Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The Schiff base ligand in the title complex, [Ni(C15H22N3S2)2], lost a proton from its tautomeric thiol form and coordinated to Ni(II) via the mercapto S and β-N atoms. The geometry around the Ni atom is square planar with two equivalent Ni—N and Ni—S bonds. The two phenyl rings and the coordination moieties are in one plane forming an extensive electronic delocalization system. The structure is governed by C—H...S and C—H...N hydrogen bonds, leading to the formation of centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016397/na6101sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016397/na6101Isup2.hkl
Contains datablock I

CCDC reference: 175976

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.060
  • wR factor = 0.144
  • Data-to-parameter ratio = 20.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 3 S1 -NI1 -S1 -C1 -29.00100.00 3.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 4 N1 -NI1 -N1 -C3 -83.00100.00 3.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 7 N1 -NI1 -N1 -N2 97.00100.00 3.555 1.555 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

There has been continuous interest in the chemistry of the metal complexes of Schiff bases containing N and S donor atoms. The thio derivatives of the Schiff bases, RCHδb NNHCSSR', are known to coordinate readily with transition metals to give stable complexes, forming a long π-conjugated system by deprotonation on complex formation (Podhye & Kauffman, 1985; Tian et al., 1996), and also have been shown to possess biological activity (Martinez & Toscano, 1995; Pérez et al., 2001) and non-linear optical (NLO) properties (Zhao et al., 1989; Tian et al., 1996). As a part of our studies on these thio-Schiff-base–metal complexes, we report the title structure (I) which is nickel(II) complexed with S-methyl-dithiocarbazate derived from 4-(dipropylamino)benzaldehyde.

In the title complex (I), the asymmetric unit consists of one half of the complex molecule. The other one half is related by an inversion center at the Ni1 atom. The nickel atom is coordinated in a distorted trans square-planar geometry. The distortion is considered from the reduction of the Ni—N—S angle to 85.98 (6)° in the chelate ring (from the ideal value of 90°). The Schiff base losses a proton from its tautomeric thiol form and acts as a singly charged bidentate ligand coordinating to Ni1 via the mercapto S and β-N atoms. The Ni1 atom is displaced by 0.284 (1) Å from the plane through N1, N2, S1, C1. All bond distances in the side chain are intermediate between a single bond and a double bond. This has been documented before (Duan et al., 1998), indicating the high electron delocalization in the π-system of the whole molecule. The mean plane defined by the N1, N2, C1, S1 and S2 makes an angle of 14.2 (1)° with the plane of the phenyl ring, whereas in the uncoordinated molecule it is 5.55 (5)° (Fun et al., 1996).

In the crystal lattice, two intramolecular C—H···S and C—H···N form closed rings of S1A—Ni1—N1—C3—H3, N2—N1—C3—C4—C5—H5, and the molecules are stacked parallel in columns along the b axis (Fig. 2).

Experimental top

The title compound was prepared by mixing equal volumes (25 ml) of ethanol solution of nickel acetate (1 mmol) and the ligand (2 mmol). The mixture was refluxed and stirred for 4 h. On cooling to room temperature, it yielded the crystalline complex. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a dichloromethane solution of the complex containing ethanol.

Refinement top

After checking their presence in the difference map, all H-atoms were geometrically fixed and allowed to ride on the parent C atoms with C—H distances 0.93–0.97 Å and isotropic displacement parameters.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the structure (I) viewed down the c axis.
Bis[methyl-Nβ-(dipropylaminophenyl-methylene)-dithiocarbazato]nickel(II) top
Crystal data top
C30H44N6NiS4F(000) = 716
Mr = 675.66Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.3394 (1) ÅCell parameters from 8192 reflections
b = 9.1468 (1) Åθ = 1.8–28.3°
c = 15.9725 (1) ŵ = 0.85 mm1
β = 110.335 (1)°T = 293 K
V = 1690.40 (3) Å3Block, black
Z = 20.46 × 0.38 × 0.34 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
3992 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.33 pixels mm-1θmax = 28.0°, θmin = 1.8°
ω scansh = 1516
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
k = 126
Tmin = 0.696, Tmax = 0.761l = 2020
11381 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0713P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
3992 reflectionsΔρmax = 0.94 e Å3
191 parametersΔρmin = 0.84 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.057 (4)
Crystal data top
C30H44N6NiS4V = 1690.40 (3) Å3
Mr = 675.66Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.3394 (1) ŵ = 0.85 mm1
b = 9.1468 (1) ÅT = 293 K
c = 15.9725 (1) Å0.46 × 0.38 × 0.34 mm
β = 110.335 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
3992 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
2918 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.761Rint = 0.084
11381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.95Δρmax = 0.94 e Å3
3992 reflectionsΔρmin = 0.84 e Å3
191 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.03322 (17)
S10.07597 (6)0.17208 (9)0.09564 (5)0.0586 (3)
S20.02769 (8)0.24872 (10)0.25595 (6)0.0718 (3)
N10.11607 (17)0.01273 (19)0.05512 (13)0.0344 (4)
N20.09958 (17)0.0604 (2)0.13666 (13)0.0393 (5)
N30.5968 (2)0.2124 (3)0.12795 (16)0.0546 (6)
C10.0111 (2)0.1453 (3)0.15804 (17)0.0424 (6)
C20.0739 (3)0.1897 (4)0.3059 (2)0.0799 (11)
H2A0.06040.24170.36080.120*
H2B0.15090.20910.26590.120*
H2C0.06480.08670.31780.120*
C30.2135 (2)0.0836 (3)0.02404 (16)0.0373 (5)
H30.22510.12870.03060.045*
C40.3071 (2)0.1062 (3)0.05703 (16)0.0376 (5)
C50.3112 (2)0.0700 (3)0.14163 (16)0.0435 (6)
H50.24890.02190.18270.052*
C60.4062 (2)0.1049 (3)0.16443 (18)0.0481 (6)
H60.40580.08060.22100.058*
C70.5037 (2)0.1762 (3)0.10453 (18)0.0443 (6)
C80.4996 (2)0.2105 (3)0.01970 (18)0.0472 (6)
H80.56260.25610.02230.057*
C90.4042 (2)0.1776 (3)0.00176 (17)0.0440 (6)
H90.40380.20380.05790.053*
C100.5984 (3)0.1880 (3)0.2183 (2)0.0532 (7)
H10A0.64560.26270.23180.064*
H10B0.52040.19780.26080.064*
C110.6449 (3)0.0395 (4)0.2296 (2)0.0637 (8)
H11A0.59380.03540.22140.076*
H11B0.72020.02610.18390.076*
C120.6557 (4)0.0205 (4)0.3214 (3)0.0787 (11)
H12A0.69040.07250.32410.118*
H12B0.70320.09720.33100.118*
H12C0.58040.02500.36670.118*
C130.7035 (2)0.2703 (3)0.0624 (2)0.0513 (7)
H13A0.76850.23710.07820.062*
H13B0.71230.22990.00430.062*
C140.7077 (3)0.4336 (3)0.0556 (2)0.0660 (8)
H14A0.64480.46750.03730.079*
H14B0.69720.47510.11380.079*
C150.8217 (3)0.4864 (4)0.0111 (3)0.0739 (10)
H15A0.81990.59090.01630.111*
H15B0.88370.45900.00900.111*
H15C0.83360.44270.06830.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0262 (2)0.0395 (3)0.0365 (3)0.00074 (16)0.01411 (17)0.00199 (16)
S10.0503 (4)0.0692 (5)0.0699 (5)0.0258 (3)0.0383 (4)0.0247 (4)
S20.0574 (5)0.0944 (7)0.0720 (6)0.0304 (4)0.0331 (4)0.0435 (5)
N10.0277 (9)0.0410 (11)0.0353 (10)0.0012 (7)0.0120 (8)0.0019 (7)
N20.0354 (11)0.0476 (12)0.0380 (10)0.0049 (9)0.0165 (9)0.0035 (9)
N30.0393 (12)0.0752 (16)0.0576 (14)0.0142 (11)0.0274 (11)0.0094 (12)
C10.0348 (13)0.0476 (14)0.0476 (14)0.0029 (10)0.0179 (11)0.0063 (11)
C20.060 (2)0.128 (3)0.062 (2)0.017 (2)0.0339 (17)0.040 (2)
C30.0309 (12)0.0472 (14)0.0361 (12)0.0024 (10)0.0148 (10)0.0004 (10)
C40.0291 (11)0.0463 (14)0.0400 (12)0.0034 (9)0.0153 (10)0.0009 (10)
C50.0320 (12)0.0592 (16)0.0408 (13)0.0085 (11)0.0143 (10)0.0078 (11)
C60.0403 (14)0.0653 (17)0.0443 (14)0.0111 (12)0.0218 (12)0.0107 (12)
C70.0326 (12)0.0519 (15)0.0534 (15)0.0055 (10)0.0210 (11)0.0036 (11)
C80.0343 (13)0.0599 (17)0.0491 (15)0.0115 (11)0.0164 (11)0.0087 (12)
C90.0368 (13)0.0561 (16)0.0422 (13)0.0099 (11)0.0175 (11)0.0101 (11)
C100.0441 (15)0.0673 (18)0.0572 (17)0.0043 (13)0.0291 (13)0.0042 (13)
C110.066 (2)0.073 (2)0.0588 (19)0.0032 (17)0.0309 (17)0.0029 (16)
C120.089 (3)0.089 (3)0.068 (2)0.003 (2)0.040 (2)0.0102 (18)
C130.0336 (13)0.0604 (17)0.0645 (17)0.0040 (11)0.0232 (13)0.0037 (13)
C140.0562 (19)0.0607 (19)0.080 (2)0.0016 (15)0.0224 (17)0.0140 (17)
C150.063 (2)0.068 (2)0.088 (3)0.0190 (16)0.023 (2)0.0070 (17)
Geometric parameters (Å, º) top
Ni1—N1i1.928 (2)C6—H60.9300
Ni1—N11.928 (2)C7—C81.408 (4)
Ni1—S12.1667 (7)C8—C91.369 (3)
Ni1—S1i2.1667 (7)C8—H80.9300
S1—C11.719 (2)C9—H90.9300
S2—C11.746 (3)C10—C111.509 (4)
S2—C21.787 (3)C10—H10A0.9700
N1—C31.303 (3)C10—H10B0.9700
N1—N21.415 (3)C11—C121.528 (4)
N2—C11.285 (3)C11—H11A0.9700
N3—C71.367 (3)C11—H11B0.9700
N3—C131.466 (4)C12—H12A0.9600
N3—C101.468 (4)C12—H12B0.9600
C2—H2A0.9600C12—H12C0.9600
C2—H2B0.9600C13—C141.497 (4)
C2—H2C0.9600C13—H13A0.9700
C3—C41.441 (3)C13—H13B0.9700
C3—H30.9300C14—C151.519 (5)
C4—C91.400 (3)C14—H14A0.9700
C4—C51.409 (3)C14—H14B0.9700
C5—C61.380 (3)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.410 (4)C15—H15C0.9600
N1i—Ni1—N1180.00 (8)C7—C8—H8119.6
N1i—Ni1—S194.02 (6)C8—C9—C4123.0 (2)
N1—Ni1—S185.98 (6)C8—C9—H9118.5
N1i—Ni1—S1i85.98 (6)C4—C9—H9118.5
N1—Ni1—S1i94.02 (6)N3—C10—C11112.9 (2)
S1—Ni1—S1i180.00 (4)N3—C10—H10A109.0
C1—S1—Ni195.79 (9)C11—C10—H10A109.0
C1—S2—C2102.68 (14)N3—C10—H10B109.0
C3—N1—N2113.85 (19)C11—C10—H10B109.0
C3—N1—Ni1126.15 (16)H10A—C10—H10B107.8
N2—N1—Ni1120.00 (14)C10—C11—C12112.4 (3)
C1—N2—N1111.57 (19)C10—C11—H11A109.1
C7—N3—C13121.6 (2)C12—C11—H11A109.1
C7—N3—C10122.1 (2)C10—C11—H11B109.1
C13—N3—C10116.2 (2)C12—C11—H11B109.1
N2—C1—S1125.2 (2)H11A—C11—H11B107.9
N2—C1—S2120.58 (19)C11—C12—H12A109.5
S1—C1—S2114.21 (14)C11—C12—H12B109.5
S2—C2—H2A109.5H12A—C12—H12B109.5
S2—C2—H2B109.5C11—C12—H12C109.5
H2A—C2—H2B109.5H12A—C12—H12C109.5
S2—C2—H2C109.5H12B—C12—H12C109.5
H2A—C2—H2C109.5N3—C13—C14114.4 (2)
H2B—C2—H2C109.5N3—C13—H13A108.7
N1—C3—C4133.1 (2)C14—C13—H13A108.7
N1—C3—H3113.5N3—C13—H13B108.7
C4—C3—H3113.5C14—C13—H13B108.7
C9—C4—C5116.4 (2)H13A—C13—H13B107.6
C9—C4—C3115.4 (2)C13—C14—C15111.6 (3)
C5—C4—C3128.1 (2)C13—C14—H14A109.3
C6—C5—C4121.1 (2)C15—C14—H14A109.3
C6—C5—H5119.5C13—C14—H14B109.3
C4—C5—H5119.5C15—C14—H14B109.3
C5—C6—C7122.0 (2)H14A—C14—H14B108.0
C5—C6—H6119.0C14—C15—H15A109.5
C7—C6—H6119.0C14—C15—H15B109.5
N3—C7—C8121.6 (2)H15A—C15—H15B109.5
N3—C7—C6121.8 (2)C14—C15—H15C109.5
C8—C7—C6116.6 (2)H15A—C15—H15C109.5
C9—C8—C7120.9 (2)H15B—C15—H15C109.5
C9—C8—H8119.6
N1i—Ni1—S1—C1170.96 (11)C9—C4—C5—C60.5 (4)
N1—Ni1—S1—C19.04 (11)C3—C4—C5—C6177.2 (2)
S1i—Ni1—S1—C129 (100)C4—C5—C6—C70.8 (4)
N1i—Ni1—N1—C383 (100)C13—N3—C7—C88.5 (4)
S1—Ni1—N1—C3167.7 (2)C10—N3—C7—C8175.0 (2)
S1i—Ni1—N1—C312.3 (2)C13—N3—C7—C6172.5 (3)
N1i—Ni1—N1—N297 (100)C10—N3—C7—C64.0 (4)
S1—Ni1—N1—N211.62 (15)C5—C6—C7—N3179.0 (3)
S1i—Ni1—N1—N2168.38 (15)C5—C6—C7—C80.0 (4)
C3—N1—N2—C1170.6 (2)N3—C7—C8—C9178.0 (3)
Ni1—N1—N2—C18.8 (3)C6—C7—C8—C91.1 (4)
N1—N2—C1—S11.3 (3)C7—C8—C9—C41.4 (4)
N1—N2—C1—S2179.82 (17)C5—C4—C9—C80.6 (4)
Ni1—S1—C1—N28.6 (2)C3—C4—C9—C8178.6 (2)
Ni1—S1—C1—S2172.86 (13)C7—N3—C10—C1189.9 (3)
C2—S2—C1—N23.9 (3)C13—N3—C10—C1186.8 (3)
C2—S2—C1—S1177.50 (18)N3—C10—C11—C12175.1 (3)
N2—N1—C3—C42.0 (4)C7—N3—C13—C1491.2 (3)
Ni1—N1—C3—C4178.6 (2)C10—N3—C13—C1492.1 (3)
N1—C3—C4—C9173.4 (3)N3—C13—C14—C15178.2 (3)
N1—C3—C4—C58.9 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S1i0.932.443.073 (3)125
C5—H5···N20.932.332.897 (3)119
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC30H44N6NiS4
Mr675.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.3394 (1), 9.1468 (1), 15.9725 (1)
β (°) 110.335 (1)
V3)1690.40 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.46 × 0.38 × 0.34
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Tmin, Tmax0.696, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
11381, 3992, 2918
Rint0.084
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.144, 0.95
No. of reflections3992
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.84

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Ni1—N11.928 (2)S2—C11.746 (3)
Ni1—S12.1667 (7)S2—C21.787 (3)
S1—C11.719 (2)
N1i—Ni1—S194.02 (6)N1—Ni1—S185.98 (6)
C2—S2—C1—N23.9 (3)Ni1—N1—C3—C4178.6 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S1i0.932.443.073 (3)125
C5—H5···N20.932.332.897 (3)119
Symmetry code: (i) x, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds