Download citation
Download citation
link to html
In the title compound, C3H8O3N+·NO3·C3H7O3N, the serinium and the serine as zwitterion are held together by a strong O—H...O hydrogen bond. The serinium cation has a gauche I conformation and the serine mol­ecule has a gauche II conformation for the hydroxyl O atom. The nitrate anion links the amino N atom of mol­ecule 1 extending in a chain running along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801009035/na6085sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801009035/na6085Isup2.hkl
Contains datablock I

CCDC reference: 170888

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.074
  • Data-to-parameter ratio = 6.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.98 From the CIF: _reflns_number_total 1030 Count of symmetry unique reflns 1038 Completeness (_total/calc) 99.23% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

The crystal structures of L-serine (Benedetti et al., 1972), DL-serine (Shoemaker et al., 1953; Frey et al., 1973; Kistenmacher et al., 1974) and L-serine monohydrate (Frey et al., 1973) have been reported previously. In the present study, the structure determination of D-serine with nitric acid was undertaken.

The geometry of the two crystallographically independent serine and serinium constituents are similar and agree well with earlier X-ray studies of DL-serine (Shoemaker et al., 1953) and L-serine (Benedetti et al., 1972). The conformation angle ψ1 is -1.5 (3) and -3.9 (3)° for serinium and serine, respectively. This tendency of the C—N bond to twist is found in various amino acids (Lakshminarayanan et al., 1967). The straight side-chain conformation angle χ1 for the serinium cation is in a gauche I conformation [63.8 (3)°] and for the serine molecule is in a gauche II conformation [-66.4 (3)°].

The nitrate anion plays a vital role in the hydrogen bonding with both ions and in stabilizing the structure. Serine and serinium are connected by a strong O—H···O hydrogen bond O1B—H1B···O2Aiv. The nitrate anion, as acceptor, hydrogen bonds with the amino N and hydroxyl O atom of both molecules in a three-dimensional network. The nitrate anion links the amino N atom of the serinium cation resulting in a chain running along the a axis. The hydroxyl O atom of serinium, as acceptor, links the amino N atom of serinium.

The serine molecule is engaged in a straight (S1) head-to-tail sequence, since the N21—H21C···O2Biv hydrogen bond connects two amino acids separated by a period along the a axis, and a zigzag (Z2) head-to-tail sequence, since N21—H21B···O2Bv connects two 21-related amino acids (Vijayan, 1988).

Experimental top

The title compound was crystallized in aqueous solution from 2:1 stoichiometric ratio of D-serine and nitric acid. Colorless needle-shaped crystals were obtained.

Refinement top

The reflection/parameter ratio is 6.20 in spite of the fact that data for 1030 of the possible 1038 reflections have been collected which has resulted with a reasonable final R factor of 0.0263. A l l H atoms were fixed by geometric restraints using HFIX and allowed to ride on the preceding atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent serinium and serine cations showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down the a axis.
D-serinium D-serine nitrate top
Crystal data top
C3H8NO3+·NO3·C3H7NO3F(000) = 288
Mr = 273.21Dx = 1.649 Mg m3
Dm = 1.63 Mg m3
Dm measured by flotation in bromoform and xylene
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.929 (1) ÅCell parameters from 25 reflections
b = 8.195 (7) Åθ = 10.0–13.9°
c = 11.503 (2) ŵ = 0.16 mm1
β = 100.06 (1)°T = 293 K
V = 550.3 (5) Å3Needles, colorless
Z = 20.5 × 0.2 × 0.07 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
908 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω–2θ scansh = 17
Absorption correction: ψ scan
(North et al., 1968)
k = 19
Tmin = 0.962, Tmax = 0.988l = 1313
1533 measured reflections25 standard reflections every 3 reflections
1030 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters not refined
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0361P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1030 reflectionsΔρmax = 0.16 e Å3
166 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none
Crystal data top
C3H8NO3+·NO3·C3H7NO3V = 550.3 (5) Å3
Mr = 273.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.929 (1) ŵ = 0.16 mm1
b = 8.195 (7) ÅT = 293 K
c = 11.503 (2) Å0.5 × 0.2 × 0.07 mm
β = 100.06 (1)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
908 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.962, Tmax = 0.98825 standard reflections every 3 reflections
1533 measured reflections intensity decay: none
1030 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.074H-atom parameters not refined
S = 0.95Δρmax = 0.16 e Å3
1030 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2112 (4)0.6693 (3)0.2735 (2)0.0291 (6)
O10.1846 (3)0.7597 (3)0.35930 (18)0.0349 (5)
O20.3677 (3)0.5658 (3)0.28774 (18)0.0320 (5)
O30.0807 (4)0.6802 (4)0.1785 (2)0.0516 (7)
O1A0.0492 (4)0.4171 (3)0.40845 (17)0.0342 (5)
O1B0.0050 (3)0.2719 (3)0.25099 (16)0.0298 (5)
H1B0.11470.31470.21870.045*
C110.0427 (4)0.3090 (3)0.3623 (2)0.0219 (6)
C120.2213 (5)0.1976 (3)0.4321 (2)0.0238 (6)
H120.16040.08610.42690.029*
N110.2616 (4)0.2479 (3)0.55848 (18)0.0253 (5)
H11A0.36640.18300.59980.038*
H11B0.13130.24030.58660.038*
H11C0.31110.35060.56460.038*
C130.4435 (5)0.1979 (4)0.3831 (3)0.0333 (7)
H13A0.40990.17420.29930.040*
H13B0.51130.30590.39280.040*
O1C0.6033 (4)0.0821 (3)0.43978 (19)0.0361 (5)
H1C0.67710.12250.49980.054*
O2B0.7608 (3)0.5252 (3)0.01191 (19)0.0351 (5)
O2A0.6496 (4)0.3634 (3)0.12392 (18)0.0350 (5)
C210.6142 (4)0.4583 (3)0.0366 (2)0.0231 (6)
C220.3617 (4)0.4921 (4)0.0140 (2)0.0225 (6)
H220.33140.60730.00030.027*
N210.2126 (4)0.3924 (3)0.04927 (19)0.0245 (5)
H21A0.24860.41140.12650.037*
H21B0.23320.28710.03530.037*
H21C0.06670.41880.02400.037*
C230.3054 (5)0.4630 (4)0.1455 (2)0.0293 (7)
H23A0.14340.48230.17280.035*
H23B0.39040.53960.18560.035*
O2C0.3601 (4)0.3023 (3)0.17467 (19)0.0373 (6)
H2C0.24850.24310.17470.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0256 (12)0.0321 (14)0.0294 (12)0.0027 (12)0.0037 (10)0.0031 (12)
O10.0355 (12)0.0329 (12)0.0365 (11)0.0026 (11)0.0067 (9)0.0116 (10)
O20.0291 (11)0.0269 (11)0.0394 (11)0.0063 (10)0.0043 (9)0.0013 (10)
O30.0456 (13)0.0640 (18)0.0378 (13)0.0203 (13)0.0133 (11)0.0139 (12)
O1A0.0348 (11)0.0352 (12)0.0326 (10)0.0112 (10)0.0064 (9)0.0028 (10)
O1B0.0252 (10)0.0370 (12)0.0254 (9)0.0058 (9)0.0010 (7)0.0021 (9)
C110.0194 (12)0.0213 (15)0.0258 (13)0.0034 (12)0.0061 (10)0.0010 (12)
C120.0269 (13)0.0203 (15)0.0240 (13)0.0004 (12)0.0033 (11)0.0007 (12)
N110.0235 (11)0.0277 (13)0.0246 (11)0.0004 (11)0.0042 (9)0.0029 (11)
C130.0306 (15)0.0407 (19)0.0305 (14)0.0139 (14)0.0110 (12)0.0071 (14)
O1C0.0354 (12)0.0348 (12)0.0344 (11)0.0150 (11)0.0038 (9)0.0028 (10)
O2B0.0217 (10)0.0382 (14)0.0456 (12)0.0026 (9)0.0066 (9)0.0011 (11)
O2A0.0285 (11)0.0378 (12)0.0343 (11)0.0021 (10)0.0064 (9)0.0076 (10)
C210.0210 (14)0.0193 (14)0.0288 (13)0.0002 (12)0.0035 (11)0.0078 (12)
C220.0205 (14)0.0179 (14)0.0289 (13)0.0003 (12)0.0034 (11)0.0017 (12)
N210.0224 (12)0.0249 (13)0.0273 (11)0.0029 (10)0.0080 (9)0.0014 (11)
C230.0276 (15)0.0316 (16)0.0284 (14)0.0019 (14)0.0045 (12)0.0061 (13)
O2C0.0392 (12)0.0383 (13)0.0352 (11)0.0006 (11)0.0084 (10)0.0094 (10)
Geometric parameters (Å, º) top
N1—O31.227 (3)C13—H13B0.9700
N1—O21.247 (3)O1C—H1C0.8200
N1—O11.266 (3)O2B—C211.240 (4)
O1A—C111.210 (3)O2A—C211.259 (4)
O1B—C111.297 (3)C21—C221.534 (3)
O1B—H1B0.8200C22—N211.485 (3)
C11—C121.518 (4)C22—C231.510 (4)
C12—N111.490 (3)C22—H220.9800
C12—C131.520 (4)N21—H21A0.8900
C12—H120.9800N21—H21B0.8900
N11—H11A0.8900N21—H21C0.8900
N11—H11B0.8900C23—O2C1.411 (4)
N11—H11C0.8900C23—H23A0.9700
C13—O1C1.417 (4)C23—H23B0.9700
C13—H13A0.9700O2C—H2C0.8200
O3—N1—O2120.4 (2)H13A—C13—H13B107.9
O3—N1—O1120.4 (2)C13—O1C—H1C109.5
O2—N1—O1119.2 (2)O2B—C21—O2A126.9 (2)
C11—O1B—H1B109.5O2B—C21—C22117.6 (2)
O1A—C11—O1B126.3 (3)O2A—C21—C22115.5 (2)
O1A—C11—C12122.3 (2)N21—C22—C23111.0 (2)
O1B—C11—C12111.4 (2)N21—C22—C21109.8 (2)
N11—C12—C11109.1 (2)C23—C22—C21112.5 (2)
N11—C12—C13111.1 (2)N21—C22—H22107.8
C11—C12—C13111.9 (2)C23—C22—H22107.8
N11—C12—H12108.2C21—C22—H22107.8
C11—C12—H12108.2C22—N21—H21A109.5
C13—C12—H12108.2C22—N21—H21B109.5
C12—N11—H11A109.5H21A—N21—H21B109.5
C12—N11—H11B109.5C22—N21—H21C109.5
H11A—N11—H11B109.5H21A—N21—H21C109.5
C12—N11—H11C109.5H21B—N21—H21C109.5
H11A—N11—H11C109.5O2C—C23—C22111.5 (2)
H11B—N11—H11C109.5O2C—C23—H23A109.3
O1C—C13—C12112.4 (2)C22—C23—H23A109.3
O1C—C13—H13A109.1O2C—C23—H23B109.3
C12—C13—H13A109.1C22—C23—H23B109.3
O1C—C13—H13B109.1H23A—C23—H23B108.0
C12—C13—H13B109.1C23—O2C—H2C109.5
O1A—C11—C12—N111.5 (3)O2B—C21—C22—N21175.7 (2)
O1B—C11—C12—N11178.7 (2)O2A—C21—C22—N213.9 (3)
O1A—C11—C12—C13124.8 (3)O2B—C21—C22—C2351.6 (3)
O1B—C11—C12—C1355.4 (3)O2A—C21—C22—C23128.0 (3)
N11—C12—C13—O1C63.8 (3)N21—C22—C23—O2C66.4 (3)
C11—C12—C13—O1C174.0 (2)C21—C22—C23—O2C57.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O2i0.892.092.972 (3)170
N11—H11B···O1ii0.892.082.963 (3)171
N11—H11C···O1Ciii0.891.972.853 (4)173
O1C—H1C···O1i0.822.022.833 (3)168
O1C—H1C···O2i0.822.553.112 (3)127
O1B—H1B···O2Aiv0.821.662.462 (3)164
N21—H21A···O20.892.253.084 (3)155
N21—H21A···O1B0.892.482.979 (3)116
N21—H21A···O30.892.532.965 (4)111
N21—H21B···O2Bv0.892.163.048 (4)172
N21—H21C···O2Biv0.891.992.863 (3)167
O2C—H2C···O3vi0.822.012.792 (3)159
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x1, y, z; (v) x+1, y1/2, z; (vi) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC3H8NO3+·NO3·C3H7NO3
Mr273.21
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.929 (1), 8.195 (7), 11.503 (2)
β (°) 100.06 (1)
V3)550.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.5 × 0.2 × 0.07
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.962, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
1533, 1030, 908
Rint0.019
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 0.95
No. of reflections1030
No. of parameters166
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.210 (3)O2B—C211.240 (4)
O1B—C111.297 (3)O2A—C211.259 (4)
O1A—C11—C12—N111.5 (3)O2A—C21—C22—N213.9 (3)
N11—C12—C13—O1C63.8 (3)N21—C22—C23—O2C66.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O2i0.892.092.972 (3)170
N11—H11B···O1ii0.892.082.963 (3)171
N11—H11C···O1Ciii0.891.972.853 (4)173
O1C—H1C···O1i0.822.022.833 (3)168
O1C—H1C···O2i0.822.553.112 (3)127
O1B—H1B···O2Aiv0.821.662.462 (3)164
N21—H21A···O20.892.253.084 (3)155
N21—H21A···O1B0.892.482.979 (3)116
N21—H21A···O30.892.532.965 (4)111
N21—H21B···O2Bv0.892.163.048 (4)172
N21—H21C···O2Biv0.891.992.863 (3)167
O2C—H2C···O3vi0.822.012.792 (3)159
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x1, y, z; (v) x+1, y1/2, z; (vi) x, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds