Download citation
Download citation
link to html
The title compound, C33H26N2O4, is derived from an unexpected spiran synthesis. Its crystal structure has been determined at room temperature. The skeleton is composed of a spiro­[4.4] system formed by an isoxazolone and a substituted pyrroline ring obtained by a series of tandem reactions. The carbonyl exocyclic bond angles [121.9 (2) and 129.9 (2)°] of the isox­azol­one ring show the usual asymmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100561X/na6058sup1.cif
Contains datablocks comp4, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100561X/na6058Isup2.hkl
Contains datablock I

CCDC reference: 165645

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.097
  • Data-to-parameter ratio = 17.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.716
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The formation of the title compound, (I), has been interpreted, like the p-MeC6H4– derivative (Bruno et al., 2001a), as the unexpected product of a series of tandem reactions involving Michael- and retro-Michael reactions, C-alkylation, aldol addition and diastereospecific cyclization (Risitano et al., 2001).

The stereochemistry of the CC double bond and of the tetrahedral C atoms of the product could not easily be established by any spectral technique. The structure at the solid state has been unambiguously determined by X-ray diffraction diffraction.

The title compound is very similar to the already reported p-Me derivative (Bruno et al., 2001a), obtained by the similar reaction with the same N-ylide. The molecular skeleton is a spiro[4.4] system constituted by an isoxazolone and a three-substituted pyrroline ring. The two chiral C atoms, the spiro center C1 and the pyrroline C4 atom, have the same configuration (R,R in Fig. 1). Due to the crystallographic centre of symmetry, the crystal is the racemic mixture of both enhantiomers.

The geometric values of the two similar compounds are comparable within the experimental error and are in good agreement with the known data (Bertolasi et al., 1994; Brehm et al., 1992). The carbonyl group shows almost the same asymmetry, in agreement with the other known carbonyl groups (Allen et al., 1991) and cumarine derivatives (Bruno et al., 2001b). Both compounds have the isoxazolone linked through the C2 atom to a phenyl group.

Although the torsion angles defining the orientation of phenyl with respect to the eterocyclic ring are very different [N1—C2—C14—C15 = 0.6 (3) versus -32.1 (5)° of the p-tolyl derivative] the C2—C14 bond distances are almost equal. The largest discrepancy between the two similar structures is observed for the C6—C26—C27—C28 torsion angle. Due to steric interactions, the methoxy groups are differently oriented with respect to the phenyl to which are bonded [C13—O3—C12—C7 = 179.4 (2)°, while C33—O4—C32—C27 = -163.8 (2)°]. Weak intra- and intermolecular hydrogen-bond interactions determine the crystal packing and the relative orientations of substituents with respect to the single spiranic fragment.

Experimental top

The title compound was obtained as a single diastereomer from 4-arylmethyleneisoxazol-5-one and in situ prepared N-ylide (Risitano et al., 1997).

Refinement top

Reflection intensities were evaluated by profile fitting of a 96-steps peak scan among 2θ shells procedure (Diamond, 1969) and then corrected for Lorentz–polarization effects. Standard uncertainties σ(I) were estimated from counting statistics. H atoms were located in idealized positions and allowed to ride on their parent C atoms with isotropic displacement parameters related to the refined values of their corresponding parent atoms.

Computing details top

Data collection: P3/V (Siemens,1989); cell refinement: P3/V; data reduction: SHELXTL-Plus (Sheldrick, 1990); program(s) used to solve structure: SIR92 (Altomare, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: PARST97 (Nardelli, 1995) and SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective view of compound (I) with the atomic numbering scheme. The non-H-atom displacement ellipsoids ate at the 30% probability level.
9-(2-Methoxy-benzylidene)-6-(2-methoxy-phenyl)-4,8-diphenyl-2-oxa- 3,7-diazaspiro[4.4]nona-3,7-dien-1-one top
Crystal data top
C33H26N2O4Z = 2
Mr = 514.56F(000) = 540
Triclinic, P1Dx = 1.300 Mg m3
a = 9.127 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.450 (3) ÅCell parameters from 33 reflections
c = 14.632 (3) Åθ = 6.0–12.9°
α = 99.172 (19)°µ = 0.09 mm1
β = 101.131 (17)°T = 293 K
γ = 101.239 (18)°Irregular, colourless
V = 1314.6 (5) Å30.17 × 0.13 × 0.10 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.032
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 2.0°
Graphite monochromatorh = 011
ω–2θ scansk = 1313
6449 measured reflectionsl = 1918
6067 independent reflections3 standard reflections every 197 reflections
2324 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.72(Δ/σ)max < 0.001
6067 reflectionsΔρmax = 0.14 e Å3
353 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (10)
Crystal data top
C33H26N2O4γ = 101.239 (18)°
Mr = 514.56V = 1314.6 (5) Å3
Triclinic, P1Z = 2
a = 9.127 (2) ÅMo Kα radiation
b = 10.450 (3) ŵ = 0.09 mm1
c = 14.632 (3) ÅT = 293 K
α = 99.172 (19)°0.17 × 0.13 × 0.10 mm
β = 101.131 (17)°
Data collection top
Siemens P4
diffractometer
Rint = 0.032
6449 measured reflections3 standard reflections every 197 reflections
6067 independent reflections intensity decay: none
2324 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.72Δρmax = 0.14 e Å3
6067 reflectionsΔρmin = 0.12 e Å3
353 parameters
Special details top

Experimental. All calculations were performed on a µ-VAX 3400 and on a DEC-alpha 3000/400.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10977 (17)0.19704 (15)0.05703 (10)0.0697 (4)
O20.06428 (19)0.08620 (16)0.10916 (11)0.0778 (5)
O30.44275 (16)0.06542 (16)0.18440 (11)0.0767 (5)
O40.13162 (16)0.62202 (13)0.38007 (11)0.0627 (4)
N10.1893 (2)0.28770 (18)0.09999 (12)0.0623 (5)
N20.01940 (19)0.05973 (15)0.33299 (11)0.0522 (5)
C10.0554 (2)0.20630 (18)0.22057 (13)0.0427 (5)
C20.1566 (2)0.29628 (19)0.19064 (14)0.0472 (5)
C30.0222 (2)0.1529 (2)0.12636 (15)0.0546 (6)
C40.1401 (2)0.08823 (18)0.26221 (13)0.0465 (5)
H4A0.21030.12370.29680.056*
C50.1027 (2)0.15468 (18)0.35306 (13)0.0438 (5)
C60.0927 (2)0.26075 (18)0.29690 (13)0.0416 (5)
C70.2340 (2)0.03312 (19)0.18993 (14)0.0502 (5)
C80.1717 (3)0.1378 (2)0.16066 (17)0.0764 (7)
H8A0.06860.13290.18570.092*
C90.2581 (4)0.2496 (3)0.0953 (2)0.1033 (10)
H9A0.21350.31890.07580.124*
C100.4097 (4)0.2574 (3)0.0596 (2)0.1042 (10)
H10A0.46890.33290.01570.125*
C110.4760 (3)0.1553 (3)0.08741 (18)0.0842 (8)
H11A0.57960.16180.06260.101*
C120.3888 (3)0.0427 (2)0.15233 (16)0.0594 (6)
C130.5991 (3)0.0641 (3)0.1489 (2)0.1016 (9)
H13A0.62060.14550.17750.122*
H13B0.66330.01010.16400.122*
H13C0.61920.05580.08110.122*
C140.2262 (2)0.38041 (18)0.25122 (15)0.0484 (5)
C150.3275 (3)0.4497 (2)0.21214 (18)0.0766 (7)
H15A0.35020.44490.14670.092*
C160.3958 (3)0.5264 (3)0.2692 (3)0.0960 (10)
H16A0.46380.57290.24180.115*
C170.3644 (3)0.5347 (2)0.3659 (2)0.0851 (8)
H17A0.41250.58470.40380.102*
C180.2614 (3)0.4686 (2)0.40581 (19)0.0758 (7)
H18A0.23760.47490.47130.091*
C190.1932 (3)0.3928 (2)0.34877 (16)0.0621 (6)
H19A0.12290.34880.37670.075*
C200.2378 (2)0.15512 (17)0.42693 (13)0.0435 (5)
C210.3866 (2)0.19547 (19)0.41597 (15)0.0546 (6)
H21A0.40240.22410.36090.066*
C220.5108 (2)0.1935 (2)0.48570 (17)0.0656 (7)
H22A0.60980.21970.47710.079*
C230.4892 (3)0.1531 (2)0.56798 (17)0.0685 (7)
H23A0.57320.15370.61570.082*
C240.3423 (3)0.1118 (2)0.57934 (15)0.0615 (6)
H24A0.32710.08290.63440.074*
C250.2183 (2)0.11304 (17)0.50995 (14)0.0509 (5)
H25A0.11970.08520.51860.061*
C260.1870 (2)0.38002 (18)0.31301 (13)0.0476 (5)
H26A0.26790.40260.36660.057*
C270.1740 (2)0.48004 (19)0.25258 (15)0.0488 (5)
C280.1902 (2)0.4540 (2)0.15946 (16)0.0660 (6)
H28A0.20970.37290.13480.079*
C290.1778 (3)0.5481 (3)0.10244 (18)0.0778 (7)
H29A0.18790.53010.03990.093*
C300.1504 (3)0.6678 (3)0.1399 (2)0.0799 (8)
H30A0.14100.73060.10200.096*
C310.1365 (2)0.6964 (2)0.23166 (18)0.0678 (7)
H31A0.11970.77870.25620.081*
C320.1475 (2)0.6025 (2)0.28819 (16)0.0534 (6)
C330.0652 (3)0.7288 (2)0.41123 (17)0.0815 (8)
H33A0.06040.73200.47650.122*
H33C0.03660.71500.37260.122*
H33D0.12700.81150.40560.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0692 (11)0.0961 (12)0.0420 (9)0.0187 (10)0.0065 (8)0.0176 (8)
O20.0702 (11)0.0891 (12)0.0728 (12)0.0252 (10)0.0191 (9)0.0017 (9)
O30.0398 (9)0.0899 (12)0.0910 (12)0.0117 (9)0.0002 (9)0.0142 (10)
O40.0714 (11)0.0528 (9)0.0639 (10)0.0198 (8)0.0061 (8)0.0172 (8)
N10.0555 (12)0.0834 (13)0.0501 (12)0.0187 (11)0.0043 (10)0.0263 (10)
N20.0473 (11)0.0515 (10)0.0534 (11)0.0050 (9)0.0001 (9)0.0209 (8)
C10.0385 (11)0.0499 (11)0.0393 (11)0.0091 (9)0.0035 (9)0.0160 (9)
C20.0390 (12)0.0538 (12)0.0451 (12)0.0035 (10)0.0010 (10)0.0220 (10)
C30.0454 (14)0.0619 (14)0.0494 (14)0.0053 (12)0.0036 (12)0.0090 (11)
C40.0404 (12)0.0490 (12)0.0467 (12)0.0054 (10)0.0005 (10)0.0179 (10)
C50.0428 (12)0.0437 (11)0.0437 (12)0.0084 (10)0.0049 (10)0.0140 (9)
C60.0389 (12)0.0428 (11)0.0417 (11)0.0084 (9)0.0042 (9)0.0123 (9)
C70.0427 (13)0.0465 (12)0.0531 (13)0.0009 (10)0.0025 (11)0.0140 (10)
C80.0692 (17)0.0556 (15)0.0890 (18)0.0135 (14)0.0092 (15)0.0045 (13)
C90.116 (3)0.0648 (18)0.107 (2)0.0165 (18)0.006 (2)0.0032 (17)
C100.110 (3)0.073 (2)0.087 (2)0.0171 (19)0.017 (2)0.0099 (16)
C110.0605 (17)0.089 (2)0.0777 (18)0.0130 (16)0.0094 (15)0.0132 (16)
C120.0466 (14)0.0621 (15)0.0586 (14)0.0035 (12)0.0003 (12)0.0152 (12)
C130.0485 (16)0.144 (3)0.110 (2)0.0258 (17)0.0029 (16)0.0354 (19)
C140.0402 (12)0.0450 (11)0.0604 (14)0.0078 (10)0.0063 (11)0.0211 (10)
C150.0726 (17)0.0775 (16)0.0789 (17)0.0307 (15)0.0030 (15)0.0226 (14)
C160.0678 (19)0.0796 (19)0.139 (3)0.0383 (16)0.004 (2)0.016 (2)
C170.0696 (19)0.0610 (16)0.128 (3)0.0144 (14)0.0401 (19)0.0101 (17)
C180.093 (2)0.0602 (15)0.0859 (18)0.0224 (15)0.0390 (16)0.0205 (14)
C190.0717 (17)0.0591 (14)0.0653 (16)0.0242 (13)0.0220 (13)0.0224 (12)
C200.0421 (12)0.0380 (11)0.0462 (12)0.0065 (9)0.0005 (10)0.0126 (9)
C210.0505 (14)0.0588 (13)0.0568 (14)0.0135 (11)0.0057 (12)0.0255 (11)
C220.0425 (14)0.0680 (15)0.0871 (18)0.0117 (11)0.0045 (13)0.0321 (14)
C230.0550 (16)0.0624 (14)0.0770 (17)0.0052 (12)0.0157 (13)0.0300 (13)
C240.0647 (16)0.0606 (14)0.0550 (14)0.0064 (12)0.0015 (13)0.0281 (11)
C250.0457 (13)0.0465 (12)0.0564 (13)0.0034 (10)0.0022 (11)0.0194 (10)
C260.0448 (12)0.0482 (12)0.0461 (12)0.0087 (10)0.0005 (10)0.0152 (10)
C270.0408 (12)0.0475 (12)0.0523 (13)0.0016 (10)0.0001 (10)0.0177 (10)
C280.0644 (16)0.0661 (15)0.0627 (16)0.0021 (12)0.0095 (13)0.0221 (13)
C290.0784 (19)0.0881 (19)0.0638 (16)0.0014 (15)0.0134 (14)0.0354 (15)
C300.0794 (19)0.0803 (19)0.0777 (19)0.0048 (15)0.0002 (15)0.0489 (16)
C310.0657 (16)0.0562 (14)0.0778 (18)0.0078 (12)0.0008 (14)0.0320 (13)
C320.0451 (13)0.0532 (13)0.0559 (14)0.0033 (11)0.0022 (11)0.0210 (11)
C330.0901 (19)0.0718 (16)0.0862 (19)0.0351 (15)0.0136 (15)0.0147 (14)
Geometric parameters (Å, º) top
O1—C31.364 (2)C9—C101.364 (4)
O1—N11.440 (2)C10—C111.371 (4)
O2—C31.187 (2)C11—C121.381 (3)
O3—C121.369 (3)C14—C151.377 (3)
O3—C131.417 (2)C14—C191.380 (3)
O4—C321.367 (2)C15—C161.382 (3)
O4—C331.425 (2)C16—C171.373 (4)
N1—C21.287 (2)C17—C181.368 (3)
N2—C51.289 (2)C18—C191.376 (3)
N2—C41.470 (2)C20—C251.387 (2)
C1—C21.498 (2)C20—C211.389 (3)
C1—C31.512 (3)C21—C221.377 (3)
C1—C61.520 (2)C22—C231.374 (3)
C1—C41.594 (2)C23—C241.376 (3)
C2—C141.466 (3)C24—C251.370 (3)
C4—C71.503 (3)C26—C271.480 (2)
C5—C201.473 (2)C27—C321.388 (3)
C5—C61.488 (2)C27—C281.389 (3)
C6—C261.327 (2)C28—C291.395 (3)
C7—C81.374 (3)C29—C301.372 (3)
C7—C121.392 (3)C30—C311.363 (3)
C8—C91.376 (3)C31—C321.386 (3)
C3—O1—N1109.45 (16)C10—C11—C12119.9 (3)
C12—O3—C13118.61 (19)O3—C12—C11124.8 (2)
C32—O4—C33117.50 (16)O3—C12—C7115.1 (2)
C2—N1—O1108.89 (16)C11—C12—C7120.1 (2)
C5—N2—C4110.15 (14)C15—C14—C19117.7 (2)
C2—C1—C3100.42 (15)C15—C14—C2120.7 (2)
C2—C1—C6120.68 (16)C19—C14—C2121.53 (17)
C3—C1—C6110.80 (16)C14—C15—C16120.6 (2)
C2—C1—C4112.84 (15)C17—C16—C15120.7 (2)
C3—C1—C4110.79 (16)C18—C17—C16119.3 (3)
C6—C1—C4101.51 (13)C17—C18—C19119.8 (2)
N1—C2—C14119.84 (17)C18—C19—C14121.8 (2)
N1—C2—C1112.62 (19)C25—C20—C21118.10 (18)
C14—C2—C1127.38 (17)C25—C20—C5119.96 (18)
O2—C3—O1121.9 (2)C21—C20—C5121.94 (18)
O2—C3—C1129.93 (19)C22—C21—C20120.8 (2)
O1—C3—C1108.16 (18)C23—C22—C21120.2 (2)
N2—C4—C7113.56 (15)C22—C23—C24119.5 (2)
N2—C4—C1105.44 (14)C25—C24—C23120.4 (2)
C7—C4—C1115.81 (16)C24—C25—C20120.9 (2)
N2—C5—C20121.16 (16)C6—C26—C27125.27 (18)
N2—C5—C6114.44 (16)C32—C27—C28118.59 (18)
C20—C5—C6124.40 (18)C32—C27—C26120.73 (19)
C26—C6—C5127.72 (17)C28—C27—C26120.67 (19)
C26—C6—C1127.28 (16)C27—C28—C29120.7 (2)
C5—C6—C1104.89 (16)C30—C29—C28119.0 (2)
C8—C7—C12118.3 (2)C31—C30—C29121.3 (2)
C8—C7—C4121.70 (19)C30—C31—C32119.8 (2)
C12—C7—C4119.97 (19)O4—C32—C31123.5 (2)
C7—C8—C9121.7 (2)O4—C32—C27115.87 (17)
C10—C9—C8119.1 (3)C31—C32—C27120.6 (2)
C9—C10—C11120.8 (3)
C3—O1—N1—C21.8 (2)C10—C11—C12—O3179.4 (2)
O1—N1—C2—C14178.58 (16)C10—C11—C12—C70.4 (4)
O1—N1—C2—C12.8 (2)C8—C7—C12—O3179.8 (2)
C3—C1—C2—N15.7 (2)C4—C7—C12—O31.5 (3)
C6—C1—C2—N1127.63 (19)C8—C7—C12—C110.1 (3)
C4—C1—C2—N1112.26 (19)C4—C7—C12—C11178.6 (2)
C3—C1—C2—C14178.88 (18)N1—C2—C14—C150.6 (3)
C6—C1—C2—C1457.0 (3)C1—C2—C14—C15174.53 (19)
C4—C1—C2—C1463.1 (2)N1—C2—C14—C19179.57 (19)
N1—O1—C3—O2173.32 (19)C1—C2—C14—C195.3 (3)
N1—O1—C3—C15.5 (2)C19—C14—C15—C161.4 (3)
C2—C1—C3—O2172.1 (2)C2—C14—C15—C16178.4 (2)
C6—C1—C3—O243.5 (3)C14—C15—C16—C170.2 (4)
C4—C1—C3—O268.4 (3)C15—C16—C17—C181.6 (4)
C2—C1—C3—O16.5 (2)C16—C17—C18—C191.3 (4)
C6—C1—C3—O1135.18 (16)C17—C18—C19—C140.4 (3)
C4—C1—C3—O1112.95 (17)C15—C14—C19—C181.7 (3)
C5—N2—C4—C7141.90 (18)C2—C14—C19—C18178.12 (19)
C5—N2—C4—C114.1 (2)N2—C5—C20—C2538.8 (3)
C2—C1—C4—N2149.07 (16)C6—C5—C20—C25140.34 (19)
C3—C1—C4—N299.23 (17)N2—C5—C20—C21140.5 (2)
C6—C1—C4—N218.48 (18)C6—C5—C20—C2140.4 (3)
C2—C1—C4—C784.5 (2)C25—C20—C21—C220.0 (3)
C3—C1—C4—C727.2 (2)C5—C20—C21—C22179.28 (18)
C6—C1—C4—C7144.93 (16)C20—C21—C22—C230.9 (3)
C4—N2—C5—C20175.92 (17)C21—C22—C23—C241.4 (3)
C4—N2—C5—C63.3 (2)C22—C23—C24—C251.1 (3)
N2—C5—C6—C26167.00 (19)C23—C24—C25—C200.3 (3)
C20—C5—C6—C2612.2 (3)C21—C20—C25—C240.3 (3)
N2—C5—C6—C19.4 (2)C5—C20—C25—C24179.59 (18)
C20—C5—C6—C1171.37 (17)C5—C6—C26—C27177.86 (19)
C2—C1—C6—C2634.5 (3)C1—C6—C26—C276.5 (3)
C3—C1—C6—C2682.2 (2)C6—C26—C27—C32116.8 (2)
C4—C1—C6—C26160.08 (19)C6—C26—C27—C2864.1 (3)
C2—C1—C6—C5141.88 (17)C32—C27—C28—C291.0 (3)
C3—C1—C6—C5101.35 (17)C26—C27—C28—C29179.9 (2)
C4—C1—C6—C516.34 (18)C27—C28—C29—C300.5 (3)
N2—C4—C7—C831.9 (3)C28—C29—C30—C310.6 (4)
C1—C4—C7—C890.4 (2)C29—C30—C31—C321.1 (4)
N2—C4—C7—C12146.80 (18)C33—O4—C32—C3115.4 (3)
C1—C4—C7—C1291.0 (2)C33—O4—C32—C27163.81 (18)
C12—C7—C8—C90.5 (4)C30—C31—C32—O4178.5 (2)
C4—C7—C8—C9179.2 (2)C30—C31—C32—C270.6 (3)
C7—C8—C9—C100.8 (4)C28—C27—C32—O4179.66 (18)
C8—C9—C10—C110.4 (5)C26—C27—C32—O41.3 (3)
C9—C10—C11—C120.1 (4)C28—C27—C32—C310.4 (3)
C13—O3—C12—C110.4 (3)C26—C27—C32—C31179.5 (2)
C13—O3—C12—C7179.44 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.982.322.725 (2)103
C8—H8A···O20.932.873.148 (3)98
C8—H8A···N20.932.612.902 (3)99
C15—H15A···N10.932.512.810 (3)99
C25—H25A···N20.932.712.936 (3)94
C13—H13A···O2i0.962.773.076 (3)100
C30—H30A···O1ii0.932.543.396 (3)153
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC33H26N2O4
Mr514.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.127 (2), 10.450 (3), 14.632 (3)
α, β, γ (°)99.172 (19), 101.131 (17), 101.239 (18)
V3)1314.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.13 × 0.10
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6449, 6067, 2324
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 0.72
No. of reflections6067
No. of parameters353
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: P3/V (Siemens,1989), P3/V, SHELXTL-Plus (Sheldrick, 1990), SIR92 (Altomare, 1994), SHELXL97 (Sheldrick, 1997), XPW (Siemens, 1996), PARST97 (Nardelli, 1995) and SHELXL97.

Selected geometric parameters (Å, º) top
O1—C31.364 (2)C1—C21.498 (2)
O1—N11.440 (2)C1—C31.512 (3)
O2—C31.187 (2)C1—C61.520 (2)
O3—C121.369 (3)C1—C41.594 (2)
O3—C131.417 (2)C4—C71.503 (3)
O4—C321.367 (2)C5—C201.473 (2)
O4—C331.425 (2)C5—C61.488 (2)
N1—C21.287 (2)C6—C261.327 (2)
N2—C51.289 (2)C26—C271.480 (2)
N2—C41.470 (2)
C12—O3—C13118.61 (19)O2—C3—O1121.9 (2)
C32—O4—C33117.50 (16)O2—C3—C1129.93 (19)
C2—C1—C3100.42 (15)O3—C12—C11124.8 (2)
C2—C1—C6120.68 (16)O3—C12—C7115.1 (2)
C3—C1—C6110.80 (16)C6—C26—C27125.27 (18)
C2—C1—C4112.84 (15)O4—C32—C31123.5 (2)
C3—C1—C4110.79 (16)O4—C32—C27115.87 (17)
N2—C4—C7—C831.9 (3)C6—C5—C20—C2140.4 (3)
C13—O3—C12—C7179.44 (19)C6—C26—C27—C2864.1 (3)
N1—C2—C14—C150.6 (3)C33—O4—C32—C27163.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.982.322.725 (2)103
C15—H15A···N10.932.512.810 (3)99
C30—H30A···O1i0.932.543.396 (3)153
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds