Download citation
Download citation
link to html
Methyl-3-oxochola-1,4,22-trien-24-oate, C25H34O3, is a naturally occurring steroid, the configuration at C20 of which has not yet been determined. Here we report the synthesis and the crystal structure analysis via X-ray diffraction of the 20R-epimer. Comparison with data reported for the natural product indicates a different configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008777/na6083sup1.cif
Contains datablocks I, ccd1487

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008777/na6083Isup2.hkl
Contains datablock I

CCDC reference: 170757

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.047
  • wR factor = 0.114
  • Data-to-parameter ratio = 10.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 2593 Count of symmetry unique reflns 2670 Completeness (_total/calc) 97.12% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Tomono et al. (1999) isolated an unknown steroid from an octocoral Dendronephthya sp. of the order Alcyonacea and they characterized it as methyl-3-oxochola-1,4,22-trien-24-oate without specifying the configuration at C20. In order to determine its structure unequivocally, an X-ray analysis has been undertaken. Starting from 3-keto-bisnor-4-cholen-22-al, the title compound, (I), has been synthesized in a three-step procedure and crystals were grown from cyclohexane.

The structure shown in Fig. 1 discloses the expected all-trans stereochemistry at the ring junctures. All bond lenghts and angles of the steroidal skeleton are within normal ranges (Duax & Norton, 1975). Selected torsion angles of the side chain and ring D are given in Table 1. The calculated values of Δ = 20.15° and ψm = 45.2° indicate a D ring conformation midway between a 13β-envelope and a 13β,14α-half-chair (Altona et al., 1968). To us, the most valuable piece of information that can be deduced from Fig. 1 is the relative configuration at C20. Since the stereochemistry in the cholan-type ring system is undoubted, one can easily determine the C20 configuration to be R. The substituents at C20 are staggered with respect to those at C17, with the methyl C21 anti to C16. The remainder of the side chain extends away from the steroid rings. The shortest intermolecular H···O contact is 2.641 (3) Å. A comparison of the title compound with the natural product shows great differences mainly in the 1H NMR chemical shifts of the side chain. This observation indicates a different configuration at C20. To get a reliable proof, the corresponding (20S)-methyl ester has been synthesized. Its crystal structure is described in Linker et al. (2001).

Experimental top

The title compound, (I), was synthesized from 3-keto-bisnor-4-cholen-22-al by Horner–Wittig reaction, reesterification and DDQ-dehydration. The resulting ester was purified by column chromatographie (cyclohexane–ethyl acetate = 2:1, RF = 0,30) and then crystallized from cyclohexane with the addition of active charcoal. After filtration of the hot solution, crystals (m.p. 440.5–441.5 K) began to grow immediately by cooling to room temperature.

Refinement top

H atoms were placed in calculated positions with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl-H and 1.2 times Ueq for the remaining H atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELTXL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View (SHELXTL-Plus; Sheldrick, 1991) of the title compound showing the labelling of all non-H atoms. Displacement ellipsoids are shown at 30% probability levels. H atoms are drawn as circles of arbitrary radii.
(I) top
Crystal data top
C25H34O3F(000) = 416
Mr = 382.52Dx = 1.177 Mg m3
Dm = not determined Mg m3
Dm measured by not measured
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.4164 (2) ÅCell parameters from 9365 reflections
b = 7.5425 (2) Åθ = 3.0–27.5°
c = 14.4209 (3) ŵ = 0.08 mm1
β = 107.7621 (11)°T = 293 K
V = 1078.98 (4) Å3Block, colourless
Z = 20.5 × 0.5 × 0.25 mm
Data collection top
Nonius KappaCCD
diffractometer
1545 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 1313
316 frames via ω–rotation (Δω = 1°) with three sets at different κ–angles and two times 30 s per frame scansk = 99
9365 measured reflectionsl = 1817
2593 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0619P)2]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C25H34O3V = 1078.98 (4) Å3
Mr = 382.52Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4164 (2) ŵ = 0.08 mm1
b = 7.5425 (2) ÅT = 293 K
c = 14.4209 (3) Å0.5 × 0.5 × 0.25 mm
β = 107.7621 (11)°
Data collection top
Nonius KappaCCD
diffractometer
1545 reflections with I > 2σ(I)
9365 measured reflectionsRint = 0.032
2593 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
2593 reflectionsΔρmin = 0.13 e Å3
257 parameters
Special details top

Experimental. The data collection covered the whole sphere of reciprocal space. The crystal-to-detector distance was 34 mm. Crystal decay was monitored by repeating the initial frames at the end of data collection and analysing the duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3896 (2)0.7502 (5)0.16936 (15)0.1220 (11)
O20.4991 (2)0.7506 (5)0.44296 (16)0.1251 (12)
O30.3843 (2)0.7433 (3)0.59963 (13)0.0844 (7)
C10.3370 (3)0.5868 (4)0.0457 (2)0.0755 (9)
H10.33760.47810.07630.091*
C20.3573 (3)0.5857 (6)0.0407 (3)0.0878 (11)
H20.37210.47830.06740.105*
C30.3568 (3)0.7469 (6)0.0941 (2)0.0843 (11)
C40.3169 (3)0.9056 (5)0.0536 (2)0.0768 (9)
H40.30561.00940.09000.092*
C50.2953 (3)0.9114 (4)0.0334 (2)0.0610 (7)
C60.2536 (4)1.0763 (4)0.0723 (3)0.0851 (10)
H6A0.23241.16580.02160.102*
H6B0.32861.11970.12560.102*
C70.1342 (3)1.0506 (4)0.1078 (2)0.0761 (9)
H7A0.05491.03060.05240.091*
H7B0.11941.15810.14000.091*
C80.1511 (3)0.8954 (3)0.17819 (18)0.0510 (6)
H80.22690.92120.23640.061*
C90.1836 (2)0.7268 (4)0.13078 (17)0.0490 (6)
H90.10850.70940.07110.059*
C100.3133 (3)0.7489 (4)0.09779 (17)0.0580 (7)
C110.1874 (3)0.5613 (3)0.1934 (2)0.0656 (8)
H11A0.19430.45700.15580.079*
H11B0.26740.56590.24960.079*
C120.0630 (3)0.5430 (4)0.2283 (2)0.0600 (7)
H12A0.01560.51980.17290.072*
H12B0.07520.44270.27230.072*
C130.0387 (2)0.7088 (3)0.28014 (16)0.0463 (6)
C140.0257 (3)0.8639 (3)0.20939 (17)0.0494 (7)
H140.04710.83320.15030.059*
C150.0261 (3)1.0183 (4)0.2574 (2)0.0648 (8)
H15A0.07861.10050.20880.078*
H15B0.04811.08190.30230.078*
C160.1146 (3)0.9276 (4)0.3117 (2)0.0666 (8)
H16A0.20810.96200.28330.080*
H16B0.08560.96210.37980.080*
C170.0986 (2)0.7243 (4)0.30202 (16)0.0493 (6)
H170.16890.68680.24300.059*
C180.1545 (2)0.7350 (4)0.37529 (17)0.0639 (7)
H18A0.23720.75400.36050.096*
H18B0.16270.63130.41530.096*
H18C0.13570.83610.40950.096*
C190.4414 (3)0.7732 (5)0.18624 (19)0.0834 (10)
H19A0.51830.78940.16360.125*
H19B0.45450.66980.22690.125*
H19C0.43080.87530.22300.125*
C200.1203 (3)0.6199 (4)0.38660 (18)0.0546 (7)
H200.04560.64720.44520.066*
C210.1219 (3)0.4183 (4)0.3703 (2)0.0742 (8)
H21A0.19180.38890.31150.111*
H21B0.13870.35890.42430.111*
H21C0.03630.38120.36490.111*
C220.2483 (3)0.6706 (4)0.40544 (18)0.0615 (8)
H220.32520.67610.35170.074*
C230.2632 (3)0.7081 (4)0.49064 (18)0.0598 (7)
H230.18640.71650.54430.072*
C240.3948 (3)0.7375 (5)0.5052 (2)0.0702 (8)
C250.5086 (4)0.7595 (6)0.6239 (2)0.1080 (14)
H25A0.56740.66290.59530.162*
H25B0.55160.86970.59910.162*
H25C0.48940.75670.69330.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1118 (19)0.202 (3)0.0666 (13)0.012 (2)0.0492 (13)0.0094 (18)
O20.0589 (14)0.245 (4)0.0766 (14)0.0354 (19)0.0276 (12)0.021 (2)
O30.0788 (13)0.1183 (18)0.0682 (11)0.0187 (14)0.0403 (10)0.0027 (13)
C10.079 (2)0.076 (2)0.089 (2)0.0116 (17)0.0514 (19)0.0064 (18)
C20.082 (2)0.108 (3)0.091 (2)0.009 (2)0.052 (2)0.007 (2)
C30.0577 (19)0.144 (3)0.0565 (16)0.008 (2)0.0244 (14)0.001 (2)
C40.0623 (18)0.110 (3)0.0589 (18)0.0004 (18)0.0197 (15)0.0272 (19)
C50.0528 (16)0.0737 (19)0.0576 (15)0.0052 (15)0.0184 (12)0.0139 (15)
C60.116 (3)0.063 (2)0.092 (2)0.0027 (19)0.055 (2)0.0186 (17)
C70.095 (2)0.0549 (17)0.089 (2)0.0045 (17)0.0432 (19)0.0127 (16)
C80.0565 (16)0.0452 (14)0.0528 (13)0.0040 (12)0.0189 (12)0.0007 (12)
C90.0511 (15)0.0519 (14)0.0471 (12)0.0022 (13)0.0196 (11)0.0007 (13)
C100.0529 (16)0.0721 (18)0.0539 (14)0.0014 (14)0.0233 (13)0.0070 (15)
C110.079 (2)0.0489 (16)0.087 (2)0.0081 (15)0.0525 (17)0.0013 (15)
C120.0701 (19)0.0488 (14)0.0759 (18)0.0019 (14)0.0445 (16)0.0013 (13)
C130.0447 (14)0.0481 (14)0.0498 (12)0.0003 (11)0.0200 (11)0.0023 (13)
C140.0492 (15)0.0487 (15)0.0508 (14)0.0042 (12)0.0159 (12)0.0003 (12)
C150.0763 (19)0.0520 (15)0.0728 (18)0.0089 (14)0.0327 (16)0.0003 (14)
C160.0693 (19)0.0665 (17)0.0714 (17)0.0117 (15)0.0326 (15)0.0037 (16)
C170.0427 (13)0.0604 (14)0.0456 (12)0.0021 (12)0.0145 (10)0.0039 (13)
C180.0484 (15)0.0849 (19)0.0585 (14)0.0033 (15)0.0166 (12)0.0056 (17)
C190.0545 (18)0.130 (3)0.0646 (16)0.0087 (18)0.0167 (14)0.0202 (19)
C200.0438 (15)0.0727 (17)0.0501 (14)0.0023 (13)0.0184 (12)0.0017 (13)
C210.089 (2)0.0677 (19)0.0803 (19)0.0058 (17)0.0472 (17)0.0067 (17)
C220.0466 (16)0.089 (2)0.0490 (14)0.0019 (14)0.0142 (12)0.0036 (14)
C230.0486 (16)0.0791 (18)0.0538 (14)0.0060 (14)0.0187 (12)0.0006 (15)
C240.064 (2)0.095 (2)0.0588 (16)0.0129 (18)0.0279 (16)0.0018 (18)
C250.102 (3)0.144 (4)0.109 (3)0.021 (3)0.077 (2)0.007 (3)
Geometric parameters (Å, º) top
O1—C31.234 (3)C13—C141.531 (3)
O2—C241.184 (3)C13—C181.539 (3)
O3—C241.333 (3)C13—C171.560 (3)
O3—C251.445 (3)C14—C151.534 (3)
C1—C21.326 (4)C14—H140.9800
C1—C101.495 (4)C15—C161.541 (4)
C1—H10.9300C15—H15A0.9700
C2—C31.439 (5)C15—H15B0.9700
C2—H20.9300C16—C171.553 (4)
C3—C41.447 (5)C16—H16A0.9700
C4—C51.341 (4)C16—H16B0.9700
C4—H40.9300C17—C201.525 (4)
C5—C61.482 (4)C17—H170.9800
C5—C101.515 (4)C18—H18A0.9600
C6—C71.496 (4)C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700C19—H19A0.9600
C7—C81.524 (4)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700C20—C221.490 (3)
C8—C141.524 (3)C20—C211.539 (4)
C8—C91.530 (3)C20—H200.9800
C8—H80.9800C21—H21A0.9600
C9—C111.534 (4)C21—H21B0.9600
C9—C101.572 (3)C21—H21C0.9600
C9—H90.9800C22—C231.315 (3)
C10—C191.550 (4)C22—H220.9300
C11—C121.534 (3)C23—C241.465 (4)
C11—H11A0.9700C23—H230.9300
C11—H11B0.9700C25—H25A0.9600
C12—C131.517 (3)C25—H25B0.9600
C12—H12A0.9700C25—H25C0.9600
C12—H12B0.9700
C24—O3—C25116.7 (2)C8—C14—C13114.02 (19)
C2—C1—C10125.1 (3)C8—C14—C15117.7 (2)
C2—C1—H1117.4C13—C14—C15104.54 (18)
C10—C1—H1117.4C8—C14—H14106.6
C1—C2—C3121.5 (3)C13—C14—H14106.6
C1—C2—H2119.3C15—C14—H14106.6
C3—C2—H2119.3C14—C15—C16103.9 (2)
O1—C3—C2122.1 (4)C14—C15—H15A111.0
O1—C3—C4122.0 (4)C16—C15—H15A111.0
C2—C3—C4116.0 (2)C14—C15—H15B111.0
C5—C4—C3123.8 (3)C16—C15—H15B111.0
C5—C4—H4118.1H15A—C15—H15B109.0
C3—C4—H4118.1C15—C16—C17107.2 (2)
C4—C5—C6122.3 (3)C15—C16—H16A110.3
C4—C5—C10121.5 (3)C17—C16—H16A110.3
C6—C5—C10116.3 (2)C15—C16—H16B110.3
C5—C6—C7113.1 (2)C17—C16—H16B110.3
C5—C6—H6A109.0H16A—C16—H16B108.5
C7—C6—H6A109.0C20—C17—C16113.0 (2)
C5—C6—H6B109.0C20—C17—C13119.4 (2)
C7—C6—H6B109.0C16—C17—C13102.9 (2)
H6A—C6—H6B107.8C20—C17—H17106.9
C6—C7—C8112.8 (3)C16—C17—H17106.9
C6—C7—H7A109.0C13—C17—H17106.9
C8—C7—H7A109.0C13—C18—H18A109.5
C6—C7—H7B109.0C13—C18—H18B109.5
C8—C7—H7B109.0H18A—C18—H18B109.5
H7A—C7—H7B107.8C13—C18—H18C109.5
C14—C8—C7112.4 (2)H18A—C18—H18C109.5
C14—C8—C9109.19 (19)H18B—C18—H18C109.5
C7—C8—C9109.71 (19)C10—C19—H19A109.5
C14—C8—H8108.5C10—C19—H19B109.5
C7—C8—H8108.5H19A—C19—H19B109.5
C9—C8—H8108.5C10—C19—H19C109.5
C8—C9—C11112.51 (17)H19A—C19—H19C109.5
C8—C9—C10112.04 (19)H19B—C19—H19C109.5
C11—C9—C10113.2 (2)C22—C20—C17111.9 (2)
C8—C9—H9106.1C22—C20—C21108.2 (2)
C11—C9—H9106.1C17—C20—C21112.7 (2)
C10—C9—H9106.1C22—C20—H20108.0
C1—C10—C5111.3 (2)C17—C20—H20108.0
C1—C10—C19106.1 (2)C21—C20—H20108.0
C5—C10—C19108.9 (3)C20—C21—H21A109.5
C1—C10—C9110.8 (2)C20—C21—H21B109.5
C5—C10—C9108.3 (2)H21A—C21—H21B109.5
C19—C10—C9111.53 (18)C20—C21—H21C109.5
C12—C11—C9113.2 (2)H21A—C21—H21C109.5
C12—C11—H11A108.9H21B—C21—H21C109.5
C9—C11—H11A108.9C23—C22—C20126.3 (2)
C12—C11—H11B108.9C23—C22—H22116.8
C9—C11—H11B108.9C20—C22—H22116.8
H11A—C11—H11B107.7C22—C23—C24123.3 (3)
C13—C12—C11111.9 (2)C22—C23—H23118.4
C13—C12—H12A109.2C24—C23—H23118.4
C11—C12—H12A109.2O2—C24—O3122.8 (2)
C13—C12—H12B109.2O2—C24—C23125.9 (2)
C11—C12—H12B109.2O3—C24—C23111.3 (3)
H12A—C12—H12B107.9O3—C25—H25A109.5
C12—C13—C14107.20 (17)O3—C25—H25B109.5
C12—C13—C18110.0 (2)H25A—C25—H25B109.5
C14—C13—C18112.4 (2)O3—C25—H25C109.5
C12—C13—C17117.6 (2)H25A—C25—H25C109.5
C14—C13—C17100.23 (18)H25B—C25—H25C109.5
C18—C13—C17109.13 (17)
C10—C1—C2—C30.6 (5)C11—C12—C13—C1865.8 (3)
C1—C2—C3—O1172.1 (3)C11—C12—C13—C17168.5 (2)
C1—C2—C3—C47.3 (5)C7—C8—C14—C13179.9 (2)
O1—C3—C4—C5172.2 (3)C9—C8—C14—C1358.0 (2)
C2—C3—C4—C57.2 (5)C7—C8—C14—C1557.0 (3)
C3—C4—C5—C6179.6 (3)C9—C8—C14—C15179.0 (2)
C3—C4—C5—C100.8 (5)C12—C13—C14—C860.9 (2)
C4—C5—C6—C7130.1 (3)C18—C13—C14—C860.1 (2)
C10—C5—C6—C750.2 (4)C17—C13—C14—C8175.82 (19)
C5—C6—C7—C851.2 (4)C12—C13—C14—C15169.1 (2)
C6—C7—C8—C14176.7 (2)C18—C13—C14—C1569.9 (3)
C6—C7—C8—C955.0 (3)C17—C13—C14—C1545.9 (2)
C14—C8—C9—C1150.4 (3)C8—C14—C15—C16160.0 (2)
C7—C8—C9—C11174.0 (3)C13—C14—C15—C1632.3 (3)
C14—C8—C9—C10179.3 (2)C14—C15—C16—C175.7 (3)
C7—C8—C9—C1057.1 (3)C15—C16—C17—C20152.3 (2)
C2—C1—C10—C58.1 (4)C15—C16—C17—C1322.1 (3)
C2—C1—C10—C19110.2 (3)C12—C13—C17—C2077.2 (3)
C2—C1—C10—C9128.6 (3)C14—C13—C17—C20167.2 (2)
C4—C5—C10—C18.0 (4)C18—C13—C17—C2048.9 (3)
C6—C5—C10—C1172.4 (2)C12—C13—C17—C16156.7 (2)
C4—C5—C10—C19108.6 (3)C14—C13—C17—C1641.0 (2)
C6—C5—C10—C1971.1 (3)C18—C13—C17—C1677.2 (2)
C4—C5—C10—C9130.0 (3)C16—C17—C20—C2250.6 (3)
C6—C5—C10—C950.4 (3)C13—C17—C20—C22171.8 (2)
C8—C9—C10—C1176.1 (2)C16—C17—C20—C21172.8 (2)
C11—C9—C10—C155.4 (3)C13—C17—C20—C2166.0 (3)
C8—C9—C10—C553.8 (3)C17—C20—C22—C23132.3 (3)
C11—C9—C10—C5177.7 (2)C21—C20—C22—C23103.0 (3)
C8—C9—C10—C1966.0 (3)C20—C22—C23—C24172.9 (3)
C11—C9—C10—C1962.6 (3)C25—O3—C24—O22.4 (5)
C8—C9—C11—C1249.8 (3)C25—O3—C24—C23175.9 (3)
C10—C9—C11—C12178.1 (2)C22—C23—C24—O28.9 (5)
C9—C11—C12—C1353.6 (3)C22—C23—C24—O3169.4 (3)
C11—C12—C13—C1456.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.962.643.441 (3)141
C21—H21A···O1ii0.962.643.585 (3)168
C25—H25C···O1iii0.962.653.456 (5)142
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H34O3
Mr382.52
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.4164 (2), 7.5425 (2), 14.4209 (3)
β (°) 107.7621 (11)
V3)1078.98 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.5 × 0.5 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9365, 2593, 1545
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.01
No. of reflections2593
No. of parameters257
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELTXL-Plus (Sheldrick, 1991), SHELXL97 and PARST95 (Nardelli, 1995).

Selected torsion angles (º) top
C17—C13—C14—C1545.9 (2)C16—C17—C20—C21172.8 (2)
C13—C14—C15—C1632.3 (3)C13—C17—C20—C2166.0 (3)
C14—C15—C16—C175.7 (3)C17—C20—C22—C23132.3 (3)
C15—C16—C17—C1322.1 (3)C21—C20—C22—C23103.0 (3)
C14—C13—C17—C1641.0 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds