Download citation
Download citation
link to html
The title compound, C21H19NO4, (II), is an acridine derivative with an angle of 68.30 (2)° between the aromatic ring system and the ethyl­ene moiety. It is remarkable that (II) is isostructural with diethyl 2-(anthracen-9-yl­methyl­ene)­malonate, which bears a C atom at the position where in (II) an N atom is found.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100366X/na6054sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100366X/na6054Isup2.hkl
Contains datablock I

CCDC reference: 159879

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.036
  • wR factor = 0.086
  • Data-to-parameter ratio = 15.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.10 From the CIF: _reflns_number_total 3553 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3835 Completeness (_total/calc) 92.65% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Derivatives of acridine are very important building blocks in synthetic chemistry. They have interesting biological and photophysical properties (Galy et al., 1980). We have recently described the preparation of diethyl 2-anthracen-9-ylmethylenemalonate (Elazami et al., 1999). Such compounds are prepared by the condensation reaction of 9-aldehyde acridine (I) and ethyl malonate (see scheme below). We present here the structure of diethyl 2-acridin-9-ylmethylenemalonate, (II), which was synthesized according to the method of Lehnert (1972). (II) displays a high stability at room temperature and its structure has been determined by IR, mass, UV and NMR (1H, 13C) spectroscopy. Since NMR and mass spectroscopy did not provide sufficient information about the conformation of the reaction product, we have carried out the X-ray structure analysis.

The title compound contains an acridine ring system to which an ethylene bond is attached at position 9. Due to steric hindrance this ethylene bond cannot be coplanar with the aromatic ring system: the angle between the acridine ring system and the ethylene moiety is 68.30 (2)°. Whereas one of the ester groups (O17, C17, O18, C19, C20) is nearly planar (r.m.s.d. = 0.232 Å) and coplanar with the ethylene bond (Table 1), the other one (C21, O21, O22, C23, C24) is less planar (r.m.s.d. = 0.318 Å) and it is tilted by 77.34 (5)° out of the plane of the ethylene bond. The aromatic ring systems of two adjacent molecules are partly stacked with an interplanar distance of approximately 3.5 Å.

It is remarkable that compound (II) is isostructural with diethyl 2-anthracen-9-ylmethylenemalonate (Elazami et al., 1999). A least-squares fit of all non-H atoms gives an r.m.s. deviation of 0.082 Å. There are no significant differences between both structures apart from the geometry around the N atom: the C—N bonds (Table 2) are of course shorter than the respective C—C bonds [1.395 (3) and 1.397 (3) Å] and the C—N—C angle is smaller than the corresponding C—C—C angle [122.4 (2)°].

Experimental top

Equimolar quantities of ethyl malonate and pyridine, each 0.5 g (6.3 mmol), and 9-aldehyde acridine (1 g, 0.5 mmol) in 30 ml diethyl ether were added to a 100 ml three-necked flask fitted with a reflux condenser. The mixture was stirred at room temperature. Then, 3 ml titanium tetrachloride (TiCl4) dissolved in 20 ml diethyl ether were added. At the end of the addition reaction, the mixture was stirred and refluxed for 8 h. The solution was filtered and extracted with diethyl ether (50 ml). The solvent was removed using a rotary evaporator. The residue was recrystallized from ethyl ether and hexane (2:3 ratio) leading to yellow crystals of the title compound.

Refinement top

All H atoms were located by difference Fourier synthesis and were refined with fixed individual displacement parameters [U(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)] using a riding model with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å or methylene C—H = 0.99 Å.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Figures top
[Figure 1] Fig. 1. A perspective view of (II) with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
Diethyl 2-(acridin-9-ylmethylene)malonate top
Crystal data top
C21H19NO4F(000) = 736
Mr = 349.37Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8535 (7) ÅCell parameters from 509 reflections
b = 14.888 (1) Åθ = 1–20°
c = 12.5317 (8) ŵ = 0.09 mm1
β = 108.805 (5)°T = 173 K
V = 1740.3 (2) Å3Block, yellow
Z = 40.68 × 0.62 × 0.28 mm
Data collection top
Siemens CCD three-circle
diffractometer
3553 independent reflections
Radiation source: fine-focus sealed tube3240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.940, Tmax = 0.975k = 1718
25802 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6851P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3553 reflectionsΔρmax = 0.21 e Å3
236 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0117 (11)
Crystal data top
C21H19NO4V = 1740.3 (2) Å3
Mr = 349.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8535 (7) ŵ = 0.09 mm1
b = 14.888 (1) ÅT = 173 K
c = 12.5317 (8) Å0.68 × 0.62 × 0.28 mm
β = 108.805 (5)°
Data collection top
Siemens CCD three-circle
diffractometer
3553 independent reflections
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
3240 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.975Rint = 0.025
25802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3553 reflectionsΔρmin = 0.17 e Å3
236 parameters
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26955 (12)0.42640 (8)0.16720 (9)0.0231 (2)
C20.20494 (11)0.42147 (8)0.25206 (9)0.0227 (2)
C30.23026 (12)0.35032 (8)0.33269 (10)0.0262 (3)
H30.29630.30400.33190.031*
C40.16102 (13)0.34806 (8)0.41057 (10)0.0288 (3)
H40.18010.30070.46420.035*
C50.06042 (13)0.41579 (9)0.41266 (10)0.0311 (3)
H50.01220.41310.46710.037*
C60.03282 (13)0.48421 (8)0.33754 (10)0.0289 (3)
H60.03460.52910.34010.035*
C70.10332 (12)0.49015 (8)0.25457 (9)0.0237 (2)
N80.06857 (10)0.55913 (7)0.18145 (8)0.0259 (2)
C90.13105 (12)0.56268 (8)0.10047 (10)0.0247 (2)
C100.09174 (13)0.63450 (8)0.02092 (10)0.0300 (3)
H100.02620.67900.02810.036*
C110.14732 (14)0.63971 (9)0.06492 (11)0.0336 (3)
H110.11880.68730.11790.040*
C120.24739 (14)0.57509 (9)0.07665 (11)0.0328 (3)
H120.28510.57970.13730.039*
C130.28964 (13)0.50660 (8)0.00138 (10)0.0283 (3)
H130.35820.46440.00910.034*
C140.23219 (12)0.49736 (8)0.08916 (9)0.0236 (2)
C150.36460 (12)0.35354 (8)0.15277 (10)0.0247 (2)
H150.32880.31760.08700.030*
C160.49443 (12)0.33298 (8)0.22174 (9)0.0240 (2)
C170.56797 (12)0.25193 (8)0.19547 (10)0.0245 (2)
O170.51567 (9)0.20410 (6)0.11525 (7)0.0332 (2)
O180.69742 (9)0.24075 (6)0.27090 (7)0.0299 (2)
C190.77218 (13)0.15790 (8)0.26135 (11)0.0310 (3)
H19A0.76660.14770.18200.037*
H19B0.72790.10600.28690.037*
C200.92543 (13)0.16831 (9)0.33415 (11)0.0344 (3)
H20A0.97880.11360.32980.052*
H20B0.92950.17840.41240.052*
H20C0.96810.21970.30790.052*
C210.57236 (12)0.38889 (8)0.32314 (10)0.0257 (3)
O210.62386 (12)0.46068 (6)0.31636 (8)0.0445 (3)
O220.57564 (9)0.34863 (6)0.41841 (7)0.0311 (2)
C230.65208 (15)0.39471 (10)0.52345 (10)0.0360 (3)
H23A0.63500.46030.51500.043*
H23B0.75640.38370.54390.043*
C240.59637 (16)0.35829 (11)0.61253 (11)0.0419 (3)
H24A0.64570.38770.68460.063*
H24B0.61370.29340.61990.063*
H24C0.49320.36990.59140.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (5)0.0239 (6)0.0229 (6)0.0018 (4)0.0040 (4)0.0029 (4)
C20.0208 (5)0.0231 (6)0.0221 (5)0.0014 (4)0.0040 (4)0.0023 (4)
C30.0250 (6)0.0246 (6)0.0278 (6)0.0014 (4)0.0069 (5)0.0007 (5)
C40.0322 (6)0.0273 (6)0.0268 (6)0.0002 (5)0.0091 (5)0.0038 (5)
C50.0339 (7)0.0346 (7)0.0284 (6)0.0003 (5)0.0150 (5)0.0005 (5)
C60.0287 (6)0.0300 (6)0.0297 (6)0.0042 (5)0.0119 (5)0.0016 (5)
C70.0228 (5)0.0238 (6)0.0226 (6)0.0011 (4)0.0045 (4)0.0023 (4)
N80.0267 (5)0.0245 (5)0.0252 (5)0.0016 (4)0.0064 (4)0.0005 (4)
C90.0244 (6)0.0237 (6)0.0227 (6)0.0037 (4)0.0030 (4)0.0021 (4)
C100.0317 (6)0.0254 (6)0.0290 (6)0.0005 (5)0.0045 (5)0.0016 (5)
C110.0394 (7)0.0289 (6)0.0281 (6)0.0052 (5)0.0048 (5)0.0058 (5)
C120.0363 (7)0.0365 (7)0.0261 (6)0.0097 (5)0.0105 (5)0.0001 (5)
C130.0277 (6)0.0308 (6)0.0265 (6)0.0046 (5)0.0090 (5)0.0033 (5)
C140.0218 (5)0.0250 (6)0.0215 (5)0.0044 (4)0.0036 (4)0.0029 (4)
C150.0285 (6)0.0250 (6)0.0224 (6)0.0011 (5)0.0106 (5)0.0018 (4)
C160.0262 (6)0.0244 (6)0.0232 (6)0.0006 (4)0.0104 (5)0.0002 (4)
C170.0271 (6)0.0246 (6)0.0233 (6)0.0004 (5)0.0099 (5)0.0013 (5)
O170.0347 (5)0.0327 (5)0.0289 (5)0.0055 (4)0.0055 (4)0.0071 (4)
O180.0268 (4)0.0281 (4)0.0318 (5)0.0050 (3)0.0053 (4)0.0053 (4)
C190.0298 (6)0.0256 (6)0.0352 (7)0.0065 (5)0.0068 (5)0.0019 (5)
C200.0292 (6)0.0356 (7)0.0365 (7)0.0048 (5)0.0081 (5)0.0012 (6)
C210.0242 (6)0.0253 (6)0.0282 (6)0.0016 (5)0.0094 (5)0.0009 (5)
O210.0618 (7)0.0319 (5)0.0375 (5)0.0160 (5)0.0127 (5)0.0019 (4)
O220.0362 (5)0.0322 (5)0.0235 (4)0.0088 (4)0.0077 (4)0.0044 (3)
C230.0374 (7)0.0413 (7)0.0264 (6)0.0113 (6)0.0065 (5)0.0091 (5)
C240.0467 (8)0.0505 (9)0.0270 (7)0.0118 (7)0.0098 (6)0.0072 (6)
Geometric parameters (Å, º) top
C1—C141.4057 (16)C13—H130.9500
C1—C21.4064 (16)C15—C161.3284 (16)
C1—C151.4819 (16)C15—H150.9500
C2—C31.4292 (16)C16—C171.4978 (16)
C2—C71.4386 (16)C16—C211.5060 (16)
C3—C41.3596 (17)C17—O171.2038 (14)
C3—H30.9500C17—O181.3308 (14)
C4—C51.4202 (17)O18—C191.4613 (14)
C4—H40.9500C19—C201.4995 (17)
C5—C61.3538 (18)C19—H19A0.9900
C5—H50.9500C19—H19B0.9900
C6—C71.4272 (16)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—N81.3451 (15)C20—H20C0.9800
N8—C91.3471 (15)C21—O211.1978 (15)
C9—C101.4277 (16)C21—O221.3270 (14)
C9—C141.4317 (16)O22—C231.4600 (14)
C10—C111.3576 (18)C23—C241.4956 (19)
C10—H100.9500C23—H23A0.9900
C11—C121.4188 (19)C23—H23B0.9900
C11—H110.9500C24—H24A0.9800
C12—C131.3601 (18)C24—H24B0.9800
C12—H120.9500C24—H24C0.9800
C13—C141.4286 (16)
C14—C1—C2118.98 (10)C13—C14—C9118.68 (10)
C14—C1—C15119.96 (10)C16—C15—C1127.10 (11)
C2—C1—C15120.80 (10)C16—C15—H15116.4
C1—C2—C3123.70 (10)C1—C15—H15116.4
C1—C2—C7117.86 (10)C15—C16—C17118.38 (10)
C3—C2—C7118.39 (10)C15—C16—C21122.94 (10)
C4—C3—C2120.81 (11)C17—C16—C21118.66 (10)
C4—C3—H3119.6O17—C17—O18125.00 (11)
C2—C3—H3119.6O17—C17—C16123.57 (11)
C3—C4—C5120.69 (11)O18—C17—C16111.43 (10)
C3—C4—H4119.7C17—O18—C19116.13 (9)
C5—C4—H4119.7O18—C19—C20107.35 (10)
C6—C5—C4120.43 (11)O18—C19—H19A110.2
C6—C5—H5119.8C20—C19—H19A110.2
C4—C5—H5119.8O18—C19—H19B110.2
C5—C6—C7121.15 (11)C20—C19—H19B110.2
C5—C6—H6119.4H19A—C19—H19B108.5
C7—C6—H6119.4C19—C20—H20A109.5
N8—C7—C6117.82 (10)C19—C20—H20B109.5
N8—C7—C2123.63 (10)H20A—C20—H20B109.5
C6—C7—C2118.53 (10)C19—C20—H20C109.5
C7—N8—C9117.74 (10)H20A—C20—H20C109.5
N8—C9—C10117.94 (11)H20B—C20—H20C109.5
N8—C9—C14123.34 (10)O21—C21—O22125.37 (11)
C10—C9—C14118.71 (11)O21—C21—C16123.08 (11)
C11—C10—C9120.54 (12)O22—C21—C16111.55 (10)
C11—C10—H10119.7C21—O22—C23117.05 (10)
C9—C10—H10119.7O22—C23—C24107.21 (10)
C10—C11—C12120.98 (12)O22—C23—H23A110.3
C10—C11—H11119.5C24—C23—H23A110.3
C12—C11—H11119.5O22—C23—H23B110.3
C13—C12—C11120.27 (12)C24—C23—H23B110.3
C13—C12—H12119.9H23A—C23—H23B108.5
C11—C12—H12119.9C23—C24—H24A109.5
C12—C13—C14120.79 (12)C23—C24—H24B109.5
C12—C13—H13119.6H24A—C24—H24B109.5
C14—C13—H13119.6C23—C24—H24C109.5
C1—C14—C13122.88 (11)H24A—C24—H24C109.5
C1—C14—C9118.43 (10)H24B—C24—H24C109.5
C14—C1—C2—C3177.23 (10)C2—C1—C14—C90.92 (16)
C15—C1—C2—C33.19 (17)C15—C1—C14—C9175.01 (10)
C14—C1—C2—C70.14 (15)C12—C13—C14—C1178.23 (11)
C15—C1—C2—C7174.18 (10)C12—C13—C14—C91.16 (17)
C1—C2—C3—C4177.98 (11)N8—C9—C14—C10.73 (16)
C7—C2—C3—C40.62 (17)C10—C9—C14—C1179.48 (10)
C2—C3—C4—C50.83 (18)N8—C9—C14—C13178.68 (10)
C3—C4—C5—C60.57 (19)C10—C9—C14—C130.07 (16)
C4—C5—C6—C70.10 (19)C14—C1—C15—C16116.28 (13)
C5—C6—C7—N8178.82 (11)C2—C1—C15—C1669.74 (16)
C5—C6—C7—C20.09 (17)C1—C15—C16—C17175.44 (10)
C1—C2—C7—N80.98 (16)C1—C15—C16—C216.31 (18)
C3—C2—C7—N8178.50 (11)C15—C16—C17—O170.21 (17)
C1—C2—C7—C6177.68 (10)C21—C16—C17—O17178.55 (11)
C3—C2—C7—C60.16 (16)C15—C16—C17—O18179.12 (10)
C6—C7—N8—C9177.46 (10)C21—C16—C17—O180.79 (14)
C2—C7—N8—C91.20 (16)O17—C17—O18—C197.67 (17)
C7—N8—C9—C10178.43 (10)C16—C17—O18—C19173.01 (9)
C7—N8—C9—C140.33 (16)C17—O18—C19—C20166.89 (10)
N8—C9—C10—C11177.63 (11)C15—C16—C21—O2172.84 (17)
C14—C9—C10—C111.19 (17)C17—C16—C21—O21105.41 (14)
C9—C10—C11—C121.11 (18)C15—C16—C21—O22107.05 (13)
C10—C11—C12—C130.14 (19)C17—C16—C21—O2274.69 (13)
C11—C12—C13—C141.28 (18)O21—C21—O22—C231.91 (18)
C2—C1—C14—C13178.46 (10)C16—C21—O22—C23178.21 (10)
C15—C1—C14—C134.37 (17)C21—O22—C23—C24158.67 (11)

Experimental details

Crystal data
Chemical formulaC21H19NO4
Mr349.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.8535 (7), 14.888 (1), 12.5317 (8)
β (°) 108.805 (5)
V3)1740.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.68 × 0.62 × 0.28
Data collection
DiffractometerSiemens CCD three-circle
diffractometer
Absorption correctionEmpirical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.940, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
25802, 3553, 3240
Rint0.025
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.05
No. of reflections3553
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991).

Selected geometric parameters (Å, º) top
C7—N81.3451 (15)N8—C91.3471 (15)
C7—N8—C9117.74 (10)
C1—C15—C16—C17175.44 (10)C17—O18—C19—C20166.89 (10)
C1—C15—C16—C216.31 (18)C15—C16—C21—O2172.84 (17)
C15—C16—C17—O170.21 (17)C15—C16—C21—O22107.05 (13)
C15—C16—C17—O18179.12 (10)C16—C21—O22—C23178.21 (10)
C16—C17—O18—C19173.01 (9)C21—O22—C23—C24158.67 (11)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds