Download citation
Download citation
link to html
The title compound, C14H13N2O+·Br, in the solid state, has a zigzag packing of the aza­aromatic mol­ecules in the c direction, forming positively charged columns for the Br anions. The C—N—C angle at the substituted N atom [122.7 (5)°] is significantly larger than that at the unprotonated N atom [115.8 (5)°]. As for previously known aza­aromatic halides and polyhalides, the title compound also has a short H...Br distance for the C—H...Br interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802005378/na6144sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802005378/na6144Isup2.hkl
Contains datablock I

CCDC reference: 185771

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.022
  • wR factor = 0.068
  • Data-to-parameter ratio = 8.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_420 Alert B D-H Without Acceptor O - H0 ? General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.42 From the CIF: _reflns_number_total 1416 From the CIF: _diffrn_reflns_limit_ max hkl 4. 8. 26. From the CIF: _diffrn_reflns_limit_ min hkl -9. 0. 0. TEST1: Expected hkl limits for theta max Calculated maximum hkl 9. 9. 28. Calculated minimum hkl -9. -9. -28. ALERT: Expected hkl max differ from CIF values REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.42 From the CIF: _reflns_number_total 1416 Count of symmetry unique reflns 1452 Completeness (_total/calc) 97.52% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Quaternary salts of azaaromatics currently receive increasing attention due to their possible applications in the construction of electronic devices (Suzuki et al., 2001; Gittins et al., 2000; Metzger, 2000), in non-linear optics (Teppner et al., 2000; Burtman et al., 2000; Andreu et al., 2000) and as electrochromic (Cummins et al., 2000) and photochromic [Manasawa et al., 2000) materials; they can serve as laser dyes (Gawinecki & Trzebiatowska, 2001; Nishigaki & Nakamura, 2001), surfactants (Viscardi et al., 2000), supramolecular switches and devices (Bryce et al., 2001; Macias et al., 2000), as well as chemosensors (Sotiriou-Leventis et al., 2000; Wright et al., 2000) and biological diagnostic agents (Revesz & Waelchli, 2001). Some show biological activities, e.g. as antidiabetic (Sankaranarayanan, 2001a,b) and anticancer (Saito et al., 2001) therapeutics. The present report is a continuation of our study concerning benzonaphthyridinium quaternary salts (Dondela & Sliwa, 2000; Bachowska & Zujewska, 2001; Matusiak, 1999). The crystal structures of similar compounds with two azaaromatic N atoms which can be unprotonated, mono- or diprotonated have been described by (Hensen et al., 2000; Wang et al., 1999a,b). For all these structures, short H···X (X = Cl, I) contacts to aromatic H atoms are found. Furthermore, the crystal packing is stabilized by several short X···H—C contacts (Hensen et al., 2000).

Experimental top

The title compound was synthesized from benzo[f][1,7]naphthyridine and 2-bromoethanol. The mixture containing 1.80 g (10 mmol) of benzo[f][1,7]naphthyridine and 1.25 g (10 mmol) of 2-bromoethanol was dissolved in 54 ml acetonitrile and then refluxed for 30 h. The solid which formed was filtered off and after the first recrystallization from absolute ethanol was dissolved in acetonitrile under reflux and left at room temperature. The melting point of the obtained final product measured by means of electrothermal IA 910 apparatus was 514–515 K. The crystals were grown from nucleated spontaneously supercooled solution in acetonitrile at a constant temperature of 298 K in an apparatus described previously by Marciniak (2002).

Computing details top

Data collection: DARCH software; cell refinement: DARCH software; data reduction: DARCH software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The constituent ions of the C14N13N2O+·Br- compound.
[Figure 2] Fig. 2. The unit-cell contents viewed along a.
(I) top
Crystal data top
C14H13N2O+·BrMelting point: 514 K
Mr = 305.17Mo Kα radiation, λ = 0.71069 Å
Trigonal, P31Cell parameters from 45 reflections
a = 7.057 (1) Åθ = 3.0–24.0°
c = 22.372 (4) ŵ = 3.18 mm1
V = 964.9 (3) Å3T = 293 K
Z = 3Tablet, clear pale yellow
F(000) = 4620.25 × 0.25 × 0.12 mm
Dx = 1.576 Mg m3
Data collection top
DARCH-1
diffractometer
1416 independent reflections
Radiation source: BSW X-ray tube1250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω–2θ scansθmax = 27.4°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
h = 94
Tmin = 0.431, Tmax = 0.682k = 08
1416 measured reflectionsl = 026
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.024P)2 + 0.0222P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.031
1416 reflectionsΔρmax = 0.12 e Å3
168 parametersΔρmin = 0.11 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (15)
Crystal data top
C14H13N2O+·BrZ = 3
Mr = 305.17Mo Kα radiation
Trigonal, P31µ = 3.18 mm1
a = 7.057 (1) ÅT = 293 K
c = 22.372 (4) Å0.25 × 0.25 × 0.12 mm
V = 964.9 (3) Å3
Data collection top
DARCH-1
diffractometer
1416 independent reflections
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
1250 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.682Rint = 0.021
1416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.12 e Å3
S = 1.04Δρmin = 0.11 e Å3
1416 reflectionsAbsolute structure: Flack (1983)
168 parametersAbsolute structure parameter: 0.025 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.50948 (10)0.34260 (9)0.33326 (3)0.09973 (19)
O0.7126 (8)0.1043 (8)0.41541 (19)0.1154 (13)
H00.82460.21080.40300.053 (4)*
N10.9073 (7)0.1169 (8)0.29451 (17)0.0870 (10)
N21.1740 (8)0.6903 (8)0.2816 (2)0.0950 (13)
C11.0229 (10)0.3283 (13)0.3058 (3)0.1074 (18)
H11.08370.37570.34350.129*
C21.0555 (9)0.4838 (9)0.2612 (2)0.0878 (13)
C31.2145 (10)0.8416 (11)0.2434 (3)0.1036 (18)
H31.30000.98730.25480.124*
C41.1308 (12)0.7910 (12)0.1835 (3)0.117 (2)
H41.16060.90750.15830.140*
C51.0127 (12)0.5879 (10)0.1612 (3)0.1049 (18)
H50.96280.55660.12200.126*
C60.9717 (10)0.4194 (9)0.2072 (3)0.0928 (14)
C70.8368 (10)0.1816 (10)0.1946 (3)0.0955 (16)
C80.7443 (8)0.0976 (8)0.1361 (2)0.0817 (12)
H80.76460.19400.10520.098*
C90.6302 (8)0.1175 (9)0.1266 (2)0.0945 (15)
H90.57370.16870.08870.113*
C100.5919 (11)0.2728 (11)0.1734 (2)0.0984 (18)
H100.51010.42260.16640.118*
C110.6808 (9)0.1918 (10)0.2291 (3)0.0965 (15)
H110.65630.28890.26020.116*
C120.8075 (10)0.0346 (9)0.2396 (2)0.0916 (15)
C130.8691 (7)0.0325 (8)0.3457 (2)0.0787 (12)
H13A0.99810.03190.37090.053 (4)*
H13B0.85000.16960.33040.053 (4)*
C140.6734 (10)0.0802 (10)0.3833 (2)0.0910 (15)
H14A0.54680.12590.35770.053 (4)*
H14B0.64200.19890.41070.053 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.1085 (4)0.0948 (4)0.0962 (3)0.0510 (3)0.0064 (3)0.0019 (3)
O0.138 (4)0.111 (3)0.096 (3)0.061 (3)0.017 (3)0.009 (2)
N10.086 (3)0.102 (3)0.067 (2)0.043 (2)0.0114 (18)0.017 (2)
N20.120 (3)0.095 (3)0.080 (3)0.062 (3)0.020 (2)0.018 (2)
C10.095 (4)0.128 (5)0.087 (3)0.046 (4)0.011 (3)0.009 (4)
C20.100 (3)0.085 (3)0.079 (3)0.047 (3)0.009 (3)0.005 (2)
C30.088 (4)0.106 (4)0.125 (5)0.055 (3)0.004 (3)0.032 (4)
C40.141 (6)0.123 (5)0.091 (4)0.071 (5)0.027 (4)0.015 (4)
C50.136 (5)0.106 (4)0.101 (4)0.081 (4)0.006 (4)0.013 (3)
C60.101 (4)0.090 (3)0.088 (3)0.049 (3)0.013 (3)0.003 (3)
C70.112 (4)0.108 (4)0.090 (3)0.073 (4)0.011 (3)0.010 (3)
C80.091 (3)0.087 (3)0.060 (3)0.039 (3)0.005 (2)0.004 (2)
C90.080 (3)0.102 (4)0.077 (3)0.027 (3)0.011 (2)0.014 (3)
C100.135 (5)0.116 (4)0.066 (3)0.079 (4)0.027 (3)0.008 (3)
C110.107 (4)0.098 (4)0.094 (4)0.058 (3)0.011 (3)0.011 (3)
C120.126 (5)0.097 (4)0.060 (2)0.062 (3)0.018 (3)0.005 (2)
C130.075 (3)0.075 (3)0.057 (2)0.016 (2)0.0098 (19)0.0065 (19)
C140.117 (4)0.106 (4)0.079 (3)0.078 (4)0.009 (3)0.011 (3)
Geometric parameters (Å, º) top
O—C141.389 (6)C6—C71.485 (8)
O—H00.8200C7—C121.385 (8)
N1—C11.318 (8)C7—C81.450 (7)
N1—C121.390 (7)C8—C91.333 (7)
N1—C131.487 (6)C8—H80.9300
N2—C31.283 (8)C9—C101.439 (8)
N2—C21.347 (7)C9—H90.9300
C1—C21.414 (8)C10—C111.384 (8)
C1—H10.9300C10—H100.9300
C2—C61.321 (7)C11—C121.407 (8)
C3—C41.436 (10)C11—H110.9300
C3—H30.9300C13—C141.504 (7)
C4—C51.343 (9)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.487 (8)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C14—O—H0109.5C9—C8—H8119.9
C1—N1—C12122.7 (5)C7—C8—H8119.9
C1—N1—C13116.4 (4)C8—C9—C10121.8 (5)
C12—N1—C13120.6 (4)C8—C9—H9119.1
C3—N2—C2115.8 (5)C10—C9—H9119.1
N1—C1—C2120.8 (5)C11—C10—C9117.8 (6)
N1—C1—H1119.6C11—C10—H10121.1
C2—C1—H1119.6C9—C10—H10121.1
C6—C2—N2127.6 (5)C10—C11—C12121.3 (6)
C6—C2—C1120.5 (6)C10—C11—H11119.4
N2—C2—C1111.9 (5)C12—C11—H11119.4
N2—C3—C4121.5 (6)C7—C12—N1118.3 (5)
N2—C3—H3119.3C7—C12—C11120.1 (5)
C4—C3—H3119.3N1—C12—C11121.6 (5)
C5—C4—C3124.8 (7)N1—C13—C14114.2 (4)
C5—C4—H4117.6N1—C13—H13A108.7
C3—C4—H4117.6C14—C13—H13A108.7
C4—C5—C6111.4 (6)N1—C13—H13B108.7
C4—C5—H5124.3C14—C13—H13B108.7
C6—C5—H5124.3H13A—C13—H13B107.6
C2—C6—C7119.1 (5)O—C14—C13110.5 (5)
C2—C6—C5118.9 (5)O—C14—H14A109.6
C7—C6—C5122.1 (5)C13—C14—H14A109.6
C12—C7—C8118.8 (5)O—C14—H14B109.6
C12—C7—C6118.7 (5)C13—C14—H14B109.6
C8—C7—C6122.5 (5)H14A—C14—H14B108.1
C9—C8—C7120.2 (5)
C12—N1—C1—C21.6 (8)C12—C7—C8—C91.1 (9)
C13—N1—C1—C2175.6 (5)C6—C7—C8—C9177.8 (5)
C3—N2—C2—C62.0 (9)C7—C8—C9—C100.9 (9)
C3—N2—C2—C1178.7 (5)C8—C9—C10—C111.0 (8)
N1—C1—C2—C60.5 (9)C9—C10—C11—C121.0 (8)
N1—C1—C2—N2178.9 (5)C8—C7—C12—N1176.4 (5)
C2—N2—C3—C42.2 (9)C6—C7—C12—N10.4 (8)
N2—C3—C4—C52.6 (11)C8—C7—C12—C113.1 (9)
C3—C4—C5—C62.0 (10)C6—C7—C12—C11179.9 (5)
N2—C2—C6—C7177.3 (5)C1—N1—C12—C72.0 (8)
C1—C2—C6—C72.0 (8)C13—N1—C12—C7175.8 (5)
N2—C2—C6—C51.7 (9)C1—N1—C12—C11178.5 (5)
C1—C2—C6—C5179.0 (6)C13—N1—C12—C114.8 (8)
C4—C5—C6—C21.6 (8)C10—C11—C12—C73.1 (9)
C4—C5—C6—C7177.4 (6)C10—C11—C12—N1176.4 (5)
C2—C6—C7—C121.5 (8)C1—N1—C13—C1486.0 (5)
C5—C6—C7—C12179.5 (6)C12—N1—C13—C1488.2 (6)
C2—C6—C7—C8178.2 (6)N1—C13—C14—O70.1 (5)
C5—C6—C7—C82.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Bri0.932.803.676 (6)157
C5—H5···Brii0.932.843.773 (7)176
C10—H10···Oiii0.932.593.378 (8)142
C11—H11···Briv0.932.803.704 (6)166
Symmetry codes: (i) x+1, y+1, z; (ii) x+y+1, x+1, z1/3; (iii) x+y+1, x, z1/3; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H13N2O+·Br
Mr305.17
Crystal system, space groupTrigonal, P31
Temperature (K)293
a, c (Å)7.057 (1), 22.372 (4)
V3)964.9 (3)
Z3
Radiation typeMo Kα
µ (mm1)3.18
Crystal size (mm)0.25 × 0.25 × 0.12
Data collection
DiffractometerDARCH-1
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.431, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
1416, 1416, 1250
Rint0.021
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.068, 1.04
No. of reflections1416
No. of parameters168
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11
Absolute structureFlack (1983)
Absolute structure parameter0.025 (15)

Computer programs: DARCH software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2000), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Bri0.932.803.676 (6)157
C5—H5···Brii0.932.843.773 (7)176
C10—H10···Oiii0.932.593.378 (8)142
C11—H11···Briv0.932.803.704 (6)166
Symmetry codes: (i) x+1, y+1, z; (ii) x+y+1, x+1, z1/3; (iii) x+y+1, x, z1/3; (iv) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds