Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, C33H26N2O2, is the unexpected spiran product of a synthetic reaction. The crystal structure has been determined at room temperature. The skeleton is composed of a spiro­[4.4] system formed by an isoxazolone and a substituted pyrroline ring obtained by a series of tandem reactions. The carbonyl group of the isoxazolone ring shows the usual asymmetry of the exocyclic bond angles [121.7 (3) versus 130.7 (4)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801005608/na6057sup1.cif
Contains datablocks comp3, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801005608/na6057Isup2.hkl
Contains datablock I

CCDC reference: 165644

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.049
  • wR factor = 0.126
  • Data-to-parameter ratio = 13.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

The formation of the title compound, (I), like the o-MeOC6H4– derivative (Bruno et al., 2001a), was rationalized in terms of a series of tandem reactions involving Michael- and retro-Michael reactions, C-alkylation, aldol addition and diastereospecific cyclization (Risitano et al., 2001).

The stereochemistry around the CC double bond and the newly created tetrahedral C atoms in the spiro compounds could not easily be established by any spectral technique. Therefore, the present study was undertaken in order to obtain unambiguous structural characterization of this new molecule.

The compound consists of a spiro[4.4] system formed by an isoxazolone and a three-substituted pyrroline rings. The pivot atom C1 of the spiro-center and the C4 pyrroline atom are two chiral centers having the same configuration (R,R for the molecule depicted in Fig. 1). Since the compound crystallizes in a centrosymmetric space group, in the solid state we have a racemic mixture.

Bond distances and angles are in good agreement with the literature values (Bertolasi et al., 1994; Brehm et al., 1992). Here we observe the usual asymmetry in bond angles around the carbonyl group. This significant asymmetry is systematically present in all 2800 five-membered rings reported in the last release (5.19) of the Cambridge Structural Database (Allen et al., 1991) that contain a carbonyl group as well as in cumarine derivatives (Bruno et al., 2001b). The main discrepancy between the title compound and the o-MeO derivative rises from the rotation of the phenyl rings as evidenced by the significant difference of the corresponding torsion angles N1—C2—C14—C15 and C6—C26—C27—C28 of 32.7 (5) and 20.0 (5)°, respectively. All the heteroatoms of the spiranic fragments are engaged in some weak intra- and intermolecular hydrogen bonds which determine the relative orientations of substituents with respect to the spiranic moiety and the whole crystal packing.

Experimental top

The title compound was obtained as a single diastereomer from 4-arylmethyleneisoxazol-5-one, (I), and the in situ prepared N-ylide (II) (Risitano et al., 1997).

Refinement top

Due to the small crystal size, the diffraction data were collected twice at room temperature. A preliminary data collection of a small crystal was collected up to 2θ = 46°. The structure determination was carried out using the data of this reduced 2θ shell. When it was possible to obtain bigger crystals, a complete data collection was performed up to 2θ = 50° and this was used to refine the structure model. Reflection intensities were evaluated by profile fitting of a 96-steps peak scan among 2θ shells procedure (Diamond, 1969) and then corrected for Lorentz–polarization effects. Standard uncertainties σ(I) were estimated from counting statistics. H atoms have been located at idealized positions and were allowed to ride on their parent C atoms with a unique fixed isotropic displacement parameter (0.08 Å2).

Computing details top

Data collection: XSCANS (Siemens, 1999); cell refinement: XSCANS; data reduction: SHELXTL-Plus (Sheldrick, 1990); program(s) used to solve structure: SIR92 (Altomare, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: PARST97 (Nardelli, 1995) and SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound showing the atomic numbering scheme. The displacement ellipsoids are drawn at 30% of probability level for non-H atoms.
9-(4-Methyl-benzylidene)-4,8-diphenyl-6-p-tolyl-2-oxa- 3,7-diazaspiro[4.4]nona-3,7-dien-1-one top
Crystal data top
C33H26N2O2F(000) = 1016
Mr = 482.56Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.909 (3) ÅCell parameters from 28 reflections
b = 18.502 (7) Åθ = 2.2–12.5°
c = 13.092 (4) ŵ = 0.08 mm1
β = 97.143 (12)°T = 298 K
V = 2621.9 (15) Å3Prism, colourless
Z = 40.46 × 0.27 × 0.22 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.032
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 112
ω scansk = 121
5738 measured reflectionsl = 1515
4602 independent reflections3 standard reflections every 97 reflections
1712 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0278P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
4602 reflectionsΔρmax = 0.21 e Å3
335 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (6)
Crystal data top
C33H26N2O2V = 2621.9 (15) Å3
Mr = 482.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.909 (3) ŵ = 0.08 mm1
b = 18.502 (7) ÅT = 298 K
c = 13.092 (4) Å0.46 × 0.27 × 0.22 mm
β = 97.143 (12)°
Data collection top
Siemens P4
diffractometer
Rint = 0.032
5738 measured reflections3 standard reflections every 97 reflections
4602 independent reflections intensity decay: none
1712 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.21 e Å3
4602 reflectionsΔρmin = 0.20 e Å3
335 parameters
Special details top

Experimental. due to the small size of crystal samples of compound III, diffraction data have been recolleted on a new bigger sample.

All calculations were performed on a µ-VAX 3400 and on a DEC-alpha 3000/400.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.8696 (4)0.23869 (19)0.2732 (3)0.0657 (10)
O20.9447 (2)0.20392 (13)0.23488 (18)0.0828 (8)
C10.8783 (3)0.27669 (17)0.3770 (2)0.0542 (8)
C20.7621 (3)0.31989 (18)0.3618 (2)0.0568 (9)
N10.6886 (3)0.30278 (16)0.2801 (2)0.0752 (9)
O10.7530 (2)0.25016 (13)0.22350 (17)0.0810 (8)
C140.7272 (3)0.38018 (18)0.4265 (3)0.0585 (9)
C150.6598 (3)0.4372 (2)0.3791 (3)0.0773 (11)
H150.63310.43530.30890.093*
C160.6323 (4)0.4968 (2)0.4353 (4)0.0946 (14)
H160.58870.53520.40250.113*
C170.6688 (4)0.4997 (2)0.5397 (4)0.0980 (14)
H170.64870.53970.57740.118*
C180.7351 (4)0.4437 (2)0.5881 (3)0.0891 (12)
H180.75920.44550.65870.107*
C190.7664 (3)0.38412 (19)0.5317 (3)0.0732 (11)
H190.81350.34690.56430.088*
C40.8801 (3)0.21671 (17)0.4665 (2)0.0591 (9)
H40.83510.23670.52030.071*
N21.0105 (3)0.20973 (15)0.5103 (2)0.0646 (8)
C51.0739 (3)0.26304 (19)0.4793 (2)0.0587 (9)
C61.0018 (3)0.31331 (19)0.4075 (2)0.0563 (9)
C70.8206 (3)0.14485 (19)0.4336 (2)0.0609 (9)
C80.8888 (3)0.0855 (2)0.4104 (2)0.0710 (10)
H80.97430.08890.41480.085*
C90.8309 (4)0.0207 (2)0.3805 (3)0.0811 (12)
H90.87860.01860.36530.097*
C100.7049 (5)0.0133 (3)0.3730 (3)0.0932 (14)
C110.6373 (4)0.0725 (3)0.3966 (3)0.1070 (16)
H110.55180.06870.39220.128*
C120.6935 (4)0.1377 (2)0.4267 (3)0.0927 (13)
H120.64550.17680.44240.111*
C130.6431 (4)0.0589 (2)0.3402 (3)0.143 (2)
H13A0.55520.05420.33790.171*
H13B0.67240.09570.38900.171*
H13C0.66310.07190.27330.171*
C201.2067 (3)0.27094 (17)0.5154 (3)0.0611 (9)
C211.2897 (3)0.29086 (18)0.4488 (3)0.0756 (11)
H211.26120.30090.38040.091*
C221.4142 (4)0.2960 (2)0.4825 (4)0.0928 (13)
H221.46930.30820.43650.111*
C231.4565 (4)0.2833 (2)0.5838 (4)0.1046 (16)
H231.54040.28770.60670.125*
C241.3756 (4)0.2639 (2)0.6521 (4)0.1035 (15)
H241.40480.25510.72080.124*
C251.2506 (4)0.25749 (19)0.6180 (3)0.0821 (12)
H251.19590.24420.66380.099*
C261.0358 (3)0.38088 (18)0.3855 (2)0.0609 (9)
H261.11330.39540.41640.073*
C270.9665 (3)0.43470 (19)0.3192 (3)0.0589 (9)
C280.9031 (3)0.41793 (18)0.2233 (3)0.0675 (10)
H280.90810.37140.19740.081*
C290.8324 (3)0.4695 (2)0.1655 (3)0.0721 (11)
H290.78900.45670.10240.087*
C300.8260 (3)0.5397 (2)0.2010 (3)0.0688 (10)
C310.8929 (3)0.55711 (19)0.2943 (3)0.0741 (11)
H310.89110.60430.31860.089*
C320.9623 (3)0.50596 (19)0.3519 (3)0.0676 (10)
H321.00730.51940.41400.081*
C330.7501 (4)0.5968 (2)0.1383 (3)0.1054 (14)
H33A0.71040.57550.07590.127*
H33B0.80330.63520.12170.127*
H33C0.68870.61560.17760.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.072 (3)0.063 (3)0.060 (2)0.005 (2)0.001 (2)0.005 (2)
O20.097 (2)0.0794 (18)0.0742 (17)0.0003 (16)0.0208 (16)0.0103 (14)
C10.050 (2)0.063 (2)0.0482 (19)0.0031 (19)0.0004 (16)0.0003 (17)
C20.050 (2)0.063 (2)0.056 (2)0.0063 (19)0.0007 (18)0.0039 (19)
N10.064 (2)0.085 (2)0.072 (2)0.0039 (18)0.0083 (17)0.0061 (18)
O10.0822 (19)0.0867 (18)0.0686 (16)0.0029 (16)0.0127 (14)0.0155 (14)
C140.045 (2)0.066 (2)0.064 (2)0.0017 (19)0.0048 (18)0.004 (2)
C150.067 (3)0.083 (3)0.084 (3)0.013 (2)0.019 (2)0.008 (2)
C160.072 (3)0.090 (4)0.125 (4)0.020 (3)0.028 (3)0.015 (3)
C170.077 (3)0.078 (3)0.144 (5)0.007 (3)0.034 (3)0.018 (3)
C180.083 (3)0.094 (3)0.093 (3)0.008 (3)0.020 (3)0.027 (3)
C190.072 (3)0.072 (3)0.074 (3)0.001 (2)0.002 (2)0.007 (2)
C40.058 (2)0.062 (2)0.057 (2)0.001 (2)0.0095 (18)0.0007 (18)
N20.060 (2)0.0633 (19)0.0672 (18)0.0036 (17)0.0049 (15)0.0037 (15)
C50.059 (2)0.060 (2)0.056 (2)0.005 (2)0.0009 (18)0.0042 (18)
C60.054 (2)0.062 (2)0.052 (2)0.000 (2)0.0038 (17)0.0001 (18)
C70.057 (2)0.058 (2)0.066 (2)0.005 (2)0.0022 (19)0.0050 (19)
C80.075 (3)0.069 (3)0.071 (2)0.006 (2)0.019 (2)0.005 (2)
C90.107 (4)0.066 (3)0.072 (3)0.008 (3)0.018 (3)0.011 (2)
C100.106 (4)0.084 (3)0.082 (3)0.027 (3)0.015 (3)0.004 (3)
C110.066 (3)0.100 (4)0.148 (4)0.025 (3)0.016 (3)0.020 (3)
C120.071 (3)0.073 (3)0.131 (4)0.002 (3)0.000 (3)0.015 (3)
C130.189 (5)0.108 (4)0.119 (4)0.068 (4)0.035 (3)0.000 (3)
C200.056 (2)0.056 (2)0.067 (2)0.0028 (19)0.008 (2)0.0018 (19)
C210.059 (3)0.078 (3)0.086 (3)0.002 (2)0.003 (2)0.001 (2)
C220.062 (3)0.095 (3)0.119 (4)0.003 (3)0.002 (3)0.007 (3)
C230.058 (3)0.097 (3)0.149 (5)0.003 (3)0.025 (3)0.002 (3)
C240.082 (3)0.111 (4)0.107 (4)0.000 (3)0.029 (3)0.010 (3)
C250.071 (3)0.092 (3)0.078 (3)0.000 (2)0.013 (2)0.008 (2)
C260.054 (2)0.068 (2)0.060 (2)0.004 (2)0.0043 (18)0.0003 (19)
C270.056 (2)0.064 (2)0.057 (2)0.005 (2)0.0061 (18)0.0035 (19)
C280.080 (3)0.059 (2)0.064 (2)0.004 (2)0.012 (2)0.003 (2)
C290.079 (3)0.079 (3)0.058 (2)0.003 (2)0.006 (2)0.004 (2)
C300.069 (3)0.067 (3)0.071 (3)0.003 (2)0.011 (2)0.016 (2)
C310.085 (3)0.059 (2)0.080 (3)0.002 (2)0.015 (2)0.005 (2)
C320.076 (3)0.063 (2)0.065 (2)0.012 (2)0.012 (2)0.002 (2)
C330.107 (3)0.099 (3)0.110 (3)0.023 (3)0.011 (3)0.030 (3)
Geometric parameters (Å, º) top
C3—O21.199 (4)C7—C81.382 (4)
C3—O11.372 (4)C7—C121.384 (4)
C3—C11.522 (4)C8—C91.388 (4)
C1—C21.490 (4)C9—C101.373 (5)
C1—C61.517 (4)C10—C111.377 (5)
C1—C41.612 (4)C10—C131.532 (5)
C2—N11.293 (3)C11—C121.389 (5)
C2—C141.479 (4)C20—C211.382 (4)
N1—O11.456 (3)C20—C251.392 (4)
C14—C151.388 (4)C21—C221.378 (5)
C14—C191.392 (4)C22—C231.369 (5)
C15—C161.378 (5)C23—C241.381 (5)
C16—C171.376 (5)C24—C251.386 (5)
C17—C181.373 (5)C26—C271.468 (4)
C18—C191.393 (4)C27—C321.389 (4)
C4—N21.471 (4)C27—C281.390 (4)
C4—C71.518 (4)C28—C291.390 (4)
N2—C51.298 (4)C29—C301.384 (4)
C5—C201.475 (4)C30—C311.381 (4)
C5—C61.477 (4)C30—C331.517 (4)
C6—C261.345 (4)C31—C321.377 (4)
O2—C3—O1121.7 (3)C5—C6—C1105.7 (3)
O2—C3—C1130.7 (4)C8—C7—C12118.2 (4)
O1—C3—C1107.6 (3)C8—C7—C4122.4 (3)
C2—C1—C6120.6 (3)C12—C7—C4119.4 (4)
C2—C1—C399.9 (3)C7—C8—C9120.6 (4)
C6—C1—C3113.3 (3)C10—C9—C8121.5 (4)
C2—C1—C4113.6 (3)C9—C10—C11117.6 (4)
C6—C1—C4100.7 (2)C9—C10—C13120.6 (5)
C3—C1—C4108.9 (3)C11—C10—C13121.8 (5)
N1—C2—C14118.7 (3)C10—C11—C12121.7 (4)
N1—C2—C1114.1 (3)C7—C12—C11120.3 (4)
C14—C2—C1127.1 (3)C21—C20—C25118.9 (3)
C2—N1—O1107.2 (3)C21—C20—C5121.3 (3)
C3—O1—N1109.9 (3)C25—C20—C5119.8 (3)
C15—C14—C19118.9 (3)C22—C21—C20120.9 (4)
C15—C14—C2118.5 (3)C23—C22—C21119.9 (4)
C19—C14—C2122.5 (3)C22—C23—C24120.4 (4)
C16—C15—C14120.5 (4)C23—C24—C25119.7 (4)
C17—C16—C15120.4 (4)C24—C25—C20120.2 (4)
C18—C17—C16119.9 (4)C6—C26—C27128.4 (3)
C17—C18—C19120.2 (4)C32—C27—C28117.3 (3)
C14—C19—C18120.0 (4)C32—C27—C26119.7 (3)
N2—C4—C7113.1 (3)C28—C27—C26123.0 (3)
N2—C4—C1105.5 (2)C27—C28—C29121.2 (3)
C7—C4—C1115.5 (3)C30—C29—C28120.6 (3)
C5—N2—C4109.8 (3)C31—C30—C29118.2 (3)
N2—C5—C20121.0 (3)C31—C30—C33120.6 (4)
N2—C5—C6114.5 (3)C29—C30—C33121.2 (3)
C20—C5—C6124.4 (3)C32—C31—C30121.3 (3)
C26—C6—C5125.6 (3)C31—C32—C27121.3 (3)
C26—C6—C1128.2 (3)
O2—C3—C1—C2169.0 (4)C4—C1—C6—C26155.3 (3)
O1—C3—C1—C211.2 (3)C2—C1—C6—C5142.9 (3)
O2—C3—C1—C639.4 (5)C3—C1—C6—C599.0 (3)
O1—C3—C1—C6140.7 (3)C4—C1—C6—C517.2 (3)
O2—C3—C1—C471.8 (5)N2—C4—C7—C823.0 (4)
O1—C3—C1—C4108.1 (3)C1—C4—C7—C898.7 (4)
C6—C1—C2—N1135.3 (3)N2—C4—C7—C12156.7 (3)
C3—C1—C2—N110.6 (4)C1—C4—C7—C1281.6 (4)
C4—C1—C2—N1105.2 (3)C12—C7—C8—C90.3 (5)
C6—C1—C2—C1441.9 (5)C4—C7—C8—C9180.0 (3)
C3—C1—C2—C14166.6 (3)C7—C8—C9—C100.0 (6)
C4—C1—C2—C1477.6 (4)C8—C9—C10—C110.2 (6)
C14—C2—N1—O1171.6 (3)C8—C9—C10—C13179.8 (3)
C1—C2—N1—O15.9 (4)C9—C10—C11—C120.1 (7)
O2—C3—O1—N1171.3 (3)C13—C10—C11—C12179.7 (4)
C1—C3—O1—N18.8 (3)C8—C7—C12—C110.4 (6)
C2—N1—O1—C32.1 (3)C4—C7—C12—C11179.9 (3)
N1—C2—C14—C1532.1 (5)C10—C11—C12—C70.2 (7)
C1—C2—C14—C15145.0 (3)N2—C5—C20—C21138.5 (3)
N1—C2—C14—C19152.3 (3)C6—C5—C20—C2142.0 (5)
C1—C2—C14—C1930.6 (5)N2—C5—C20—C2540.9 (5)
C19—C14—C15—C160.0 (5)C6—C5—C20—C25138.7 (3)
C2—C14—C15—C16175.7 (3)C25—C20—C21—C221.3 (5)
C14—C15—C16—C171.5 (6)C5—C20—C21—C22178.1 (3)
C15—C16—C17—C181.2 (6)C20—C21—C22—C231.8 (6)
C16—C17—C18—C190.6 (6)C21—C22—C23—C241.2 (7)
C15—C14—C19—C181.7 (5)C22—C23—C24—C250.1 (7)
C2—C14—C19—C18177.3 (3)C23—C24—C25—C200.3 (6)
C17—C18—C19—C142.0 (6)C21—C20—C25—C240.2 (5)
C2—C1—C4—N2148.9 (3)C5—C20—C25—C24179.1 (3)
C6—C1—C4—N218.7 (3)C5—C6—C26—C27176.8 (3)
C3—C1—C4—N2100.7 (3)C1—C6—C26—C275.7 (6)
C2—C1—C4—C785.4 (3)C6—C26—C27—C32135.8 (4)
C6—C1—C4—C7144.3 (3)C6—C26—C27—C2844.1 (5)
C3—C1—C4—C725.0 (4)C32—C27—C28—C293.8 (5)
C7—C4—N2—C5140.7 (3)C26—C27—C28—C29176.1 (3)
C1—C4—N2—C513.5 (3)C27—C28—C29—C301.7 (5)
C4—N2—C5—C20177.4 (3)C28—C29—C30—C310.9 (5)
C4—N2—C5—C62.2 (4)C28—C29—C30—C33179.5 (3)
N2—C5—C6—C26161.9 (3)C29—C30—C31—C321.3 (5)
C20—C5—C6—C2617.7 (5)C33—C30—C31—C32179.9 (3)
N2—C5—C6—C110.9 (4)C30—C31—C32—C270.9 (5)
C20—C5—C6—C1169.6 (3)C28—C27—C32—C313.4 (5)
C2—C1—C6—C2629.6 (5)C26—C27—C32—C31176.5 (3)
C3—C1—C6—C2688.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N20.932.572.886 (5)100
C15—H15···N10.932.562.840 (5)97
C25—H25···N20.932.742.951 (5)94
C31—H31···O2i0.932.723.290 (4)120
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H26N2O2
Mr482.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.909 (3), 18.502 (7), 13.092 (4)
β (°) 97.143 (12)
V3)2621.9 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.27 × 0.22
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5738, 4602, 1712
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.14
No. of reflections4602
No. of parameters335
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: XSCANS (Siemens, 1999), XSCANS, SHELXTL-Plus (Sheldrick, 1990), SIR92 (Altomare, 1994), SHELXL97 (Sheldrick, 1997), XPW (Siemens, 1996), PARST97 (Nardelli, 1995) and SHELXL97.

Selected geometric parameters (Å, º) top
C3—O21.199 (4)C2—C141.479 (4)
C3—O11.372 (4)N1—O11.456 (3)
C3—C11.522 (4)C4—N21.471 (4)
C1—C21.490 (4)N2—C51.298 (4)
C1—C61.517 (4)C5—C61.477 (4)
C1—C41.612 (4)C6—C261.345 (4)
C2—N11.293 (3)C26—C271.468 (4)
O2—C3—O1121.7 (3)C6—C1—C3113.3 (3)
O2—C3—C1130.7 (4)C2—C1—C4113.6 (3)
C2—C1—C6120.6 (3)C3—C1—C4108.9 (3)
C2—C1—C399.9 (3)C6—C26—C27128.4 (3)
N1—C2—C14—C1532.1 (5)C6—C5—C20—C2142.0 (5)
N2—C4—C7—C823.0 (4)C6—C26—C27—C2844.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N20.932.572.886 (5)100
C15—H15···N10.932.562.840 (5)97
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds