Ring 1Ring 2Ring 1Ring 2
Sn1—I1d2.7877 (5)2.777 (2)2.780 (2)2.4107 (12)2.4006 (11)2.461
Sn1—O12.518 (4)2.523 (7)2.527 (8)2.535 (3)2.519 (3)2.331
O1—Sn1—C173.55 (17)72.89 (10)79.93 (12)72.8 (2)73.9 (4)78.7
I1—Sn1—O1166.87 (9)173.50 (19)173.7 (2)175.17 (6)175.53 (5)171.9
C1—Sn1—Cii152.0 (3)144.0 (3)144.49 (14)161.0
C1-Sn1-O1-C3-21.5 (4)17.9 (7)-6.6 (8)-20.7 (2)14.2 (2)3.3
O1-Sn1-C1-C229.3 (4)-26.9 (5)6.3 (10)29.7 (2)-22.3 (3)-0.58
Sn1-C1-C2-C3-36.8 (6)35.6 (8)-6.6 (17)-38.9 (3)30.0 (4)-1.7
C1-C2-C3-O117.3 (8)-19.2 (14)0(2)20.1 (5)-17.2 (5)5.2
C2-C3-O1-Sn17.7 (7)-3.8 (12)5.5 (13)5.7 (4)-2.2 (4)-5.5
Q(2)e0.422 (5)0.379 (8)0.098 (10)0.425 (3)0.311 (3)
φ(2)e339.5 (8)155.4 (15)358 (8)337.4 (5)154.2 (7)
Notes: (a) NUKJOS (Balasubramanian et al. 1997); (b) BCMESN01 (Ng, 1993); (c) AMESNC01 (Marsh, 1997), s.u.'s on coordinates unavailable in this CSD entry; (d) atom designations as for (I), symmetry code: (i) -x, y, 3/2-z; (e) pucker parameters as defined by Cremer & Pople (1975), with φ2 calculated in every case for the ring atoms in the same sequence starting with Sn and then O followed by the three C atoms in cyclic order in order to obtain truly comparable values.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds