Download citation
Download citation
link to html
There are both weak and strong hydrogen bonds in the title compound, C19H13N3O2, The strong bond is an O—H...O intramolecular bond which forms an S(6) ring motif, whereas the weak C—H...N bond forms a C(9) motif forming chains which run parallel to the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801001714/na6046sup1.cif
Contains datablocks global, 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801001714/na6046Isup2.hkl
Contains datablock I

CCDC reference: 159764

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.046
  • wR factor = 0.136
  • Data-to-parameter ratio = 14.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.53 From the CIF: _reflns_number_total 3032 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3302 Completeness (_total/calc) 91.82% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Since becoming readily available, 3-formylchromone has been used to prepare a variety of heterocyclic systems (Jones & Albrecht., 1976; Haas et al., 1981; Pene & Hubert-Habart., 1980; Sigg et al., 1982). In our investigation of pyrazolo[1,5-a]pyrimidines, we have established that the cyclocondensation reaction of 5-amino-1H-pyrazoles with α,β-unsaturated aromatic ketones is a versatile and efficient method for the preparation of these compounds (Orlov et al., 1988; Quiroga et al., 1994, 1999), but the reaction with 3-formylchromone was not previously investigated. We have recently applied above methodology to prepare several pyrazolo[1,5-a]pyrimidines starting from 3-formylchromone.

Geometric parameters for the title compound, (I), are given in Table 1 and a view of the molecule is shown in Fig. 1. A strong intramolecular hydrogen bond, O62—H62···O61, forms an S(6) (Bernstein et al., 1995) ring motif. The molecules are linked into chains by the weak C63–H63···N1i hydrogen bond, which form a C(9) motif [symmetry code: (i) -x + 1/2, y + 1/2, -z + 1/2]. A series of antiparallel chains run parallel to the b axis. Details of the hydrogen bonds are given in Table 2.

Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental top

An equimolar mixture of 3-formylchromone and 5-amino-3-phenylpyrazol in ethanol was heated to reflux for 10 min. The title compound precipitated, was separated by filtration and recrystallized from DMF, affording crystals suitable for X-ray diffraction. M.p. 290–291 K, yield: 86%.

Refinement top

H atoms were treated as riding atoms with C—H distances in the range 0.90–0.95 Å and an O—H distance of 1.02 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
6-(2-hydroxybenzoyl)-2-phenylpyrazolo[1,5-a]pyrimidine top
Crystal data top
C19H13N3O2Dx = 1.463 Mg m3
Mr = 315.32Melting point: 590 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6606 (2) ÅCell parameters from 9215 reflections
b = 11.7048 (5) Åθ = 1.0–27.5°
c = 21.6815 (10) ŵ = 0.10 mm1
β = 94.7970 (15)°T = 150 K
V = 1431.50 (10) Å3Needle, yellow
Z = 40.44 × 0.10 × 0.08 mm
F(000) = 656
Data collection top
KappaCCD
diffractometer
3032 independent reflections
Radiation source: fine-focus sealed X-ray tube2168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scans with κ offsetsθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.958, Tmax = 0.992k = 1415
12852 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0846P)2]
where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H13N3O2V = 1431.50 (10) Å3
Mr = 315.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6606 (2) ŵ = 0.10 mm1
b = 11.7048 (5) ÅT = 150 K
c = 21.6815 (10) Å0.44 × 0.10 × 0.08 mm
β = 94.7970 (15)°
Data collection top
KappaCCD
diffractometer
3032 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2168 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.992Rint = 0.051
12852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3032 reflectionsΔρmin = 0.27 e Å3
217 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. no transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8503 (2)0.07565 (12)0.40296 (6)0.0266 (3)
C21.0571 (3)0.09435 (14)0.43675 (7)0.0259 (4)
C211.0833 (3)0.19334 (14)0.47804 (7)0.0263 (4)
C220.9007 (3)0.27172 (15)0.48181 (7)0.0298 (4)
C230.9261 (3)0.36321 (16)0.52165 (8)0.0335 (4)
C241.1334 (3)0.37829 (16)0.55898 (8)0.0342 (4)
C251.3157 (3)0.30119 (16)0.55611 (8)0.0347 (4)
C261.2923 (3)0.20985 (16)0.51590 (7)0.0317 (4)
C31.2266 (3)0.01047 (14)0.42730 (7)0.0265 (4)
C3A1.1175 (3)0.06478 (14)0.38585 (7)0.0245 (4)
N41.1882 (2)0.16338 (12)0.36037 (6)0.0290 (3)
C51.0311 (3)0.21521 (15)0.32270 (7)0.0276 (4)
C60.7988 (3)0.17334 (14)0.30481 (7)0.0260 (4)
C670.6385 (3)0.24735 (15)0.26531 (7)0.0273 (4)
O610.6629 (2)0.35226 (10)0.27246 (6)0.0374 (3)
C610.4552 (3)0.20198 (14)0.22000 (7)0.0252 (4)
C620.2709 (3)0.27456 (14)0.19630 (7)0.0256 (4)
O620.2589 (2)0.38546 (10)0.21305 (5)0.0320 (3)
C630.0882 (3)0.23229 (15)0.15627 (7)0.0317 (4)
C640.0907 (3)0.12000 (16)0.13801 (8)0.0348 (4)
C650.2743 (3)0.04757 (16)0.15900 (7)0.0326 (4)
C660.4545 (3)0.08862 (15)0.19963 (7)0.0288 (4)
C70.7311 (3)0.07319 (14)0.33052 (7)0.0251 (4)
N7A0.8902 (2)0.02183 (12)0.37149 (6)0.0240 (3)
H220.75660.26200.45660.036*
H230.80010.41640.52350.040*
H241.15010.44150.58650.041*
H251.45830.31090.58190.042*
H261.41990.15760.51390.038*
H31.38450.00660.44580.032*
H51.07490.28630.30590.033*
H620.41830.40160.23770.038*
H630.03860.28090.14150.038*
H640.03520.09140.11060.042*
H650.27570.02960.14550.039*
H660.58020.03910.21400.035*
H70.57890.04110.32010.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0244 (7)0.0275 (8)0.0274 (7)0.0009 (5)0.0015 (5)0.0010 (6)
C20.0239 (9)0.0311 (10)0.0225 (8)0.0026 (7)0.0003 (6)0.0070 (7)
C210.0257 (8)0.0311 (10)0.0217 (8)0.0038 (7)0.0003 (6)0.0054 (7)
C220.0261 (9)0.0357 (11)0.0266 (8)0.0010 (7)0.0036 (6)0.0023 (7)
C230.0333 (9)0.0343 (11)0.0326 (9)0.0003 (7)0.0004 (7)0.0008 (8)
C240.0392 (10)0.0338 (11)0.0293 (9)0.0092 (8)0.0015 (7)0.0027 (8)
C250.0311 (9)0.0407 (11)0.0312 (9)0.0079 (8)0.0046 (7)0.0020 (8)
C260.0252 (9)0.0369 (11)0.0321 (9)0.0027 (7)0.0032 (7)0.0045 (8)
C30.0205 (8)0.0336 (10)0.0247 (8)0.0001 (7)0.0020 (6)0.0041 (7)
C3A0.0173 (7)0.0324 (10)0.0239 (8)0.0031 (6)0.0016 (6)0.0081 (7)
N40.0270 (8)0.0330 (9)0.0268 (7)0.0033 (6)0.0007 (6)0.0022 (6)
C50.0285 (9)0.0286 (10)0.0258 (8)0.0028 (7)0.0027 (6)0.0041 (7)
C60.0269 (8)0.0283 (10)0.0224 (8)0.0001 (7)0.0007 (6)0.0043 (7)
C670.0285 (9)0.0262 (10)0.0274 (8)0.0015 (7)0.0038 (6)0.0003 (7)
O610.0395 (7)0.0268 (8)0.0443 (7)0.0022 (5)0.0066 (5)0.0002 (6)
C610.0284 (9)0.0250 (9)0.0223 (8)0.0003 (7)0.0030 (6)0.0026 (7)
C620.0318 (9)0.0234 (9)0.0221 (8)0.0017 (7)0.0050 (6)0.0049 (7)
O620.0406 (7)0.0241 (7)0.0305 (6)0.0041 (5)0.0013 (5)0.0007 (5)
C630.0319 (9)0.0328 (10)0.0294 (9)0.0054 (7)0.0038 (7)0.0036 (7)
C640.0389 (10)0.0333 (11)0.0303 (9)0.0011 (8)0.0082 (7)0.0010 (8)
C650.0399 (10)0.0262 (10)0.0306 (9)0.0015 (7)0.0039 (7)0.0010 (7)
C660.0327 (9)0.0279 (10)0.0254 (8)0.0049 (7)0.0001 (7)0.0021 (7)
C70.0185 (8)0.0307 (10)0.0256 (8)0.0011 (6)0.0013 (6)0.0048 (7)
N7A0.0198 (7)0.0271 (8)0.0244 (7)0.0010 (5)0.0011 (5)0.0031 (6)
Geometric parameters (Å, º) top
N1—C21.3459 (19)C5—C61.426 (2)
N1—N7A1.3580 (19)C5—H50.9500
C2—C31.400 (2)C6—C71.367 (2)
C2—C211.464 (2)C6—C671.476 (2)
C21—C221.389 (2)C67—O611.2439 (19)
C21—C261.396 (2)C67—C611.467 (2)
C22—C231.376 (2)C61—C661.398 (2)
C22—H220.9500C61—C621.409 (2)
C23—C241.380 (2)C62—O621.3512 (19)
C23—H230.9500C62—C631.385 (2)
C24—C251.376 (3)O62—H621.0275
C24—H240.9500C63—C641.373 (2)
C25—C261.379 (2)C63—H630.9500
C25—H250.9500C64—C651.388 (2)
C26—H260.9500C64—H640.9500
C3—C3A1.368 (2)C65—C661.377 (2)
C3—H30.9500C65—H650.9500
C3A—N41.354 (2)C66—H660.9500
C3A—N7A1.3922 (19)C7—N7A1.3519 (19)
N4—C51.306 (2)C7—H70.9500
C2—N1—N7A103.67 (12)C7—C6—C5117.87 (15)
N1—C2—C3112.45 (14)C7—C6—C67124.08 (15)
N1—C2—C21120.02 (14)C5—C6—C67117.67 (15)
C3—C2—C21127.53 (14)O61—C67—C61120.37 (15)
C22—C21—C26118.17 (16)O61—C67—C6116.79 (14)
C22—C21—C2121.39 (14)C61—C67—C6122.83 (15)
C26—C21—C2120.43 (15)C66—C61—C62118.32 (14)
C23—C22—C21120.78 (15)C66—C61—C67122.56 (14)
C23—C22—H22119.6C62—C61—C67119.11 (15)
C21—C22—H22119.6O62—C62—C63117.37 (14)
C22—C23—C24120.46 (16)O62—C62—C61122.27 (14)
C22—C23—H23119.8C63—C62—C61120.31 (15)
C24—C23—H23119.8C62—O62—H62104.8
C25—C24—C23119.59 (17)C64—C63—C62119.83 (15)
C25—C24—H24120.2C64—C63—H63120.1
C23—C24—H24120.2C62—C63—H63120.1
C24—C25—C26120.27 (16)C63—C64—C65121.03 (16)
C24—C25—H25119.9C63—C64—H64119.5
C26—C25—H25119.9C65—C64—H64119.5
C25—C26—C21120.73 (16)C66—C65—C64119.39 (17)
C25—C26—H26119.6C66—C65—H65120.3
C21—C26—H26119.6C64—C65—H65120.3
C3A—C3—C2105.70 (14)C65—C66—C61121.04 (15)
C3A—C3—H3127.1C65—C66—H66119.5
C2—C3—H3127.1C61—C66—H66119.5
N4—C3A—C3133.16 (15)N7A—C7—C6117.09 (15)
N4—C3A—N7A121.04 (14)N7A—C7—H7121.5
C3—C3A—N7A105.79 (14)C6—C7—H7121.5
C5—N4—C3A116.24 (14)C7—N7A—N1125.03 (13)
N4—C5—C6125.08 (16)C7—N7A—C3A122.59 (14)
N4—C5—H5117.5N1—N7A—C3A112.37 (12)
C6—C5—H5117.5
N7A—N1—C2—C30.12 (17)C5—C6—C67—C61149.14 (14)
N7A—N1—C2—C21179.46 (13)O61—C67—C61—C66164.67 (15)
N1—C2—C21—C222.2 (2)C6—C67—C61—C6616.2 (2)
C3—C2—C21—C22178.52 (15)O61—C67—C61—C6216.0 (2)
N1—C2—C21—C26176.31 (14)C6—C67—C61—C62163.18 (14)
C3—C2—C21—C262.9 (2)C66—C61—C62—O62179.45 (14)
C26—C21—C22—C230.2 (2)C67—C61—C62—O621.2 (2)
C2—C21—C22—C23178.80 (15)C66—C61—C62—C633.2 (2)
C21—C22—C23—C240.5 (3)C67—C61—C62—C63176.21 (14)
C22—C23—C24—C250.1 (3)O62—C62—C63—C64179.62 (14)
C23—C24—C25—C260.5 (3)C61—C62—C63—C642.1 (2)
C24—C25—C26—C210.7 (3)C62—C63—C64—C650.1 (3)
C22—C21—C26—C250.4 (2)C63—C64—C65—C661.1 (3)
C2—C21—C26—C25178.24 (15)C64—C65—C66—C610.0 (2)
N1—C2—C3—C3A0.61 (18)C62—C61—C66—C652.1 (2)
C21—C2—C3—C3A178.67 (15)C67—C61—C66—C65177.26 (15)
C2—C3—C3A—N4178.17 (16)C5—C6—C7—N7A0.5 (2)
C2—C3—C3A—N7A1.05 (16)C67—C6—C7—N7A172.32 (14)
C3—C3A—N4—C5178.38 (16)C6—C7—N7A—N1177.63 (14)
N7A—C3A—N4—C50.7 (2)C6—C7—N7A—C3A2.5 (2)
C3A—N4—C5—C62.9 (2)C2—N1—N7A—C7179.05 (13)
N4—C5—C6—C72.4 (2)C2—N1—N7A—C3A0.82 (16)
N4—C5—C6—C67175.64 (14)N4—C3A—N7A—C72.0 (2)
C7—C6—C67—O61141.11 (16)C3—C3A—N7A—C7178.66 (13)
C5—C6—C67—O6131.7 (2)N4—C3A—N7A—N1178.12 (13)
C7—C6—C67—C6138.1 (2)C3—C3A—N7A—N11.22 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C63—H63···N1i0.952.563.512 (2)174
O62—H62···O611.031.622.559 (2)149
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H13N3O2
Mr315.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)5.6606 (2), 11.7048 (5), 21.6815 (10)
β (°) 94.7970 (15)
V3)1431.50 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.10 × 0.08
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.958, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12852, 3032, 2168
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.04
No. of reflections3032
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2000), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N1—C21.3459 (19)C3A—N7A1.3922 (19)
N1—N7A1.3580 (19)N4—C51.306 (2)
C3A—N41.354 (2)C7—N7A1.3519 (19)
C2—N1—N7A103.67 (12)C7—N7A—C3A122.59 (14)
C5—N4—C3A116.24 (14)N1—N7A—C3A112.37 (12)
C7—N7A—N1125.03 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C63—H63···N1i0.952.563.512 (2)174
O62—H62···O611.031.622.559 (2)149
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds