Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Methyl-3-oxochola-1,4,22-trien-24-oate, C25H34O3, is a naturally occurring steroid, the configuration at C20 of which has not yet been determined. Here we report the synthesis and the crystal structure analysis via X-ray diffraction of the 20S-epimer. The analytical data are in good agreement with those reported for the natural product.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008789/na6082sup1.cif
Contains datablocks I, ccd1480

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008789/na6082Isup2.hkl
Contains datablock I

CCDC reference: 170756

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.123
  • Data-to-parameter ratio = 11.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 2863 Count of symmetry unique reflns 2873 Completeness (_total/calc) 99.65% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

In Linker et al. (2001), we describe the crystal structure of (20R)-methyl-3-oxochola-1,4,22-trien-24-oate. Comparison of its NMR data with the naturally occurring steroid [isolated by Tomono et al. (1999)] shows differences mainly in the side chain 1H NMR chemical shifts. Our assumption of a different configuration at C20 in the natural product might be supported by comparison with the 20S-epimer. Starting from (20S)-3-keto-bisnor-4-cholen-22-al, an epimeric mixture (at C20) of the two methylesters has been synthesized in a four-step procedure. Repeated crystallizations allow for an easy separation and the analytic data of the title compound are in good agreement with the published data, so that an X-ray analysis should proof its relative configuration.

All bond lenghts and angles of the steroidal skeleton are within normal range (Duax & Norton, 1975) and in accordance with the epimeric product. The D ring adopts a conformation between 13β-envelope and 13β,14α-half-chair, too [Δ = 12.84°, ψm = 47.1°; calculated according to Altona et al. (1968)]. Significant differences between the two epimers are observed in the side-chain torsion angles which are presented in Table 1. The configuration at C20 can be determined to be S, since the stereochemistry inside the cholan-type ring system is known. The substituents at C20 are staggered with respect to those at C17, but in this case C22 is anti to C16. The side chain is orientated towards the ring system. Our results allow an unambiguous structural determination of the isolated natural compound as (20S)-methyl-3-oxochola-1,4,22-triene-24-oate.

Experimental top

The mixture of epimeric methyl esters was obtained from 3-keto-bisnor-4-cholen-22-al by epimerization with H2SO4/EtOH, Horner–Wittig reaction, re-esterification and DDQ-dehydration. Purification by column chromatographie (cyclohexane–ethyl acetate = 2:1, RF = 0.30) and crystallization from cyclohexane led to the pure (20R)-methyl ester. The mother liquor was evaporated and after four crystallizations from cyclohexane (once with the addition of active charcoal), the pure methy ester (I) was obtained as fine needles (m.p. = 411–412 K) after standing overnight at room temperature.

Refinement top

H atoms were placed in calculated positions with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl-H and 1.2 times Ueq for the remaining H atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELTXL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View (SHELXTL-Plus; Sheldrick, 1991) of the title compound showing the labelling of all non-H atoms. Displacement ellipsoids are shown at 30% probability levels. H atoms are drawn as circles of arbitrary radii.
(I) top
Crystal data top
C25H34O3Dx = 1.146 Mg m3
Dm = not determined Mg m3
Dm measured by not measured
Mr = 382.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 27079 reflections
a = 10.0940 (2) Åθ = 2.9–27.5°
b = 13.5844 (3) ŵ = 0.07 mm1
c = 16.1679 (3) ÅT = 293 K
V = 2216.96 (8) Å3Plate, colourless
Z = 40.30 × 0.30 × 0.05 mm
F(000) = 832
Data collection top
Nonius KappaCCD
diffractometer
1585 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 1313
399 frames via ω–rotation (Δω = 1°) with four sets at different κ–angles and two times 75 s per frame scansk = 1717
27079 measured reflectionsl = 2020
2863 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0657P)2]
where P = (Fo2 + 2Fc2)/3
2863 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C25H34O3V = 2216.96 (8) Å3
Mr = 382.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0940 (2) ŵ = 0.07 mm1
b = 13.5844 (3) ÅT = 293 K
c = 16.1679 (3) Å0.30 × 0.30 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1585 reflections with I > 2σ(I)
27079 measured reflectionsRint = 0.053
2863 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.11 e Å3
2863 reflectionsΔρmin = 0.13 e Å3
257 parameters
Special details top

Experimental. The data collection covered the whole sphere of reciprocal space. The crystal-to-detector distance was 34 mm. Crystal decay was monitored by repeating the initial frames at the end of data collection and analysing the duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3780 (3)0.0350 (3)0.9852 (2)0.1478 (13)
O20.6597 (2)0.33181 (17)0.91519 (13)0.0832 (7)
O30.8506 (2)0.26059 (16)0.87948 (13)0.0860 (7)
C10.0315 (4)0.0102 (2)0.96027 (17)0.0675 (8)
H10.04470.01650.99210.081*
C20.1463 (4)0.0267 (3)0.9966 (2)0.0823 (10)
H20.14800.04281.05250.099*
C30.2704 (4)0.0204 (3)0.9511 (3)0.0922 (12)
C40.2614 (3)0.0032 (3)0.8649 (2)0.0802 (10)
H40.33930.00630.83430.096*
C50.1465 (3)0.0210 (2)0.82625 (18)0.0622 (8)
C60.1397 (3)0.0397 (3)0.73515 (19)0.0882 (11)
H6A0.11190.10720.72590.106*
H6B0.22750.03210.71170.106*
C70.0485 (3)0.0263 (3)0.69234 (18)0.0720 (9)
H7A0.08910.09080.68880.086*
H7B0.03630.00240.63630.086*
C80.0870 (3)0.03722 (19)0.73251 (15)0.0495 (7)
H80.13490.02510.72620.059*
C90.0742 (3)0.05968 (17)0.82519 (15)0.0471 (6)
H90.02720.12260.82910.057*
C100.0151 (3)0.0180 (2)0.87078 (16)0.0558 (7)
C110.2094 (3)0.0760 (2)0.86592 (16)0.0591 (7)
H11A0.25760.01420.86660.071*
H11B0.19620.09640.92280.071*
C120.2931 (3)0.1541 (2)0.82087 (15)0.0564 (7)
H12A0.25140.21800.82710.068*
H12B0.38020.15740.84600.068*
C130.3077 (3)0.13053 (18)0.72875 (14)0.0460 (6)
C140.1683 (3)0.11778 (18)0.69291 (14)0.0478 (7)
H140.12130.17950.70420.057*
C150.1920 (3)0.1153 (2)0.59950 (16)0.0670 (8)
H15A0.11400.13710.56970.080*
H15B0.21500.04950.58130.080*
C160.3083 (3)0.1869 (2)0.58619 (16)0.0638 (8)
H16A0.27850.24530.55720.077*
H16B0.37740.15570.55370.077*
C170.3614 (3)0.21452 (19)0.67315 (14)0.0508 (7)
H170.31700.27540.69010.061*
C180.3932 (3)0.0375 (2)0.71815 (18)0.0617 (8)
H18A0.47820.04780.74340.092*
H18B0.40480.02400.66030.092*
H18C0.35000.01740.74410.092*
C190.0467 (3)0.1221 (2)0.8698 (2)0.0732 (9)
H19A0.12730.12190.90130.110*
H19B0.06560.14090.81380.110*
H19C0.01440.16830.89360.110*
C200.5110 (3)0.2347 (2)0.67331 (16)0.0579 (7)
H200.55650.17360.65840.069*
C210.5478 (4)0.3133 (2)0.60891 (19)0.0865 (10)
H21A0.50470.37420.62250.130*
H21B0.51970.29200.55510.130*
H21C0.64210.32280.60890.130*
C220.5610 (3)0.26675 (19)0.75581 (16)0.0556 (7)
H220.50550.30700.78690.067*
C230.6756 (3)0.24362 (19)0.78871 (17)0.0618 (8)
H230.72960.19960.76030.074*
C240.7234 (3)0.2829 (2)0.86745 (18)0.0621 (8)
C250.9105 (4)0.2956 (3)0.9551 (2)0.1067 (14)
H25A0.90680.36620.95650.160*
H25B1.00130.27460.95730.160*
H25C0.86340.26931.00160.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.090 (2)0.211 (3)0.142 (3)0.035 (2)0.051 (2)0.007 (2)
O20.0802 (17)0.0985 (16)0.0709 (14)0.0082 (13)0.0011 (13)0.0184 (13)
O30.0720 (16)0.0994 (16)0.0865 (15)0.0183 (13)0.0187 (13)0.0262 (13)
C10.072 (2)0.080 (2)0.0506 (18)0.0087 (18)0.0058 (16)0.0079 (14)
C20.087 (3)0.096 (2)0.064 (2)0.009 (2)0.023 (2)0.0050 (17)
C30.080 (3)0.099 (3)0.098 (3)0.008 (2)0.030 (2)0.010 (2)
C40.055 (2)0.099 (2)0.087 (3)0.0021 (18)0.0062 (18)0.027 (2)
C50.055 (2)0.0693 (17)0.0623 (19)0.0077 (16)0.0010 (16)0.0128 (15)
C60.063 (2)0.135 (3)0.067 (2)0.035 (2)0.0122 (17)0.018 (2)
C70.061 (2)0.102 (2)0.0527 (17)0.0136 (19)0.0058 (16)0.0042 (16)
C80.0476 (17)0.0571 (15)0.0437 (15)0.0000 (13)0.0030 (12)0.0024 (12)
C90.0454 (16)0.0508 (15)0.0450 (14)0.0002 (12)0.0001 (13)0.0017 (11)
C100.0527 (17)0.0647 (17)0.0500 (16)0.0030 (14)0.0036 (13)0.0072 (14)
C110.0570 (18)0.0812 (18)0.0392 (14)0.0095 (15)0.0037 (14)0.0037 (13)
C120.0581 (17)0.0702 (17)0.0407 (14)0.0128 (15)0.0014 (14)0.0027 (13)
C130.0483 (16)0.0516 (14)0.0382 (13)0.0015 (13)0.0013 (13)0.0008 (11)
C140.0499 (17)0.0557 (15)0.0377 (14)0.0062 (13)0.0026 (13)0.0008 (11)
C150.066 (2)0.092 (2)0.0432 (15)0.0110 (17)0.0040 (16)0.0071 (14)
C160.0703 (19)0.0759 (18)0.0454 (16)0.0047 (16)0.0012 (16)0.0079 (13)
C170.0539 (17)0.0542 (15)0.0443 (14)0.0039 (14)0.0035 (13)0.0017 (12)
C180.0563 (19)0.0620 (17)0.0666 (18)0.0036 (15)0.0007 (15)0.0015 (14)
C190.081 (2)0.0635 (18)0.075 (2)0.0005 (17)0.0028 (19)0.0148 (15)
C200.0570 (18)0.0641 (17)0.0526 (16)0.0019 (14)0.0084 (14)0.0032 (14)
C210.084 (2)0.107 (3)0.0688 (19)0.030 (2)0.0133 (19)0.0122 (18)
C220.0536 (18)0.0555 (16)0.0576 (16)0.0050 (15)0.0090 (15)0.0013 (13)
C230.065 (2)0.0567 (16)0.0636 (17)0.0020 (16)0.0039 (16)0.0085 (14)
C240.066 (2)0.0566 (17)0.0637 (19)0.0024 (16)0.0023 (17)0.0024 (15)
C250.100 (3)0.119 (3)0.101 (3)0.014 (3)0.040 (2)0.039 (2)
Geometric parameters (Å, º) top
O1—C31.234 (4)C13—C141.532 (4)
O2—C241.205 (3)C13—C181.540 (4)
O3—C241.333 (4)C13—C171.550 (3)
O3—C251.444 (4)C14—C151.529 (3)
C1—C21.318 (4)C14—H140.9800
C1—C101.506 (4)C15—C161.540 (4)
C1—H10.9300C15—H15A0.9700
C2—C31.455 (5)C15—H15B0.9700
C2—H20.9300C16—C171.551 (4)
C3—C41.433 (5)C16—H16A0.9700
C4—C51.340 (4)C16—H16B0.9700
C4—H40.9300C17—C201.535 (4)
C5—C61.496 (4)C17—H170.9800
C5—C101.510 (4)C18—H18A0.9600
C6—C71.459 (4)C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700C19—H19A0.9600
C7—C81.522 (4)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700C20—C221.491 (4)
C8—C141.510 (4)C20—C211.536 (4)
C8—C91.535 (3)C20—H200.9800
C8—H80.9800C21—H21A0.9600
C9—C111.531 (4)C21—H21B0.9600
C9—C101.572 (4)C21—H21C0.9600
C9—H90.9800C22—C231.311 (4)
C10—C191.546 (4)C22—H220.9300
C11—C121.540 (4)C23—C241.463 (4)
C11—H11A0.9700C23—H230.9300
C11—H11B0.9700C25—H25A0.9600
C12—C131.531 (3)C25—H25B0.9600
C12—H12A0.9700C25—H25C0.9600
C12—H12B0.9700
C24—O3—C25116.9 (3)C8—C14—C15119.2 (2)
C2—C1—C10124.6 (3)C8—C14—C13114.9 (2)
C2—C1—H1117.7C15—C14—C13103.4 (2)
C10—C1—H1117.7C8—C14—H14106.1
C1—C2—C3121.4 (3)C15—C14—H14106.1
C1—C2—H2119.3C13—C14—H14106.1
C3—C2—H2119.3C14—C15—C16104.1 (2)
O1—C3—C4121.8 (4)C14—C15—H15A110.9
O1—C3—C2121.5 (4)C16—C15—H15A110.9
C4—C3—C2116.7 (3)C14—C15—H15B110.9
C5—C4—C3123.3 (3)C16—C15—H15B110.9
C5—C4—H4118.3H15A—C15—H15B109.0
C3—C4—H4118.3C15—C16—C17106.8 (2)
C4—C5—C6122.0 (3)C15—C16—H16A110.4
C4—C5—C10122.2 (3)C17—C16—H16A110.4
C6—C5—C10115.7 (3)C15—C16—H16B110.4
C7—C6—C5113.1 (3)C17—C16—H16B110.4
C7—C6—H6A109.0H16A—C16—H16B108.6
C5—C6—H6A109.0C20—C17—C13118.3 (2)
C7—C6—H6B109.0C20—C17—C16112.6 (2)
C5—C6—H6B109.0C13—C17—C16103.1 (2)
H6A—C6—H6B107.8C20—C17—H17107.4
C6—C7—C8115.1 (2)C13—C17—H17107.4
C6—C7—H7A108.5C16—C17—H17107.4
C8—C7—H7A108.5C13—C18—H18A109.5
C6—C7—H7B108.5C13—C18—H18B109.5
C8—C7—H7B108.5H18A—C18—H18B109.5
H7A—C7—H7B107.5C13—C18—H18C109.5
C14—C8—C7112.2 (2)H18A—C18—H18C109.5
C14—C8—C9108.4 (2)H18B—C18—H18C109.5
C7—C8—C9111.1 (2)C10—C19—H19A109.5
C14—C8—H8108.3C10—C19—H19B109.5
C7—C8—H8108.3H19A—C19—H19B109.5
C9—C8—H8108.3C10—C19—H19C109.5
C11—C9—C8111.9 (2)H19A—C19—H19C109.5
C11—C9—C10114.0 (2)H19B—C19—H19C109.5
C8—C9—C10111.9 (2)C22—C20—C17112.7 (2)
C11—C9—H9106.1C22—C20—C21108.8 (2)
C8—C9—H9106.1C17—C20—C21111.2 (2)
C10—C9—H9106.1C22—C20—H20108.0
C1—C10—C5111.6 (3)C17—C20—H20108.0
C1—C10—C19106.7 (2)C21—C20—H20108.0
C5—C10—C19109.0 (2)C20—C21—H21A109.5
C1—C10—C9110.0 (2)C20—C21—H21B109.5
C5—C10—C9107.4 (2)H21A—C21—H21B109.5
C19—C10—C9112.2 (2)C20—C21—H21C109.5
C9—C11—C12112.6 (2)H21A—C21—H21C109.5
C9—C11—H11A109.1H21B—C21—H21C109.5
C12—C11—H11A109.1C23—C22—C20126.3 (3)
C9—C11—H11B109.1C23—C22—H22116.9
C12—C11—H11B109.1C20—C22—H22116.9
H11A—C11—H11B107.8C22—C23—C24123.9 (3)
C13—C12—C11111.6 (2)C22—C23—H23118.1
C13—C12—H12A109.3C24—C23—H23118.1
C11—C12—H12A109.3O2—C24—O3123.1 (3)
C13—C12—H12B109.3O2—C24—C23125.6 (3)
C11—C12—H12B109.3O3—C24—C23111.2 (3)
H12A—C12—H12B108.0O3—C25—H25A109.5
C12—C13—C14107.6 (2)O3—C25—H25B109.5
C12—C13—C18109.5 (2)H25A—C25—H25B109.5
C14—C13—C18112.3 (2)O3—C25—H25C109.5
C12—C13—C17116.3 (2)H25A—C25—H25C109.5
C14—C13—C17100.67 (19)H25B—C25—H25C109.5
C18—C13—C17110.1 (2)
C10—C1—C2—C31.1 (5)C11—C12—C13—C1867.9 (3)
C1—C2—C3—O1179.4 (4)C11—C12—C13—C17166.5 (2)
C1—C2—C3—C40.9 (5)C7—C8—C14—C1554.7 (3)
O1—C3—C4—C5178.9 (4)C9—C8—C14—C15177.8 (2)
C2—C3—C4—C51.4 (5)C7—C8—C14—C13178.2 (2)
C3—C4—C5—C6176.4 (3)C9—C8—C14—C1358.7 (3)
C3—C4—C5—C100.2 (5)C12—C13—C14—C859.4 (3)
C4—C5—C6—C7125.1 (4)C18—C13—C14—C861.3 (3)
C10—C5—C6—C751.7 (4)C17—C13—C14—C8178.4 (2)
C5—C6—C7—C847.6 (4)C12—C13—C14—C15169.1 (2)
C6—C7—C8—C14171.2 (3)C18—C13—C14—C1570.3 (3)
C6—C7—C8—C949.6 (4)C17—C13—C14—C1546.8 (2)
C14—C8—C9—C1153.4 (3)C8—C14—C15—C16163.6 (2)
C7—C8—C9—C11177.2 (2)C13—C14—C15—C1634.7 (3)
C14—C8—C9—C10177.2 (2)C14—C15—C16—C179.0 (3)
C7—C8—C9—C1053.4 (3)C12—C13—C17—C2078.7 (3)
C2—C1—C10—C52.5 (5)C14—C13—C17—C20165.4 (2)
C2—C1—C10—C19116.5 (4)C18—C13—C17—C2046.7 (3)
C2—C1—C10—C9121.5 (4)C12—C13—C17—C16156.2 (2)
C4—C5—C10—C12.0 (4)C14—C13—C17—C1640.3 (2)
C6—C5—C10—C1174.8 (3)C18—C13—C17—C1678.4 (3)
C4—C5—C10—C19115.7 (3)C15—C16—C17—C20148.3 (2)
C6—C5—C10—C1967.6 (3)C15—C16—C17—C1319.6 (3)
C4—C5—C10—C9122.6 (3)C13—C17—C20—C2262.9 (3)
C6—C5—C10—C954.2 (3)C16—C17—C20—C22176.8 (2)
C11—C9—C10—C155.1 (3)C13—C17—C20—C21174.6 (2)
C8—C9—C10—C1176.6 (2)C16—C17—C20—C2154.3 (3)
C11—C9—C10—C5176.8 (2)C17—C20—C22—C23143.4 (3)
C8—C9—C10—C555.0 (3)C21—C20—C22—C2392.8 (4)
C11—C9—C10—C1963.5 (3)C20—C22—C23—C24175.4 (3)
C8—C9—C10—C1964.7 (3)C25—O3—C24—O21.8 (4)
C8—C9—C11—C1253.0 (3)C25—O3—C24—C23179.7 (3)
C10—C9—C11—C12178.7 (2)C22—C23—C24—O28.4 (5)
C9—C11—C12—C1354.0 (3)C22—C23—C24—O3169.5 (3)
C11—C12—C13—C1454.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.972.643.529 (5)152
Symmetry code: (i) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC25H34O3
Mr382.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.0940 (2), 13.5844 (3), 16.1679 (3)
V3)2216.96 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.30 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27079, 2863, 1585
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.00
No. of reflections2863
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELTXL-Plus (Sheldrick, 1991), SHELXL97 and PARST95 (Nardelli, 1995).

Selected torsion angles (º) top
C17—C13—C14—C1546.8 (2)C13—C17—C20—C21174.6 (2)
C13—C14—C15—C1634.7 (3)C16—C17—C20—C2154.3 (3)
C14—C15—C16—C179.0 (3)C17—C20—C22—C23143.4 (3)
C14—C13—C17—C1640.3 (2)C21—C20—C22—C2392.8 (4)
C15—C16—C17—C1319.6 (3)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds