Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The phthalate salt of diprotonated ethyl­ene­di­amine, C2H10N2+·C8H4O4-, was obtained during ongoing studies of the hydrolytic chemistry of phthal­imides for the synthesis of efficient sensitizers for EuIII and TbIII photoluminescence.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800018420/na6013sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800018420/na6013Isup2.hkl
Contains datablock I

CCDC reference: 155861

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.108
  • Data-to-parameter ratio = 11.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_353 Alert C Long N-H Bond (0.87A) N(2) - H(2C) = 1.04 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The phthalate salt [NH3(CH2)2NH3][1,2-C6H4(COO)2], (I), was obtained in the course of studies of the hydrolytic processes of phthalimides to phthalates through phthalamate intermediates which are of interest as efficient sensitizers for EuIII and TbIII photoluminescence (Barrett et al., 1995, 1998). The structure consists of sheets of cations sandwiched between two sheets of anions. There is extensive hydrogen bonding between the cations and anions.

Experimental top

The title compound was prepared by heating 13.5 mmol of phthalic anhydride in 30 ml of pyridine to 363 K and then adding 65 mmol of ethylenediamine dissolved in 10 ml of pyridine. Deposition of a white solid occurred immediately and the resulting mixture was refluxed for 24 h. The white solid was then filtered off and washed with acetone and dichloromethane. Hydrolysis of the material thus obtained in wet dimethyl sulfoxide and subsequent crystallization yielded rectangular crystals. Analysis calculated for C10H14N2O4: C 55.0, H 5.1, N 7.1%; found: C 55.0, H 5.0, N 7.1%.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A portion of the hydrogen-bonded network in (I).
Ethylenediammonium phthalate top
Crystal data top
C2H10N2+·C8H4O4Dx = 1.382 Mg m3
Mr = 226.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 23 reflections
a = 21.825 (3) Åθ = 11.7–16.0°
b = 12.384 (1) ŵ = 0.11 mm1
c = 8.048 (1) ÅT = 293 K
V = 2175.2 (5) Å3Plate, colourless
Z = 80.40 × 0.30 × 0.13 mm
F(000) = 960
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 1.9°
Graphite monochromatorh = 026
θ/2θ scansk = 014
1934 measured reflectionsl = 09
1934 independent reflections2 standard reflections every 120 min
1187 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.137P]
where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max = 0.005
169 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C2H10N2+·C8H4O4V = 2175.2 (5) Å3
Mr = 226.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 21.825 (3) ŵ = 0.11 mm1
b = 12.384 (1) ÅT = 293 K
c = 8.048 (1) Å0.40 × 0.30 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
1934 measured reflections2 standard reflections every 120 min
1934 independent reflections intensity decay: <1%
1187 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.16 e Å3
1934 reflectionsΔρmin = 0.23 e Å3
169 parameters
Special details top

Experimental. General procedures for crystal alignment, unit cell determination and refinement and collection of intensity data have been published (Mague, J. T. & Lloyd, C. L. (1988). Organometallics 7, 983–993).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to nitrogen were refined with isotropic displacement parameters while the remainder of the H-atoms were placed in calculated positions riding on the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45383 (8)0.25649 (13)0.8137 (2)0.0501 (5)
O20.45026 (6)0.09791 (11)0.68450 (18)0.0321 (4)
O30.43446 (7)0.08491 (11)0.92898 (18)0.0304 (4)
O40.37479 (7)0.11955 (12)0.71160 (19)0.0356 (4)
C10.37142 (10)0.13762 (17)0.8774 (3)0.0306 (5)
C20.35097 (9)0.03069 (17)0.8853 (2)0.0255 (5)
C30.29507 (10)0.0086 (2)0.9601 (3)0.0388 (6)
H30.28060.06200.96180.047*
C40.26054 (12)0.0896 (2)1.0321 (3)0.0516 (7)
H40.22320.07361.08190.062*
C50.28193 (13)0.1941 (2)1.0296 (4)0.0569 (8)
H50.25940.24871.08010.068*
C60.33676 (12)0.21822 (19)0.9524 (3)0.0475 (7)
H60.35070.28920.95070.057*
C70.42957 (10)0.16706 (16)0.7859 (3)0.0304 (5)
C80.39011 (9)0.06396 (16)0.8334 (3)0.0245 (5)
N10.44854 (9)0.02739 (16)0.2289 (3)0.0311 (4)
H1A0.4425 (13)0.004 (2)0.114 (4)0.070 (9)*
H1B0.4870 (13)0.002 (2)0.258 (3)0.055 (8)*
H1C0.4496 (12)0.102 (2)0.239 (4)0.061 (8)*
N20.44276 (9)0.18674 (15)0.4390 (3)0.0299 (4)
H2A0.4305 (11)0.1677 (18)0.548 (3)0.038 (6)*
H2B0.4423 (11)0.259 (2)0.429 (3)0.043 (7)*
H2C0.4865 (12)0.159 (2)0.408 (3)0.054 (7)*
C90.39597 (10)0.13791 (17)0.3292 (3)0.0318 (5)
H9A0.35570.16200.36400.038*
H9B0.40250.16280.21630.038*
C100.39780 (10)0.01580 (17)0.3321 (3)0.0314 (5)
H10A0.35910.01230.29120.038*
H10B0.40290.00870.44580.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0644 (12)0.0261 (8)0.0599 (12)0.0115 (8)0.0042 (9)0.0016 (9)
O20.0313 (8)0.0294 (8)0.0358 (9)0.0006 (6)0.0051 (7)0.0027 (7)
O30.0363 (8)0.0263 (8)0.0287 (9)0.0046 (7)0.0045 (7)0.0018 (7)
O40.0406 (9)0.0350 (9)0.0314 (9)0.0009 (7)0.0035 (8)0.0099 (7)
C10.0351 (12)0.0271 (11)0.0294 (13)0.0066 (10)0.0006 (10)0.0003 (9)
C20.0244 (10)0.0312 (11)0.0209 (11)0.0016 (9)0.0011 (9)0.0005 (9)
C30.0302 (12)0.0474 (14)0.0387 (14)0.0012 (11)0.0051 (11)0.0052 (12)
C40.0368 (14)0.074 (2)0.0440 (16)0.0169 (14)0.0134 (12)0.0049 (15)
C50.0570 (17)0.0570 (18)0.0569 (18)0.0298 (15)0.0141 (15)0.0056 (15)
C60.0578 (16)0.0353 (13)0.0494 (16)0.0157 (12)0.0082 (13)0.0025 (12)
C70.0367 (12)0.0221 (10)0.0324 (13)0.0011 (10)0.0020 (10)0.0060 (10)
C80.0276 (11)0.0228 (10)0.0231 (11)0.0036 (9)0.0043 (10)0.0034 (9)
N10.0362 (11)0.0229 (9)0.0341 (11)0.0013 (8)0.0008 (10)0.0006 (9)
N20.0364 (11)0.0230 (10)0.0304 (11)0.0007 (9)0.0058 (9)0.0001 (9)
C90.0375 (12)0.0303 (12)0.0275 (13)0.0046 (10)0.0009 (10)0.0036 (10)
C100.0345 (12)0.0309 (12)0.0289 (13)0.0048 (9)0.0003 (10)0.0021 (10)
Geometric parameters (Å, º) top
O1—C71.248 (3)C2—C81.509 (3)
O2—C71.266 (3)C3—C41.381 (3)
O3—C81.263 (2)C4—C51.376 (4)
O4—C81.244 (2)C5—C61.381 (4)
C1—C61.391 (3)N1—C101.484 (3)
C1—C21.399 (3)N2—C91.480 (3)
C1—C71.512 (3)C9—C101.513 (3)
C2—C31.388 (3)
C6—C1—C2119.1 (2)C5—C6—C1120.7 (2)
C6—C1—C7119.7 (2)O1—C7—O2124.4 (2)
C2—C1—C7121.22 (18)O1—C7—C1118.9 (2)
C3—C2—C1119.1 (2)O2—C7—C1116.75 (18)
C3—C2—C8117.70 (19)O4—C8—O3124.91 (19)
C1—C2—C8122.82 (18)O4—C8—C2119.72 (19)
C4—C3—C2121.3 (2)O3—C8—C2115.13 (18)
C5—C4—C3119.4 (2)N2—C9—C10112.40 (19)
C4—C5—C6120.3 (2)N1—C10—C9111.80 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.98 (3)1.85 (3)2.802 (3)161 (2)
N1—H1B···O2ii0.95 (3)1.87 (3)2.788 (2)163 (2)
N1—H1C···O1iii0.93 (3)1.85 (3)2.765 (3)166 (3)
N2—H2A···O40.95 (2)1.89 (3)2.776 (3)155 (2)
N2—H2B···O3iv0.90 (3)1.94 (3)2.835 (2)173 (2)
N2—H2C···O2ii1.04 (3)1.74 (3)2.766 (2)166 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC2H10N2+·C8H4O4
Mr226.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)21.825 (3), 12.384 (1), 8.048 (1)
V3)2175.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1934, 1934, 1187
Rint0.000
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.01
No. of reflections1934
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.98 (3)1.85 (3)2.802 (3)161 (2)
N1—H1B···O2ii0.95 (3)1.87 (3)2.788 (2)163 (2)
N1—H1C···O1iii0.93 (3)1.85 (3)2.765 (3)166 (3)
N2—H2A···O40.95 (2)1.89 (3)2.776 (3)155 (2)
N2—H2B···O3iv0.90 (3)1.94 (3)2.835 (2)173 (2)
N2—H2C···O2ii1.04 (3)1.74 (3)2.766 (2)166 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds