Download citation
Download citation
link to html
In the title compound, C9H12NO2+·H2PO4, the racemate has crystallizes in a non-centrosymmetric space group, Pc. However, both the phenyl­alaninium and di­hydrogen phosphate residues are related by a pseudo-inversion center at about (0.5, 0.25, 0.25). Each phosphate anion forms a strong O—H...O hydrogen bond with a phenyl­alaninium residue. The aggregation of the hydro­philic zone is in a layer parallel to (010) at x = 0, and the hydro­phobic zone is sandwiched between two such layers at x = 0 and x = 1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016993/na6096sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016993/na6096Isup2.hkl
Contains datablock I

CCDC reference: 176024

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.028
  • wR factor = 0.074
  • Data-to-parameter ratio = 7.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.97 From the CIF: _reflns_number_total 2235 Count of symmetry unique reflns 2090 Completeness (_total/calc) 106.94% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 145 Fraction of Friedel pairs measured 0.069 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

The crystal structures of L-phenylalanine hydrochloride (Gurskaya & Vainshtein, 1963; Al-Karaghouli & Koetzle, 1975), L-phenylalanine L-phenylalaninium formate (Gorbitz & Etter, 1992), bis(L-phenylalanine) sulfate monohydrate (Nagashima et al., 1992), L-phenylalanine L-phenylalaninium perchlorate (Srinivasan & Rajaram, 1997), bis(DL-phenylalaninium)sulfate monohydrate (Srinivasan et al., 2001b) and L-Phenylalanine–nitric acid (2/1) (Srinivasan et al., 2001c) have been reported. In the present study, the conformation and hydrogen bonding of DL-phenylalanine in the presence of orthophosphoric acid was undertaken.

The title compound (I) crystallized in an unusual, but not uncommon, non-centrosymmetric space group, Pc. However, racemates with more than one molecule in the asymmetric unit are found to grow in non-centrosymmetric, non-polar space groups (Dalhus & Gorbitz, 2000). The asymmetric unit contains two crystallographically independent phenylalaninium residues (A and B) and dihydrogen phosphate anions (I and II). The two phenylalaninium and phosphate residues are related by a pseudo-inversion centre at about (1/2, 1/4, 1/4). The deviation from the pseudo-inversion centre is less for the phosphate anions and the backbone of the amino-acid, but more for the branched side chain. An attempt to look for higher symmetry using LEPAGE (Spek, 1999) yielded a C-centred orthorhombic lattice, possibly in the space group Cmm2, with a = 9.051, b = 26.327 and c = 9.956 Å with a transformation a' = -c; b' = -(2 a + c) and c' = b. However Rint was 0.61 and hence no attempt was made to solve the structure in the orthorhombic system.

The conformation angles ψ1 for residues A and B are 1.3 (4) and 21.0 (4)°, respectively, (see Table 1). The branched-side-chain conformation angle χ1 is in gauche I form [62.5 (4)°] for residue A, while for residue B, it is in nearly trans form [145.7 (3)°]. The torsion angles χ21 and χ22 for residue A [90.4 (4) and -94.3 (4)°], indicating a folded conformation, while those for residue B [129.3 (4)° and -55.7 (4)°] indicate a distorted folded conformation. The difference in the conformation angle for the two residues and the unusual less favoured χ1 conformation for residue B may be due to the large deviation from the pseudo-inversion centre.

The phosphate anions have similar geometry. However the distances of the H atom from the oxygen atoms in each ion [H1B—O12 1.27 (7) and H2B—O22 1.28 (6) Å] are longer than the expected O—H distance, and the P—O distances [P1—O12 1.518 (2) and P2—O22 1.523 (3) Å] are in between expected single- and double-bonded P—O distances [1.55 and 1.49 Å; Blessing et al., 1988].

Both phosphate anions play a vital role in forming hydrogen bonds with both phenylalaninium residues and stabilizing the structure (Table 2). Each phosphate anion forms a strong hydrogen bond with a phenylalaninium residue (O1B—H1B···O12 and O2B—H2B···O22). The O—H and H···O distances [1.22 (7) and 1.27 (7) Å for A, 1.21 (6) and 1.28 (6) Å for B] are nearly the same. Precise neutron diffraction measurements at various temperatures have revealed two inversion-related maleate residues connected by a short hydrogen bond with disordered H atoms about a pseudo-centrosymmetric site in potassium hydrogen dichloromaleate (Olovsson et al., 2001). The C—O distances are also very similar to those in the title compound. Hence, in the title compound, these hydrogen bonds may be termed symmetric hydrogen bonds or asymmetric hydrogen bonds with flip-flop disorder (Jeffrey & Saenger, 1991). For both phosphate anions, a strong O—H···O intermolecular hydrogen bond connects two symmetry-related phosphate anions. Besides these, the O atoms (O13 and O23) of the phosphate anions form strong hydrogen bonds with the carboxyl-O atoms O1A and O2A of the two phenylalaninium residues. A bifurcated hydrogen bond is observed in the phenylalaninium residue A [amino-N atom with O atoms O21 and O23 of phosphate anion (II)], while a similar bifurcated hydrogen bond occurs in phenylalaninium residue B [amino-N atom with O atom of carboxyl group (zigzag Z2 glide-related head-to-tail sequence] and oxygen atom O13 of phosphate anion (I)]. In the phenylalaninium residue A, a head-to-tail Z2 sequence is engaged, since N11—H11B···O1B connects two glide-related amino acids (Vijayan, 1988). The packing arrangement leads to the formation of a hydrophilic zone along x = 0. The aggregation of the hydrophilic zone is in a layer parallel to (010) and the hydrophobic zone at x = 1/2 is sandwiched between two such layers at x = 0 and x = 1 (Fig. 2), as in bis(D-phenylglycinium) sulfate monohydrate (Srinivasan et al., 2001a) and L-phenylalanine–nitric acid (2/1) (Srinivasan et al., 2001c).

Experimental top

The title compound was crystallized from an aqueous solution of DL-phenylalanine and orthophosphoric acid (1:1) by slow evaporation.

Refinement top

The hydrogen atoms H1B and H2B of the carboxyl group of both phenylalaninium residues (A and B) were located and refined isotropically (since these suggest a strong nearly symmetric hydrogen bond), while all other H atoms of both phenylalaninium residues and phosphate anions were fixed by HFIX and allowed to ride on the atoms to which they are attached.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules showing the atomic numbering scheme and 50% probability displacement ellipsoids. (Johnson, 1976)
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down the b axis.
DL-phenylalaninium dihydrogen phosphate top
Crystal data top
C9H12NO2+·H2PO4F(000) = 552
Mr = 263.18Dx = 1.474 Mg m3
Dm = 1.469 Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and xylene
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 13.899 (7) ÅCell parameters from 25 reflections
b = 9.956 (8) Åθ = 11.3–13.9°
c = 9.051 (2) ŵ = 0.25 mm1
β = 108.726 (8)°T = 293 K
V = 1186.1 (12) Å3Needle, colorless
Z = 40.6 × 0.33 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2078 reflections with I > 2σ
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω–2θ scansh = 1615
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.918, Tmax = 0.967l = 010
2235 measured reflections3 standard reflections every 60 min
2235 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.1839P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.21 e Å3
2235 reflectionsΔρmin = 0.29 e Å3
317 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0238 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: [Flack, 1983]
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (10)
Crystal data top
C9H12NO2+·H2PO4V = 1186.1 (12) Å3
Mr = 263.18Z = 4
Monoclinic, PcMo Kα radiation
a = 13.899 (7) ŵ = 0.25 mm1
b = 9.956 (8) ÅT = 293 K
c = 9.051 (2) Å0.6 × 0.33 × 0.13 mm
β = 108.726 (8)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2078 reflections with I > 2σ
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.918, Tmax = 0.9673 standard reflections every 60 min
2235 measured reflections intensity decay: none
2235 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.21 e Å3
S = 1.07Δρmin = 0.29 e Å3
2235 reflectionsAbsolute structure: [Flack, 1983]
317 parametersAbsolute structure parameter: 0.03 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.15371 (6)0.54460 (7)0.41704 (8)0.0278 (2)
O110.10420 (19)0.4143 (2)0.3594 (3)0.0396 (6)
O120.20465 (19)0.6095 (2)0.3097 (3)0.0356 (6)
O130.07248 (19)0.6420 (2)0.4400 (3)0.0392 (6)
H130.09300.71950.44340.059*
O140.23888 (18)0.5305 (2)0.5782 (3)0.0404 (6)
H140.22680.46540.62490.061*
P20.88507 (6)0.02763 (8)0.13941 (8)0.0295 (2)
O210.93679 (19)0.0995 (2)0.2073 (3)0.0392 (6)
O220.8397 (2)0.1064 (2)0.2453 (3)0.0367 (6)
O230.96464 (19)0.1190 (2)0.0969 (3)0.0410 (6)
H230.94630.19760.09230.061*
O240.79616 (17)0.0018 (3)0.0140 (3)0.0437 (6)
H240.81920.02150.08290.066*
O1A0.1404 (2)0.1116 (2)0.4569 (3)0.0389 (6)
O1B0.21052 (19)0.1453 (2)0.2699 (3)0.0365 (6)
H1B0.202 (5)0.264 (7)0.296 (8)0.12 (2)*
C110.1743 (3)0.0704 (3)0.3562 (4)0.0285 (7)
C120.1726 (2)0.0786 (3)0.3202 (4)0.0292 (7)
H120.12550.09090.21420.035*
N110.1282 (2)0.1489 (3)0.4269 (3)0.0317 (6)
H11A0.12580.23670.40750.048*
H11B0.16640.13400.52520.048*
H11C0.06560.11830.41220.048*
C130.2747 (3)0.1381 (3)0.3228 (4)0.0382 (7)
H13A0.29660.09210.24460.046*
H13B0.26410.23160.29200.046*
C140.3596 (3)0.1310 (3)0.4755 (4)0.0364 (7)
C150.3791 (3)0.2374 (4)0.5789 (5)0.0545 (10)
H150.33560.31100.55800.065*
C160.4620 (5)0.2360 (7)0.7124 (6)0.0870 (17)
H160.47400.30780.78170.104*
C170.5268 (5)0.1278 (9)0.7427 (7)0.103 (3)
H170.58390.12700.83140.124*
C180.5072 (4)0.0215 (7)0.6422 (9)0.094 (2)
H180.55050.05230.66340.112*
C190.4244 (3)0.0228 (4)0.5110 (6)0.0628 (11)
H190.41150.05090.44430.075*
O2A0.90648 (19)0.6226 (2)0.0761 (3)0.0365 (6)
O2B0.82341 (19)0.6439 (2)0.2493 (3)0.0380 (6)
H2B0.830 (5)0.765 (6)0.243 (8)0.103 (19)*
C210.8626 (2)0.5756 (3)0.1621 (4)0.0286 (7)
C220.8505 (2)0.4243 (3)0.1712 (4)0.0292 (7)
H220.86230.39890.28020.035*
N210.9282 (2)0.3595 (3)0.1158 (3)0.0329 (6)
H21A0.92270.27070.12080.049*
H21B0.98970.38500.17570.049*
H21C0.91890.38380.01760.049*
C230.7446 (3)0.3759 (3)0.0726 (4)0.0375 (7)
H23A0.71760.43820.01310.045*
H23B0.75160.28930.02800.045*
C240.6682 (2)0.3623 (3)0.1593 (4)0.0326 (7)
C250.6898 (3)0.2830 (3)0.2909 (4)0.0505 (9)
H250.75350.24300.32990.061*
C260.6198 (3)0.2618 (3)0.3653 (4)0.0745 (15)
H260.63660.20980.45530.089*
C270.5265 (5)0.3161 (6)0.3085 (8)0.089 (2)
H270.47870.29980.35840.107*
C280.5011 (3)0.3956 (6)0.1773 (9)0.087 (2)
H280.43650.43280.13860.105*
C290.5739 (3)0.4204 (4)0.1013 (6)0.0576 (10)
H290.55810.47520.01350.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0372 (4)0.0215 (3)0.0274 (4)0.0028 (3)0.0140 (3)0.0003 (3)
O110.0556 (15)0.0228 (11)0.0404 (14)0.0039 (11)0.0154 (12)0.0007 (10)
O120.0554 (16)0.0258 (11)0.0343 (13)0.0016 (10)0.0265 (12)0.0004 (9)
O130.0440 (13)0.0299 (12)0.0507 (15)0.0007 (10)0.0248 (12)0.0011 (11)
O140.0421 (13)0.0456 (15)0.0319 (13)0.0092 (10)0.0095 (11)0.0077 (10)
P20.0402 (4)0.0247 (4)0.0253 (4)0.0039 (3)0.0129 (3)0.0006 (3)
O210.0527 (15)0.0283 (11)0.0341 (13)0.0074 (10)0.0104 (11)0.0000 (10)
O220.0608 (15)0.0270 (11)0.0312 (12)0.0059 (11)0.0272 (12)0.0036 (10)
O230.0516 (15)0.0323 (11)0.0473 (15)0.0060 (11)0.0274 (12)0.0024 (11)
O240.0432 (13)0.0555 (14)0.0308 (13)0.0069 (12)0.0096 (11)0.0036 (12)
O1A0.0721 (17)0.0246 (11)0.0285 (13)0.0016 (11)0.0282 (12)0.0007 (10)
O1B0.0587 (15)0.0282 (11)0.0306 (12)0.0011 (10)0.0257 (11)0.0009 (9)
C110.0388 (18)0.0254 (15)0.0218 (15)0.0051 (13)0.0105 (13)0.0003 (13)
C120.0392 (16)0.0261 (15)0.0239 (15)0.0029 (13)0.0124 (13)0.0003 (13)
N110.0429 (16)0.0226 (12)0.0300 (15)0.0022 (11)0.0124 (12)0.0015 (11)
C130.0528 (19)0.0318 (16)0.0333 (17)0.0051 (14)0.0182 (15)0.0016 (13)
C140.0407 (17)0.0363 (16)0.0372 (18)0.0033 (14)0.0194 (15)0.0024 (14)
C150.060 (2)0.055 (2)0.048 (2)0.0107 (18)0.0160 (19)0.0118 (18)
C160.092 (4)0.103 (4)0.055 (3)0.039 (4)0.009 (3)0.014 (3)
C170.071 (3)0.150 (7)0.066 (4)0.037 (4)0.010 (3)0.040 (4)
C180.060 (3)0.098 (4)0.114 (5)0.019 (3)0.015 (3)0.053 (4)
C190.060 (2)0.056 (3)0.073 (3)0.012 (2)0.022 (2)0.012 (2)
O2A0.0545 (14)0.0277 (12)0.0356 (14)0.0014 (10)0.0260 (12)0.0002 (10)
O2B0.0548 (14)0.0293 (12)0.0403 (13)0.0005 (10)0.0296 (12)0.0039 (10)
C210.0316 (16)0.0280 (15)0.0256 (16)0.0026 (13)0.0083 (13)0.0009 (13)
C220.0371 (16)0.0268 (16)0.0259 (16)0.0004 (13)0.0132 (14)0.0009 (13)
N210.0418 (15)0.0240 (13)0.0383 (15)0.0015 (11)0.0207 (13)0.0013 (11)
C230.0405 (17)0.0426 (18)0.0298 (17)0.0071 (14)0.0119 (14)0.0048 (14)
C240.0352 (15)0.0305 (14)0.0327 (16)0.0052 (12)0.0117 (13)0.0054 (13)
C250.055 (2)0.051 (2)0.045 (2)0.0188 (17)0.0148 (17)0.0059 (17)
C260.099 (4)0.082 (3)0.056 (3)0.047 (3)0.045 (3)0.010 (2)
C270.100 (4)0.084 (4)0.119 (5)0.045 (3)0.086 (4)0.037 (4)
C280.042 (2)0.071 (3)0.158 (6)0.002 (2)0.045 (3)0.029 (4)
C290.046 (2)0.052 (2)0.075 (3)0.0061 (18)0.020 (2)0.003 (2)
Geometric parameters (Å, º) top
P1—O111.483 (3)C16—H160.9300
P1—O121.518 (2)C17—C181.365 (11)
P1—O131.552 (3)C17—H170.9300
P1—O141.562 (3)C18—C191.362 (7)
O13—H130.8200C18—H180.9300
O14—H140.8200C19—H190.9300
P2—O211.488 (3)O2A—C211.226 (4)
P2—O221.523 (2)O2B—C211.287 (4)
P2—O241.556 (3)O2B—H2B1.21 (6)
P2—O231.572 (3)C21—C221.521 (4)
O23—H230.8200C22—N211.477 (4)
O24—H240.8200C22—C231.533 (4)
O1A—C111.224 (4)C22—H220.9800
O1B—C111.293 (4)N21—H21A0.8900
O1B—H1B1.22 (7)N21—H21B0.8900
C11—C121.518 (4)N21—H21C0.8900
C12—N111.479 (4)C23—C241.515 (4)
C12—C131.531 (5)C23—H23A0.9700
C12—H120.9800C23—H23B0.9700
N11—H11A0.8900C24—C291.374 (5)
N11—H11B0.8900C24—C251.379 (5)
N11—H11C0.8900C25—C261.3659
C13—C141.503 (5)C25—H250.9300
C13—H13A0.9700C26—C271.346 (8)
C13—H13B0.9700C26—H260.9300
C14—C191.374 (5)C27—C281.375 (9)
C14—C151.382 (5)C27—H270.9300
C15—C161.376 (7)C28—C291.415 (7)
C15—H150.9300C28—H280.9300
C16—C171.375 (10)C29—H290.9300
O11—P1—O12113.98 (14)C18—C17—H17120.1
O11—P1—O13108.57 (15)C16—C17—H17120.1
O12—P1—O13109.17 (14)C19—C18—C17120.4 (5)
O11—P1—O14112.17 (14)C19—C18—H18119.8
O12—P1—O14105.44 (15)C17—C18—H18119.8
O13—P1—O14107.27 (15)C18—C19—C14121.2 (5)
P1—O13—H13109.5C18—C19—H19119.4
P1—O14—H14109.5C14—C19—H19119.4
O21—P2—O22114.90 (15)C21—O2B—H2B117 (3)
O21—P2—O24111.58 (15)O2A—C21—O2B125.6 (3)
O22—P2—O24106.03 (15)O2A—C21—C22119.9 (3)
O21—P2—O23107.99 (15)O2B—C21—C22114.4 (3)
O22—P2—O23108.78 (14)N21—C22—C21108.0 (3)
O24—P2—O23107.28 (16)N21—C22—C23109.6 (3)
P2—O23—H23109.5C21—C22—C23112.5 (3)
P2—O24—H24109.5N21—C22—H22108.9
C11—O1B—H1B111 (3)C21—C22—H22108.9
O1A—C11—O1B125.1 (3)C23—C22—H22108.9
O1A—C11—C12120.3 (3)C22—N21—H21A109.5
O1B—C11—C12114.6 (3)C22—N21—H21B109.5
N11—C12—C11107.7 (2)H21A—N21—H21B109.5
N11—C12—C13112.7 (3)C22—N21—H21C109.5
C11—C12—C13115.1 (3)H21A—N21—H21C109.5
N11—C12—H12107.0H21B—N21—H21C109.5
C11—C12—H12107.0C24—C23—C22115.3 (3)
C13—C12—H12107.0C24—C23—H23A108.4
C12—N11—H11A109.5C22—C23—H23A108.4
C12—N11—H11B109.5C24—C23—H23B108.4
H11A—N11—H11B109.5C22—C23—H23B108.4
C12—N11—H11C109.5H23A—C23—H23B107.5
H11A—N11—H11C109.5C29—C24—C25119.2 (3)
H11B—N11—H11C109.5C29—C24—C23120.4 (3)
C14—C13—C12116.5 (3)C25—C24—C23120.2 (3)
C14—C13—H13A108.2C26—C25—C24121.4 (2)
C12—C13—H13A108.2C26—C25—H25119.3
C14—C13—H13B108.2C24—C25—H25119.3
C12—C13—H13B108.2C27—C26—C25120.1 (3)
H13A—C13—H13B107.3C27—C26—H26119.9
C19—C14—C15118.2 (4)C25—C26—H26119.9
C19—C14—C13120.9 (3)C26—C27—C28120.6 (4)
C15—C14—C13120.8 (3)C26—C27—H27119.7
C16—C15—C14120.9 (5)C28—C27—H27119.7
C16—C15—H15119.5C27—C28—C29119.7 (4)
C14—C15—H15119.5C27—C28—H28120.2
C17—C16—C15119.6 (6)C29—C28—H28120.2
C17—C16—H16120.2C24—C29—C28118.9 (5)
C15—C16—H16120.2C24—C29—H29120.5
C18—C17—C16119.8 (5)C28—C29—H29120.5
O1A—C11—C12—N111.3 (4)O2A—C21—C22—N2121.0 (4)
O1B—C11—C12—N11179.2 (3)O2B—C21—C22—N21159.4 (3)
O1A—C11—C12—C13128.0 (3)O2A—C21—C22—C23100.0 (4)
O1B—C11—C12—C1354.1 (4)O2B—C21—C22—C2379.6 (4)
N11—C12—C13—C1462.5 (4)N21—C22—C23—C24145.7 (3)
C11—C12—C13—C1461.5 (4)C21—C22—C23—C2494.2 (3)
C12—C13—C14—C1990.4 (4)C22—C23—C24—C29129.3 (3)
C12—C13—C14—C1594.3 (4)C22—C23—C24—C2555.7 (4)
C19—C14—C15—C161.1 (6)C29—C24—C25—C260.5 (4)
C13—C14—C15—C16174.4 (4)C23—C24—C25—C26175.60 (19)
C14—C15—C16—C170.6 (8)C24—C25—C26—C271.6 (3)
C15—C16—C17—C181.5 (9)C25—C26—C27—C281.4 (6)
C16—C17—C18—C190.8 (9)C26—C27—C28—C290.0 (8)
C17—C18—C19—C140.8 (8)C25—C24—C29—C280.9 (6)
C15—C14—C19—C181.8 (6)C23—C24—C29—C28174.2 (4)
C13—C14—C19—C18173.6 (4)C27—C28—C29—C241.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O1Ai0.821.802.615 (4)178
O14—H14···O12ii0.821.942.684 (3)150
O23—H23···O2Aiii0.821.862.684 (4)178
O24—H24···O22iv0.821.872.668 (4)164
O1B—H1B···O12iii1.22 (7)1.27 (7)2.473 (4)170 (6)
N11—H11A···O110.891.822.709 (4)173
N11—H11B···O1Bv0.892.102.944 (4)157
N11—H11C···O21vi0.892.132.806 (4)132
N11—H11C···O23vii0.892.503.142 (4)129
O2B—H2B···O22i1.21 (6)1.28 (6)2.497 (4)177 (6)
N21—H21A···O210.891.862.708 (4)159
N21—H21B···O11viii0.891.922.771 (4)160
N21—H21C···O2Bix0.892.383.167 (4)147
N21—H21C···O13x0.892.472.934 (4)113
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1/2; (iii) x, y1, z; (iv) x, y, z1/2; (v) x, y, z+1/2; (vi) x1, y, z; (vii) x1, y, z+1/2; (viii) x+1, y, z; (ix) x, y+1, z1/2; (x) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC9H12NO2+·H2PO4
Mr263.18
Crystal system, space groupMonoclinic, Pc
Temperature (K)293
a, b, c (Å)13.899 (7), 9.956 (8), 9.051 (2)
β (°) 108.726 (8)
V3)1186.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.6 × 0.33 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.918, 0.967
No. of measured, independent and
observed (I > 2σ) reflections
2235, 2235, 2078
Rint0.000
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.07
No. of reflections2235
No. of parameters317
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.29
Absolute structure[Flack, 1983]
Absolute structure parameter0.03 (10)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
P1—O111.483 (3)P2—O241.556 (3)
P1—O121.518 (2)P2—O231.572 (3)
P1—O131.552 (3)O1A—C111.224 (4)
P1—O141.562 (3)O1B—C111.293 (4)
P2—O211.488 (3)O2A—C211.226 (4)
P2—O221.523 (2)O2B—C211.287 (4)
O1A—C11—C12—N111.3 (4)O2A—C21—C22—N2121.0 (4)
N11—C12—C13—C1462.5 (4)N21—C22—C23—C24145.7 (3)
C12—C13—C14—C1990.4 (4)C22—C23—C24—C29129.3 (3)
C12—C13—C14—C1594.3 (4)C22—C23—C24—C2555.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O1Ai0.821.802.615 (4)178
O14—H14···O12ii0.821.942.684 (3)150
O23—H23···O2Aiii0.821.862.684 (4)178
O24—H24···O22iv0.821.872.668 (4)164
O1B—H1B···O12iii1.22 (7)1.27 (7)2.473 (4)170 (6)
N11—H11A···O110.891.822.709 (4)173
N11—H11B···O1Bv0.892.102.944 (4)157
N11—H11C···O21vi0.892.132.806 (4)132
N11—H11C···O23vii0.892.503.142 (4)129
O2B—H2B···O22i1.21 (6)1.28 (6)2.497 (4)177 (6)
N21—H21A···O210.891.862.708 (4)159
N21—H21B···O11viii0.891.922.771 (4)160
N21—H21C···O2Bix0.892.383.167 (4)147
N21—H21C···O13x0.892.472.934 (4)113
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1/2; (iii) x, y1, z; (iv) x, y, z1/2; (v) x, y, z+1/2; (vi) x1, y, z; (vii) x1, y, z+1/2; (viii) x+1, y, z; (ix) x, y+1, z1/2; (x) x+1, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds