Download citation
Download citation
link to html
The title compound, mer,trans-{2,6-bis­[(di­methyl­amino)­methyl]­pyridine}di­chloro­pyridine­ruthenium(II) toluene sol­vate, [RuCl2(C11H19N3)(C5H5N)]·C7H8, has metal-ligand dimensions of Ru-Npy(NN'N) 1.962 (2) Å, Ru-N(NN'N) 2.348 (3) Å, Ru-N(NN'N) 2.251 (3) Å, Ru-Npy 2.096 (2) Å and Ru-Cl 2.3502 (7) or 2.3581 (7) Å (py = pyridine, C5H5N). Angles are Npy-Ru-N(NN'N) 178.37 (9)°, (NN'N)N-Ru-N(NN'N) 160.57 (9)° and Cl-Ru-Cl 177.19 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014878/na6084sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014878/na6084IIsup2.hkl
Contains datablock II

CCDC reference: 118726

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.052
  • wR factor = 0.117
  • Data-to-parameter ratio = 23.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 38.62 From the CIF: _reflns_number_total 9359 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 13764 Completeness (_total/calc) 68.00% Alert A: < 85% complete (theta max?) PLAT_706 Alert A H...A Calc 3.07(5), Rep 2.68(4), Dev. 7.80 Sigma H10C -CL1 1.555 1.555 PLAT_706 Alert A H...A Calc 27.65(4), Rep 2.73(5), Dev. 623.00 Sigma H4 -CL1 1.555 6.555 PLAT_706 Alert A H...A Calc 19.95(4), Rep 2.65(4), Dev. 432.50 Sigma H14 -CL2 1.555 3.455 PLAT_707 Alert A D...A Calc 27.139(3), Rep 3.522(3), Dev. 7872.33 Sigma C4 -CL1 1.555 6.555 PLAT_707 Alert A D...A Calc 19.619(4), Rep 3.606(4), Dev. 4003.25 Sigma C14 -CL2 1.555 3.455 PLAT_708 Alert A D-H..A Calc 81(3), Rep 104(3), Dev. 7.67 Sigma C10 -H10C -CL1 1.555 1.555 1.555 PLAT_708 Alert A D-H..A Calc 52(3), Rep 158(4), Dev. 35.33 Sigma C4 -H4 -CL1 1.555 1.555 6.555 PLAT_708 Alert A D-H..A Calc 69(2), Rep 170(3), Dev. 50.50 Sigma C14 -H14 -CL2 1.555 1.555 3.455
Amber Alert Alert Level B:
CRYSS_02 Alert B The value of _exptl_crystal_size_min is > 0.6 Minimum crystal size given = 0.900 CRYSS_02 Alert B The value of _exptl_crystal_size_mid is > 0.8 Mid crystal size given = 1.200 CRYSS_02 Alert B The value of _exptl_crystal_size_max is > 1.0 Maximum crystal size given = 1.200
Yellow Alert Alert Level C:
PLAT_362 Alert C Short C(sp3)-C(sp2) Bond C(1) - C(6) = 1.39 Ang. PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 1 N4 -RU1 -N1 -C5 97.00 4.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 6 N4 -RU1 -N1 -C1 -79.00 4.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 41 N1 -RU1 -N4 -C12 135.00 3.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 46 N1 -RU1 -N4 -C16 -42.00 4.00 1.555 1.555 1.555 1.555 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 38.62 From the CIF: _reflns_number_total 9359 From the CIF: _diffrn_reflns_limit_ max hkl 20. 20. 43. From the CIF: _diffrn_reflns_limit_ min hkl -10. -13. -10. TEST1: Expected hkl limits for theta max Calculated maximum hkl 22. 24. 47. Calculated minimum hkl -22. -24. -47. ALERT: Expected hkl max differ from CIF values
9 Alert Level A = Potentially serious problem
3 Alert Level B = Potential problem
5 Alert Level C = Please check

Comment top

Recently, interest has been focused on the chemistry of bis-orthochelating aromatic ligands (Rietveld et al., 1997). This was due to their applicability to catalytic processes (Abbenhuis, del Río et al., 1998) or materials science (Steenwinkel et al., 1998). In this context, the dinitrogen-bridged bis-ruthenium complex {Ru}NN{Ru}, (I) [{Ru} = mer,trans-(C5H3N(CH2NMe2)2-2,6)-RuCl2] (Abbenhuis, Boersma & van Koten, 1998), has been studied in the synthesis of bioactive arylpiperazines. In order to gain a deeper insight into the catalytic behaviour of (I), this homodinuclear complex was reacted with various N-donor molecules (del R\'io et al., 2000). Treatment of (I) with two equivalents of py (py = pyridine, C5H5N) leads to the formation of the title compound {Ru}py·C7H8, (II), in high yield by loss of N2. We report here on the structure of the (II), which incorporates two structural type pyridine ligands, i.e. C5H5N and C5H3N(CH2NMe2)2-2,6.

The X-ray diffraction study confirms the general structure of (II) in solution, suggested on the basis of the NMR (1H, 13C{1H}) and IR data of (II) (Fig. 1).

In (II), the RuII centre occupies a distorted octahedral environment, with the three N-donor atoms of the NN'N-ligand in a meridional position. The Cl atoms are forced in the apical positions and are trans-orientated to each other. In general, the Ru—Npy, Ru—NNMe and Ru—Cl distances Ru1—Cl1 [2.3502 (7) Å], Ru1—Cl2 [2.3581 (7) Å], Ru1—N1 [1.962 (2) Å], Ru1—N2 [2.348 (3) Å] and Ru1—N3 [2.251 (3) Å], as well as the angles around the RuII centre Cl1—Ru1—Cl2 [177.19 (3)] and N2—Ru1—N3 [160.57 (9)°] of the {Ru} building block are consistent with those values reported for this type of complex fragment (del Rio et al., 2000). The length of the Ru1—N4 bond of 2.096 (2) Å is elongated when compared to the Ru1—N1 bond, but lies in the range of distances reported for other RuII–pyridine complexes, e.g. [Ru(py)6]2+ with 2.10–2.14 Å (Templeton, 1979). Similar Ru—Npy distances are, e.g., found in [RuCl(py)4(pz)]+ with 2.105 (4) Å (Coe et al., 1995). This relatively short Ru1—N1 distance can best be explained by the imbedding of the RuII centre into the framework of the bis-orthochelating NN'N ligand. The angle N1—Ru1—N4 [178.37 (9)°] resembles the linearity of this array. The planes of the two pyridine ligands are tilted by 54.33 (10)°.

Experimental top

A solution of {Ru}NN{Ru}, (I) (128 mg, 0.2 mmol), and py (32 mg, 0.4 mmol) in THF (30 ml) was stirred for 1 h at 298 K. During the course of the reaction, the colour of the solution turned from brown to red and the turbidity disappeared. The reaction mixture was then concentrated to 5 ml and n-pentane (50 ml) was added. The supernatant liquid was carefully decanted and the residue was dried in vacuo to yield (II) [150 mg, 95% yield based on (I)] as a red–brown solid. By diffusion of n-pentane into a dichlormethane/n-pentane solution of (II), which has been endowed with toluene, at 298 K, single crystals of (II) could be obtained. M.p.: [K] 302 (decomposition). 1H NMR (CDCl3, p.p.m.): [δ] 2.38 (s, 12 H, NMe2), 4.03 (s, 4H, CH2), 7.1–7.2 (m, 2H, C6H3), 7.3–7.4 (m, 3 H, C5H5N), 7.7–7.8 (m, 1H, C5H3N), 9.6–9.7 (m, 2H, C5H5N). 13C{1H} NMR (CDCl3, p.p.m.): [δ] 53.6 (NMe2), 72.1 (CH2), 118.6 (CH/C5H3N), 123.5 (CH/C5H5N), 130.4 (i-C/C5H3N), 133.6 (CH/C5H5N), 156.4 (CH/C5H5N), 163.2 (CH/C5H3N). Analysis calculated for C16H24Cl2N4Ru (440.40): C 43.24, H 5.44, N 12.61%; found: C 43.79, H 5.78, N 12.23%.

Structure description top

Recently, interest has been focused on the chemistry of bis-orthochelating aromatic ligands (Rietveld et al., 1997). This was due to their applicability to catalytic processes (Abbenhuis, del Río et al., 1998) or materials science (Steenwinkel et al., 1998). In this context, the dinitrogen-bridged bis-ruthenium complex {Ru}NN{Ru}, (I) [{Ru} = mer,trans-(C5H3N(CH2NMe2)2-2,6)-RuCl2] (Abbenhuis, Boersma & van Koten, 1998), has been studied in the synthesis of bioactive arylpiperazines. In order to gain a deeper insight into the catalytic behaviour of (I), this homodinuclear complex was reacted with various N-donor molecules (del R\'io et al., 2000). Treatment of (I) with two equivalents of py (py = pyridine, C5H5N) leads to the formation of the title compound {Ru}py·C7H8, (II), in high yield by loss of N2. We report here on the structure of the (II), which incorporates two structural type pyridine ligands, i.e. C5H5N and C5H3N(CH2NMe2)2-2,6.

The X-ray diffraction study confirms the general structure of (II) in solution, suggested on the basis of the NMR (1H, 13C{1H}) and IR data of (II) (Fig. 1).

In (II), the RuII centre occupies a distorted octahedral environment, with the three N-donor atoms of the NN'N-ligand in a meridional position. The Cl atoms are forced in the apical positions and are trans-orientated to each other. In general, the Ru—Npy, Ru—NNMe and Ru—Cl distances Ru1—Cl1 [2.3502 (7) Å], Ru1—Cl2 [2.3581 (7) Å], Ru1—N1 [1.962 (2) Å], Ru1—N2 [2.348 (3) Å] and Ru1—N3 [2.251 (3) Å], as well as the angles around the RuII centre Cl1—Ru1—Cl2 [177.19 (3)] and N2—Ru1—N3 [160.57 (9)°] of the {Ru} building block are consistent with those values reported for this type of complex fragment (del Rio et al., 2000). The length of the Ru1—N4 bond of 2.096 (2) Å is elongated when compared to the Ru1—N1 bond, but lies in the range of distances reported for other RuII–pyridine complexes, e.g. [Ru(py)6]2+ with 2.10–2.14 Å (Templeton, 1979). Similar Ru—Npy distances are, e.g., found in [RuCl(py)4(pz)]+ with 2.105 (4) Å (Coe et al., 1995). This relatively short Ru1—N1 distance can best be explained by the imbedding of the RuII centre into the framework of the bis-orthochelating NN'N ligand. The angle N1—Ru1—N4 [178.37 (9)°] resembles the linearity of this array. The planes of the two pyridine ligands are tilted by 54.33 (10)°.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai & Huttner, 1994); software used to prepare material for publication: SHELX97.

Figures top
[Figure 1] Fig. 1. ZORTEP plot (50% probability) of complex (II) with molecular geometry and atom-numbering scheme (the toluene solvate molecule is not shown for clarity).
mer,trans-{2,6-bis[(dimethylamino)methyl]pyridine}dichloropyridineruthenium(II) toluene solvate top
Crystal data top
[RuCl2(C11H19N3)(C5H5N)]·C7H8Dx = 1.470 Mg m3
Mr = 536.50Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 31497 reflections
a = 12.7109 (1) Åθ = 1.5–38.6°
b = 14.1115 (2) ŵ = 0.88 mm1
c = 27.0317 (3) ÅT = 173 K
V = 4848.67 (10) Å3Block, dark red
Z = 81.20 × 1.20 × 0.90 mm
F(000) = 2208
Data collection top
Bruker SMART CCD
diffractometer
9359 independent reflections
Radiation source: fine-focus sealed tube7687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 38.6°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
h = 1020
Tmin = 0.374, Tmax = 0.451k = 1320
43809 measured reflectionsl = 1043
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0208P)2 + 13.1818P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.015
9359 reflectionsΔρmax = 2.07 e Å3
400 parametersΔρmin = 1.86 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00058 (9)
Crystal data top
[RuCl2(C11H19N3)(C5H5N)]·C7H8V = 4848.67 (10) Å3
Mr = 536.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7109 (1) ŵ = 0.88 mm1
b = 14.1115 (2) ÅT = 173 K
c = 27.0317 (3) Å1.20 × 1.20 × 0.90 mm
Data collection top
Bruker SMART CCD
diffractometer
9359 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
7687 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.451Rint = 0.041
43809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0208P)2 + 13.1818P]
where P = (Fo2 + 2Fc2)/3
9359 reflectionsΔρmax = 2.07 e Å3
400 parametersΔρmin = 1.86 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.025486 (15)0.384516 (16)0.129116 (7)0.01901 (6)
Cl10.08681 (5)0.33484 (6)0.19313 (2)0.02838 (14)
Cl20.13228 (6)0.43118 (6)0.06208 (3)0.03079 (15)
N10.10360 (17)0.45844 (18)0.17839 (8)0.0222 (4)
N20.04352 (18)0.53882 (19)0.12952 (9)0.0248 (4)
N30.12600 (19)0.2586 (2)0.14864 (9)0.0267 (5)
N40.06081 (18)0.30413 (19)0.07806 (8)0.0238 (4)
C10.0713 (2)0.5483 (2)0.19879 (10)0.0263 (5)
C20.1231 (3)0.6000 (3)0.23496 (11)0.0341 (7)
H20.102 (3)0.660 (3)0.2475 (14)0.028 (9)*
C30.2067 (3)0.5551 (3)0.25109 (12)0.0402 (8)
H30.240 (3)0.586 (3)0.2770 (14)0.041 (11)*
C40.2387 (2)0.4618 (3)0.23040 (11)0.0356 (7)
H40.292 (4)0.433 (3)0.2413 (16)0.044 (12)*
C50.1861 (2)0.4154 (2)0.19298 (10)0.0280 (6)
C60.0259 (2)0.5780 (2)0.18130 (11)0.0284 (5)
H6A0.034 (3)0.654 (3)0.1820 (13)0.030 (10)*
H6B0.073 (4)0.542 (3)0.2048 (16)0.046 (12)*
C70.0005 (3)0.6164 (3)0.09532 (14)0.0353 (7)
H7A0.010 (3)0.593 (3)0.0604 (17)0.045 (12)*
H7B0.069 (4)0.618 (3)0.1014 (16)0.044 (12)*
H7C0.030 (3)0.683 (3)0.0998 (15)0.042 (12)*
C80.1476 (3)0.5401 (3)0.12053 (14)0.0361 (7)
H8A0.153 (3)0.524 (3)0.0851 (15)0.038 (11)*
H8B0.178 (4)0.493 (4)0.1420 (16)0.046 (12)*
H8C0.173 (3)0.613 (3)0.1274 (14)0.038 (11)*
C90.2127 (2)0.3193 (3)0.16368 (12)0.0315 (6)
H9A0.242 (3)0.344 (3)0.1336 (13)0.034 (10)*
H9B0.253 (3)0.273 (3)0.1820 (13)0.029 (9)*
C100.0960 (3)0.1941 (3)0.19153 (12)0.0326 (6)
H10A0.085 (3)0.237 (3)0.2192 (13)0.028 (9)*
H10B0.145 (3)0.137 (3)0.2005 (14)0.035 (10)*
H10C0.042 (4)0.152 (3)0.1840 (15)0.043 (12)*
C110.1532 (3)0.1858 (3)0.10808 (13)0.0346 (7)
H11A0.202 (4)0.141 (4)0.1183 (17)0.059 (15)*
H11B0.104 (3)0.141 (3)0.1001 (15)0.038 (11)*
H11C0.172 (3)0.229 (3)0.0792 (13)0.025 (9)*
C120.0862 (2)0.3479 (3)0.03433 (10)0.0294 (6)
H120.063 (3)0.419 (3)0.0269 (13)0.026 (9)*
C130.1474 (3)0.2998 (3)0.00140 (11)0.0380 (8)
H130.165 (3)0.332 (3)0.0289 (15)0.042 (12)*
C140.1821 (3)0.2006 (3)0.01172 (12)0.0388 (8)
H140.224 (3)0.163 (3)0.0108 (15)0.041 (11)*
C150.1552 (2)0.1540 (3)0.05585 (12)0.0327 (6)
H150.172 (3)0.087 (3)0.0663 (13)0.029 (9)*
C160.0964 (2)0.2084 (2)0.08794 (11)0.0279 (6)
H160.082 (3)0.178 (3)0.1168 (13)0.026 (9)*
C170.0734 (3)0.8834 (3)0.07210 (11)0.0322 (6)
C180.0140 (3)0.9106 (3)0.09256 (14)0.0392 (7)
H180.065 (4)0.928 (4)0.0704 (16)0.050 (13)*
C190.0257 (3)0.9142 (3)0.14351 (17)0.0482 (10)
H190.081 (4)0.933 (4)0.1562 (16)0.047 (13)*
C200.0489 (3)0.8921 (3)0.17501 (14)0.0431 (8)
H200.039 (4)0.893 (4)0.208 (2)0.067 (16)*
C210.1364 (3)0.8664 (3)0.15506 (14)0.0425 (8)
H210.188 (4)0.852 (3)0.1765 (15)0.043 (12)*
C220.1482 (3)0.8620 (3)0.10411 (13)0.0357 (7)
H220.205 (4)0.838 (4)0.0889 (16)0.050 (13)*
C230.0860 (4)0.8734 (4)0.01697 (14)0.0479 (10)
H23A0.034 (5)0.907 (4)0.002 (2)0.071 (17)*
H23B0.089 (4)0.801 (4)0.0086 (18)0.062 (15)*
H23C0.130 (5)0.914 (5)0.007 (2)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01597 (9)0.02393 (10)0.01713 (8)0.00102 (7)0.00060 (6)0.00107 (7)
Cl10.0239 (3)0.0370 (4)0.0242 (3)0.0019 (3)0.0070 (2)0.0049 (2)
Cl20.0253 (3)0.0383 (4)0.0287 (3)0.0013 (3)0.0101 (2)0.0042 (3)
N10.0162 (9)0.0314 (12)0.0188 (8)0.0006 (8)0.0014 (7)0.0005 (8)
N20.0179 (10)0.0305 (12)0.0260 (10)0.0042 (8)0.0014 (8)0.0035 (9)
N30.0178 (10)0.0336 (13)0.0289 (11)0.0046 (9)0.0007 (8)0.0014 (9)
N40.0189 (10)0.0337 (13)0.0189 (9)0.0002 (9)0.0021 (7)0.0015 (8)
C10.0214 (12)0.0330 (15)0.0246 (11)0.0020 (10)0.0048 (9)0.0037 (10)
C20.0315 (15)0.0439 (19)0.0270 (12)0.0107 (13)0.0062 (11)0.0103 (12)
C30.0285 (15)0.068 (3)0.0246 (12)0.0177 (15)0.0006 (11)0.0020 (15)
C40.0202 (13)0.059 (2)0.0281 (13)0.0074 (13)0.0063 (10)0.0092 (13)
C50.0172 (12)0.0424 (17)0.0244 (11)0.0029 (10)0.0015 (9)0.0062 (11)
C60.0236 (13)0.0311 (15)0.0307 (13)0.0044 (11)0.0041 (10)0.0044 (11)
C70.0330 (16)0.0325 (17)0.0403 (16)0.0057 (13)0.0073 (12)0.0131 (14)
C80.0223 (14)0.046 (2)0.0403 (17)0.0089 (13)0.0020 (11)0.0017 (14)
C90.0178 (12)0.0397 (18)0.0370 (15)0.0060 (11)0.0012 (10)0.0042 (13)
C100.0274 (15)0.0357 (17)0.0346 (14)0.0042 (12)0.0006 (11)0.0111 (13)
C110.0312 (16)0.0331 (17)0.0394 (16)0.0072 (13)0.0054 (12)0.0056 (13)
C120.0216 (12)0.0440 (18)0.0227 (11)0.0036 (12)0.0010 (9)0.0031 (11)
C130.0250 (14)0.067 (3)0.0219 (12)0.0036 (14)0.0037 (10)0.0009 (14)
C140.0205 (14)0.062 (2)0.0341 (15)0.0043 (14)0.0022 (11)0.0149 (15)
C150.0227 (13)0.0381 (18)0.0374 (15)0.0062 (12)0.0031 (11)0.0075 (13)
C160.0202 (12)0.0369 (16)0.0267 (12)0.0009 (11)0.0011 (9)0.0004 (11)
C170.0316 (15)0.0330 (16)0.0320 (13)0.0038 (12)0.0006 (11)0.0013 (12)
C180.0361 (18)0.0371 (18)0.0443 (18)0.0020 (14)0.0015 (14)0.0028 (14)
C190.035 (2)0.053 (2)0.057 (2)0.0045 (17)0.0133 (17)0.0125 (19)
C200.050 (2)0.044 (2)0.0354 (16)0.0105 (17)0.0055 (15)0.0091 (15)
C210.0395 (19)0.051 (2)0.0373 (16)0.0071 (16)0.0087 (14)0.0044 (15)
C220.0299 (16)0.0398 (19)0.0373 (15)0.0056 (13)0.0019 (12)0.0034 (13)
C230.048 (2)0.062 (3)0.0334 (16)0.004 (2)0.0003 (15)0.0008 (17)
Geometric parameters (Å, º) top
Ru1—Cl12.3501 (7)C9—H9A0.96 (4)
Ru1—Cl22.3580 (7)C9—H9B0.97 (4)
Ru1—N11.962 (2)C10—H10A0.98 (4)
Ru1—N22.348 (3)C10—H10B1.04 (4)
Ru1—N32.251 (3)C10—H10C0.93 (5)
Ru1—N42.096 (2)C11—H11A0.93 (6)
N1—C51.274 (4)C11—H11B0.91 (5)
N1—C11.442 (4)C11—H11C1.02 (4)
N2—C81.345 (4)C12—C131.363 (4)
N2—C61.521 (4)C12—H121.06 (4)
N2—C71.538 (4)C13—C141.495 (6)
N3—C91.453 (4)C13—H130.96 (4)
N3—C101.522 (4)C14—C151.404 (5)
N3—C111.542 (4)C14—H140.97 (4)
N4—C121.373 (4)C15—C161.379 (4)
N4—C161.449 (4)C15—H151.01 (4)
C1—C21.386 (4)C16—H160.91 (4)
C1—C61.388 (4)C17—C181.298 (5)
C2—C31.312 (5)C17—C221.321 (5)
C2—H20.95 (4)C17—C231.505 (5)
C3—C41.487 (6)C18—C191.386 (6)
C3—H30.93 (4)C18—H180.91 (5)
C4—C51.378 (4)C19—C201.312 (6)
C4—H40.85 (5)C19—H190.82 (5)
C5—C91.607 (5)C20—C211.287 (6)
C6—H6A1.08 (4)C20—H200.90 (5)
C6—H6B1.01 (5)C21—C221.387 (5)
C7—H7A1.01 (5)C21—H210.90 (4)
C7—H7B0.89 (5)C22—H220.90 (5)
C7—H7C1.02 (5)C23—H23A0.96 (6)
C8—H8A0.99 (4)C23—H23B1.05 (6)
C8—H8B0.96 (5)C23—H23C0.85 (7)
C8—H8C1.10 (5)
Cl1—Ru1—Cl2177.19 (3)H8A—C8—H8B114 (4)
Cl1—Ru1—N490.31 (7)N2—C8—H8C106 (2)
Cl2—Ru1—N486.93 (7)H8A—C8—H8C111 (3)
N1—Ru1—N272.10 (9)H8B—C8—H8C115 (3)
N1—Ru1—N388.47 (10)N3—C9—C5118.4 (2)
N2—Ru1—N3160.57 (9)N3—C9—H9A106 (2)
N1—Ru1—N4178.38 (9)C5—C9—H9A101 (3)
N4—Ru1—N391.39 (10)N3—C9—H9B99 (2)
N4—Ru1—N2108.03 (9)C5—C9—H9B115 (2)
N1—Ru1—Cl188.06 (7)H9A—C9—H9B118 (3)
N3—Ru1—Cl186.37 (7)N3—C10—H10A104 (2)
N2—Ru1—Cl192.65 (6)N3—C10—H10B119 (2)
N1—Ru1—Cl294.70 (7)H10A—C10—H10B113 (3)
N3—Ru1—Cl294.24 (7)N3—C10—H10C113 (3)
N2—Ru1—Cl287.69 (6)H10A—C10—H10C117 (3)
C5—N1—C1122.3 (3)H10B—C10—H10C90 (4)
C5—N1—Ru1111.9 (2)N3—C11—H11A113 (3)
C1—N1—Ru1125.66 (18)N3—C11—H11B118 (3)
C8—N2—C6107.8 (2)H11A—C11—H11B93 (4)
C8—N2—C7103.9 (3)N3—C11—H11C101 (2)
C6—N2—C7103.9 (3)H11A—C11—H11C119 (4)
C8—N2—Ru1112.3 (2)H11B—C11—H11C113 (3)
C6—N2—Ru1106.65 (17)C13—C12—N4118.2 (3)
C7—N2—Ru1121.41 (19)C13—C12—H12120.4 (19)
C9—N3—C10109.2 (2)N4—C12—H12121.4 (19)
C9—N3—C11114.9 (2)C12—C13—C14120.9 (3)
C10—N3—C11101.5 (3)C12—C13—H13117 (3)
C9—N3—Ru191.76 (19)C14—C13—H13122 (3)
C10—N3—Ru1120.52 (18)C15—C14—C13121.7 (3)
C11—N3—Ru1119.13 (19)C15—C14—H14114 (3)
C12—N4—C16120.3 (2)C13—C14—H14124 (3)
C12—N4—Ru1116.5 (2)C16—C15—C14113.9 (3)
C16—N4—Ru1123.11 (17)C16—C15—H15117 (2)
C2—C1—C6120.3 (3)C14—C15—H15129 (2)
C2—C1—N1126.7 (3)C15—C16—N4124.9 (3)
C6—C1—N1112.9 (3)C15—C16—H16112 (2)
C3—C2—C1111.4 (3)N4—C16—H16123 (2)
C3—C2—H2123 (2)C18—C17—C22113.8 (3)
C1—C2—H2126 (2)C18—C17—C23122.7 (4)
C2—C3—C4121.6 (3)C22—C17—C23123.4 (4)
C2—C3—H3113 (3)C17—C18—C19121.7 (4)
C4—C3—H3125 (3)C17—C18—H18114 (3)
C5—C4—C3124.4 (3)C19—C18—H18124 (3)
C5—C4—H4114 (3)C20—C19—C18124.0 (4)
C3—C4—H4121 (3)C20—C19—H19115 (3)
N1—C5—C4113.6 (3)C18—C19—H19121 (3)
N1—C5—C9115.0 (3)C21—C20—C19114.8 (4)
C4—C5—C9131.4 (3)C21—C20—H20123 (3)
C1—C6—N2109.5 (2)C19—C20—H20122 (3)
C1—C6—H6A112 (2)C20—C21—C22121.5 (4)
N2—C6—H6A111 (2)C20—C21—H21115 (3)
C1—C6—H6B99 (3)C22—C21—H21123 (3)
N2—C6—H6B108 (3)C17—C22—C21124.2 (4)
H6A—C6—H6B115 (3)C17—C22—H22112 (3)
N2—C7—H7A106 (3)C21—C22—H22124 (3)
N2—C7—H7B105 (3)C17—C23—H23A114 (3)
H7A—C7—H7B108 (4)C17—C23—H23B108 (3)
N2—C7—H7C116 (2)H23A—C23—H23B113 (4)
H7A—C7—H7C111 (3)C17—C23—H23C110 (4)
H7B—C7—H7C109 (4)H23A—C23—H23C87 (5)
N2—C8—H8A104 (2)H23B—C23—H23C124 (5)
N2—C8—H8B106 (3)
N4—Ru1—N1—C597 (4)N1—Ru1—N4—C1642 (4)
N3—Ru1—N1—C512.4 (2)N3—Ru1—N4—C1642.7 (2)
N2—Ru1—N1—C5167.8 (2)N2—Ru1—N4—C16136.5 (2)
Cl1—Ru1—N1—C598.82 (19)Cl1—Ru1—N4—C1643.6 (2)
Cl2—Ru1—N1—C581.73 (19)Cl2—Ru1—N4—C16136.9 (2)
N4—Ru1—N1—C179 (4)C5—N1—C1—C21.1 (4)
N3—Ru1—N1—C1164.1 (2)Ru1—N1—C1—C2177.3 (2)
N2—Ru1—N1—C115.7 (2)C5—N1—C1—C6173.9 (3)
Cl1—Ru1—N1—C177.7 (2)Ru1—N1—C1—C62.3 (3)
Cl2—Ru1—N1—C1101.7 (2)C6—C1—C2—C3172.1 (3)
N1—Ru1—N2—C8146.0 (2)N1—C1—C2—C32.6 (4)
N4—Ru1—N2—C832.3 (2)C1—C2—C3—C41.5 (5)
N3—Ru1—N2—C8145.5 (3)C2—C3—C4—C50.9 (5)
Cl1—Ru1—N2—C858.9 (2)C1—N1—C5—C41.4 (4)
Cl2—Ru1—N2—C8118.3 (2)Ru1—N1—C5—C4175.2 (2)
N1—Ru1—N2—C628.10 (17)C1—N1—C5—C9176.6 (2)
N4—Ru1—N2—C6150.20 (17)Ru1—N1—C5—C96.7 (3)
N3—Ru1—N2—C627.6 (3)C3—C4—C5—N12.4 (4)
Cl1—Ru1—N2—C659.00 (17)C3—C4—C5—C9175.2 (3)
Cl2—Ru1—N2—C6123.79 (17)C2—C1—C6—N2155.6 (3)
N1—Ru1—N2—C790.4 (2)N1—C1—C6—N229.0 (4)
N4—Ru1—N2—C791.3 (2)C8—N2—C6—C1159.2 (3)
N3—Ru1—N2—C790.9 (3)C7—N2—C6—C190.9 (3)
Cl1—Ru1—N2—C7177.5 (2)Ru1—N2—C6—C138.4 (3)
Cl2—Ru1—N2—C75.3 (2)C10—N3—C9—C584.5 (3)
N1—Ru1—N3—C927.51 (17)C11—N3—C9—C5162.3 (3)
N4—Ru1—N3—C9154.10 (17)Ru1—N3—C9—C538.8 (3)
N2—Ru1—N3—C928.0 (3)N1—C5—C9—N337.7 (4)
Cl1—Ru1—N3—C9115.67 (17)C4—C5—C9—N3144.7 (3)
Cl2—Ru1—N3—C967.08 (17)C16—N4—C12—C131.5 (4)
N1—Ru1—N3—C1086.1 (2)Ru1—N4—C12—C13176.3 (2)
N4—Ru1—N3—C1092.3 (2)N4—C12—C13—C142.4 (5)
N2—Ru1—N3—C1085.6 (4)C12—C13—C14—C151.3 (5)
Cl1—Ru1—N3—C102.1 (2)C13—C14—C15—C160.9 (5)
Cl2—Ru1—N3—C10179.3 (2)C14—C15—C16—N41.9 (5)
N1—Ru1—N3—C11147.5 (2)C12—N4—C16—C150.8 (4)
N4—Ru1—N3—C1134.1 (2)Ru1—N4—C16—C15178.5 (2)
N2—Ru1—N3—C11148.0 (3)C22—C17—C18—C191.2 (6)
Cl1—Ru1—N3—C11124.3 (2)C23—C17—C18—C19176.4 (4)
Cl2—Ru1—N3—C1152.9 (2)C17—C18—C19—C200.8 (7)
N1—Ru1—N4—C12135 (3)C18—C19—C20—C210.3 (7)
N3—Ru1—N4—C12139.5 (2)C19—C20—C21—C220.8 (6)
N2—Ru1—N4—C1241.2 (2)C18—C17—C22—C210.7 (6)
Cl1—Ru1—N4—C12134.1 (2)C23—C17—C22—C21176.8 (4)
Cl2—Ru1—N4—C1245.3 (2)C20—C21—C22—C170.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cl10.96 (5)2.87 (5)3.583 (4)132 (4)
C9—H9A···Cl20.96 (4)2.68 (4)3.329 (4)125 (3)
C10—H10C···Cl10.97 (4)2.68 (4)3.057 (4)104 (3)
C12—H12···Cl21.06 (4)2.66 (4)3.107 (3)105 (2)
C4—H4···Cl1i0.84 (5)2.73 (5)3.522 (3)158 (4)
C14—H14···Cl2ii0.97 (4)2.65 (4)3.606 (4)170 (3)
Symmetry codes: (i) x1/2, y, z1/2; (ii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[RuCl2(C11H19N3)(C5H5N)]·C7H8
Mr536.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)12.7109 (1), 14.1115 (2), 27.0317 (3)
V3)4848.67 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)1.20 × 1.20 × 0.90
Data collection
DiffractometerBruker SMART CCD
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.374, 0.451
No. of measured, independent and
observed [I > 2σ(I)] reflections
43809, 9359, 7687
Rint0.041
(sin θ/λ)max1)0.878
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.117, 1.19
No. of reflections9359
No. of parameters400
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0208P)2 + 13.1818P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.07, 1.86

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai & Huttner, 1994), SHELX97.

Selected geometric parameters (Å, º) top
Ru1—Cl12.3501 (7)Ru1—N22.348 (3)
Ru1—Cl22.3580 (7)Ru1—N32.251 (3)
Ru1—N11.962 (2)Ru1—N42.096 (2)
Cl1—Ru1—Cl2177.19 (3)N1—Ru1—N388.47 (10)
Cl1—Ru1—N490.31 (7)N2—Ru1—N3160.57 (9)
Cl2—Ru1—N486.93 (7)N1—Ru1—N4178.38 (9)
N1—Ru1—N272.10 (9)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds