Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, praeseodymium hexamolybdenum dodecaoxide, PrMo6O12, crystallizes in the tetragonal space group I4/m and is isostructural with NdMo6O12. Both compounds adopt a hollandite-related structure with a tripled c axis compared to the mineral hollandite. Within the double chains of edge-sharing MoO6 octahedra, the Mo atoms form infinite chains of Mo3 triangular clusters. Another dominant feature of the structure is the ordering of the Pr3+ cations within the square-shaped channels delimited by the Mo-O double strings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800019048/na6011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800019048/na6011Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Pr-O) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.081
  • Data-to-parameter ratio = 27.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Compounds which crystallize in the hollandite-type structure have been the subject of numerous researches because of the possibility of one-dimensional ionic conductivity through the tunnel on the one hand, and on the other hand, that of their use as host materials for the storage of radioactive wastes. From the crystallographic point of view, these phases frequently exhibit complex commensurate or incommensurate superstructures due to partial occupation and ordering of the A cation within the four-sided tunnels. Reduced molybdenum oxides which crystallize with a hollandite-type structure are in addition characterized by a clustering of the Mo atoms which results in the formation of tetrameric molybdenum Mo4 clusters in K2Mo8O16 (Torardy & Calabrese, 1984) and Ba1.14Mo8O16 (Torardy & McCarley, 1981) synthesized by solid-state reaction, and Mo3 triangles in La1.16Mo8O16 (Leligny et al., 1992) and NdMo6O12 (Tortelier et al., 1998) obtained by fused-salt electrolysis. While in K2Mo8O16 all square-prismatic sites are occupied, a partial occupation and disorder of the large cations occur in the Ba compound. For La1.16Mo8O16, a one-dimensional incommensurate modulated structure with a modulation wavevector of q* = 0.608c* was determined. We report here the single-crystal structure determination of a new reduced ternary oxide of molybdenum which adopts the hollandite-type structure, namely PrMo6O12.

PrMo6O12 crystallizes in a hollandite-type structure with a tripled c axis due to the ordering of the cations in the tunnels. The Mo–O framework of PrMo6O12 consists of double-rutile chains of edge-sharing MoO6 octahedra with each octahedron sharing four edges with four other neighboring octahedra. Within each chain, the Mo atoms that are displaced from the centre of their octahedral oxygen environment, form infinite metallic chains based on Mo3 triangular clusters, as shown in Fig. 1. These double strings which run parallel to the c axis are then linked together by sharing sp2-type O-atom corners to form large square tunnels of 2 × 2 octahedra in cross-section in which the Pr3+ ions are located (Fig. 2a) as well as smaller sized channels similar to those found in the rutile-type structure. The Mo—Mo distances within the Mo3 triangles are 2.5589 (5) Å for the two diagonal bonds Mo1—Mo2, and 2.7381 (7) Å for the Mo1—Mo1 bond parallel to the c axis. The shortest distance between triangles is 2.7344 (7) Å and corresponds to the diagonal bond Mo1—Mo1. The other two intertriangle Mo1—Mo2 distances that are parallel to the c axis are 2.9573 (4) Å and thus are only weakly bonding.

As previously observed in the other hollandite-related reduced molybdenum oxides, the O atoms can be divided into two different types: O1 and O3 which interconnect the double chains and are linked in trigonal planar-like coordination to three Mo atoms, and O2 and O4 that bridge three Mo atoms of the same double chain and are also bonded to one (O2) or two Pr atoms (O4). The Mo—O bond lengths vary from 1.996 (3) to 2.052 (3) Å for the O atoms of the former type, and from 2.064 (3) to 2.102 (3) Å for those of the second type. From the Mo—O bond lengths, the valences of the two crystallographically independent Mo atoms calculated by using the relationship of Brown & Wu (1976) [s = (dMo—O /1.882)-6.0] are +3.53 (3) and +3.64 (3), respectively. This yields an average value of +3.57 (3), in reasonably good agreement with the expected value of +3.5. The Pr3+ ions occupy, in an ordered way, two out of the three possible square-prismatic sites formed by the intrachain O atoms (Fig. 2 b). In order to minimize Pr3+–Pr3+ Coulomb repulsions, the Pr3+ ions of two consecutive sites are shifted away from one another along the [001] direction. Consequently, each Pr3+ ion is displaced by 0.368 Å from the center of its tetragonal prismatic site and thus has four nearest O atoms at 2.401 (3) Å and four furthest ones at 2.688 (3) Å. The average Pr—O bond distance is 2.54 Å that is slightly larger than the value of 2.51 Å expected from the sum of the ionic radii of Pr3+ (CN8) and O2- (CN4) (Shannon & Prewitt, 1969). The distance between two close Pr3+ ions is 3.589 (1) Å.

Experimental top

Single crystals of PrMo6O12 were obtained by the electrolysis of a melt formed at 1233 K from a mixture of Rb2MoO4, MoO3 and Pr6O11 having the molar ratio 25:15:1. The electrolysis was carried out in air using an alumina crucible. The anode was a platinum foil with a surface area of about 1 cm2 and the cathode a 10-turn spiral platinum made from a 0.4 mm diameter wire. At the end of the run, the electrodes were raised above the melt to allow them to cool rapidly to room temperature. Crystals which grow perpendicularly to the cathode in the form of black needle-shaped square prisms with the needle axis parallel to the tetragonal c axis (maximum dimensions 0.8 x 0.8 x 5 mm) were obtained by applying a constant current of 36 mA for 12 h. Single crystals were separated from the matrix and the cathode by repeated and alternate washings in hot dilute solutions of potassium carbonate and hydrochloric acid.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Section of the metal–oxide chains in PrMo6O12. Mo—Mo bonds are represented by solid black lines. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2] Fig. 2. (a) View of the PrMo6O12 structure along the tetragonal c axis. (b) A view perpendicular to the c axis of PrMo6O12 showing the ordered arrangement of the Pr3+ cations within a channel.
(I) top
Crystal data top
PrMo6O12Dx = 7.095 Mg m3
Mr = 908.55Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mCell parameters from 25 reflections
a = 9.9147 (3) Åθ = 10.3–31.4°
c = 8.6508 (6) ŵ = 14.25 mm1
V = 850.38 (7) Å3T = 293 K
Z = 4Parallelepiped, black
F(000) = 16280.29 × 0.03 × 0.02 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1242 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 40.0°, θmin = 2.9°
θ–2θ scansh = 017
Absorption correction: numerical
(Coppens, 1970)
k = 017
Tmin = 0.340, Tmax = 0.768l = 015
1494 measured reflections3 standard reflections every 3600 min
1385 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0281P)2 + 24.9952P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.18Δρmax = 3.40 e Å3
1385 reflectionsΔρmin = 2.99 e Å3
50 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00110 (9)
Crystal data top
PrMo6O12Z = 4
Mr = 908.55Mo Kα radiation
Tetragonal, I4/mµ = 14.25 mm1
a = 9.9147 (3) ÅT = 293 K
c = 8.6508 (6) Å0.29 × 0.03 × 0.02 mm
V = 850.38 (7) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
1242 reflections with I > 2σ(I)
Absorption correction: numerical
(Coppens, 1970)
Rint = 0.036
Tmin = 0.340, Tmax = 0.7683 standard reflections every 3600 min
1494 measured reflections intensity decay: <1%
1385 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0281P)2 + 24.9952P]
where P = (Fo2 + 2Fc2)/3
S = 1.18Δρmax = 3.40 e Å3
1385 reflectionsΔρmin = 2.99 e Å3
50 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles, correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.00000.00000.20745 (5)0.00788 (9)
Mo10.34033 (3)0.81670 (3)0.34174 (4)0.00648 (8)
Mo20.33255 (4)0.81617 (4)0.00000.00494 (9)
O10.4568 (3)0.1706 (3)0.3324 (3)0.0066 (4)
O20.1722 (3)0.1305 (3)0.3329 (3)0.0084 (4)
O30.4631 (4)0.1626 (4)0.00000.0062 (6)
O40.1229 (4)0.1602 (4)0.00000.0065 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00901 (11)0.00901 (11)0.00562 (16)0.0000.0000.000
Mo10.00547 (12)0.00510 (12)0.00887 (14)0.00143 (8)0.00238 (9)0.00218 (9)
Mo20.00505 (16)0.00513 (16)0.00464 (16)0.00037 (11)0.0000.000
O10.0043 (9)0.0096 (10)0.0058 (11)0.0006 (8)0.0002 (8)0.0006 (8)
O20.0085 (10)0.0103 (11)0.0062 (11)0.0024 (8)0.0005 (8)0.0016 (9)
O30.0060 (13)0.0076 (14)0.0052 (14)0.0010 (11)0.0000.000
O40.0066 (14)0.0080 (14)0.0050 (14)0.0000 (11)0.0000.000
Geometric parameters (Å, º) top
Pr1—O22.401 (3)Mo2—O2xv2.064 (3)
Pr1—O42.688 (3)Mo2—O2viii2.064 (3)
Pr1—O1i3.312 (3)Mo2—O4xiii2.092 (4)
Pr1—Mo1ii3.5421 (3)Mo2—Mo1xi2.5589 (5)
Pr1—Pr1iii3.5892 (10)Mo2—Mo1xvi2.5589 (5)
Pr1—Mo1iv4.0048 (4)Mo2—Mo1xvii2.9573 (4)
Pr1—Mo2v4.1730 (5)Mo2—Pr1xiii4.1730 (5)
Pr1—Mo2vi4.3575 (5)Mo2—Pr1xviii4.1730 (5)
Pr1—Pr1vii5.0616 (10)O1—Mo2xix2.012 (3)
Mo1—O3viii1.996 (3)O1—Mo1ix2.017 (3)
Mo1—O1ix2.017 (3)O1—Mo1xx2.052 (3)
Mo1—O1viii2.052 (3)O1—Pr1ii3.312 (3)
Mo1—O2x2.085 (3)O2—Mo2xix2.064 (3)
Mo1—O4ii2.101 (3)O2—Mo1xxi2.085 (3)
Mo1—O2viii2.102 (3)O2—Mo1xx2.102 (3)
Mo1—Mo2xi2.5589 (5)O3—Mo1xx1.996 (3)
Mo1—Mo1xi2.7344 (7)O3—Mo1xxii1.996 (3)
Mo1—Mo1xii2.7381 (7)O3—Mo2xiv2.036 (4)
Mo1—Mo22.9573 (4)O4—Mo2v2.092 (4)
Mo1—Pr1ii3.5421 (3)O4—Mo1xxiii2.101 (3)
Mo1—Pr1xiii4.0048 (4)O4—Mo1ii2.101 (3)
Mo2—O1viii2.012 (3)O4—Pr1iii2.688 (3)
Mo2—O3xiv2.036 (4)
O2xxiv—Pr1—O2xxv126.26 (15)Mo1xxix—Pr1—Mo2xxx171.373 (13)
O2xxiv—Pr1—O2xxvi78.21 (6)Mo2v—Pr1—Mo2xxx79.342 (5)
O2xxv—Pr1—O2xxvi78.21 (6)Mo2xviii—Pr1—Mo2xxx79.342 (5)
O2xxiv—Pr1—O278.21 (6)Mo2xxix—Pr1—Mo2xxx129.058 (13)
O2xxv—Pr1—O278.21 (6)O2xxiv—Pr1—Mo2vi11.70 (7)
O2xxvi—Pr1—O2126.26 (15)O2xxv—Pr1—Mo2vi117.02 (7)
O2xxiv—Pr1—O4164.99 (9)O2xxvi—Pr1—Mo2vi81.61 (7)
O2xxv—Pr1—O468.75 (9)O2—Pr1—Mo2vi67.72 (7)
O2xxvi—Pr1—O4107.80 (11)O4—Pr1—Mo2vi170.18 (8)
O2—Pr1—O4107.32 (11)O4xxvii—Pr1—Mo2vi106.66 (8)
O2xxiv—Pr1—O4xxvii107.32 (11)O4xxv—Pr1—Mo2vi119.25 (8)
O2xxv—Pr1—O4xxvii107.80 (11)O4iii—Pr1—Mo2vi77.88 (6)
O2xxvi—Pr1—O4xxvii164.99 (9)O1i—Pr1—Mo2vi121.95 (5)
O2—Pr1—O4xxvii68.75 (9)O1xx—Pr1—Mo2vi65.91 (5)
O4—Pr1—O4xxvii63.54 (7)O1xxviii—Pr1—Mo2vi136.11 (5)
O2xxiv—Pr1—O4xxv107.80 (11)O1ii—Pr1—Mo2vi53.15 (5)
O2xxv—Pr1—O4xxv107.32 (11)Mo1ii—Pr1—Mo2vi151.374 (14)
O2xxvi—Pr1—O4xxv68.75 (9)Mo1xxviii—Pr1—Mo2vi42.420 (7)
O2—Pr1—O4xxv164.99 (9)Mo1xx—Pr1—Mo2vi94.934 (9)
O4—Pr1—O4xxv63.54 (7)Mo1i—Pr1—Mo2vi93.069 (9)
O4xxvii—Pr1—O4xxv96.25 (12)Pr1iii—Pr1—Mo2vi125.506 (6)
O2xxiv—Pr1—O4iii68.75 (9)Mo1iv—Pr1—Mo2vi35.318 (8)
O2xxv—Pr1—O4iii164.99 (9)Mo1v—Pr1—Mo2vi118.620 (12)
O2xxvi—Pr1—O4iii107.32 (11)Mo1xxi—Pr1—Mo2vi53.008 (8)
O2—Pr1—O4iii107.80 (11)Mo1xxix—Pr1—Mo2vi105.352 (10)
O4—Pr1—O4iii96.25 (12)Mo2v—Pr1—Mo2vi149.885 (11)
O4xxvii—Pr1—O4iii63.54 (7)Mo2xviii—Pr1—Mo2vi68.563 (5)
O4xxv—Pr1—O4iii63.54 (7)Mo2xxix—Pr1—Mo2vi130.674 (11)
O2xxiv—Pr1—O1i132.08 (9)Mo2xxx—Pr1—Mo2vi81.245 (10)
O2xxv—Pr1—O1i54.82 (9)O2xxiv—Pr1—Mo2i67.72 (7)
O2xxvi—Pr1—O1i132.73 (9)O2xxv—Pr1—Mo2i81.61 (7)
O2—Pr1—O1i54.23 (8)O2xxvi—Pr1—Mo2i11.70 (7)
O4—Pr1—O1i53.65 (9)O2—Pr1—Mo2i117.02 (7)
O4xxvii—Pr1—O1i53.60 (9)O4—Pr1—Mo2i119.25 (8)
O4xxv—Pr1—O1i117.03 (9)O4xxvii—Pr1—Mo2i170.18 (8)
O4iii—Pr1—O1i116.99 (9)O4xxv—Pr1—Mo2i77.88 (6)
O2xxiv—Pr1—O1xx54.82 (9)O4iii—Pr1—Mo2i106.66 (8)
O2xxv—Pr1—O1xx132.08 (9)O1i—Pr1—Mo2i136.11 (5)
O2xxvi—Pr1—O1xx54.23 (8)O1xx—Pr1—Mo2i53.15 (5)
O2—Pr1—O1xx132.73 (9)O1xxviii—Pr1—Mo2i65.91 (5)
O4—Pr1—O1xx116.99 (9)O1ii—Pr1—Mo2i121.95 (5)
O4xxvii—Pr1—O1xx117.03 (9)Mo1ii—Pr1—Mo2i93.069 (9)
O4xxv—Pr1—O1xx53.60 (9)Mo1xxviii—Pr1—Mo2i94.934 (9)
O4iii—Pr1—O1xx53.65 (9)Mo1xx—Pr1—Mo2i151.374 (14)
O1i—Pr1—O1xx168.05 (10)Mo1i—Pr1—Mo2i42.420 (7)
O2xxiv—Pr1—O1xxviii132.73 (9)Pr1iii—Pr1—Mo2i125.506 (6)
O2xxv—Pr1—O1xxviii54.23 (8)Mo1iv—Pr1—Mo2i53.008 (8)
O2xxvi—Pr1—O1xxviii54.82 (9)Mo1v—Pr1—Mo2i105.352 (10)
O2—Pr1—O1xxviii132.08 (9)Mo1xxi—Pr1—Mo2i118.620 (12)
O4—Pr1—O1xxviii53.60 (9)Mo1xxix—Pr1—Mo2i35.318 (7)
O4xxvii—Pr1—O1xxviii116.99 (9)Mo2v—Pr1—Mo2i130.674 (11)
O4xxv—Pr1—O1xxviii53.65 (9)Mo2xviii—Pr1—Mo2i81.245 (10)
O4iii—Pr1—O1xxviii117.03 (9)Mo2xxix—Pr1—Mo2i68.563 (5)
O1i—Pr1—O1xxviii89.380 (10)Mo2xxx—Pr1—Mo2i149.885 (11)
O1xx—Pr1—O1xxviii89.380 (10)Mo2vi—Pr1—Mo2i70.286 (6)
O2xxiv—Pr1—O1ii54.23 (8)O2xxiv—Pr1—Mo2ii117.02 (7)
O2xxv—Pr1—O1ii132.73 (9)O2xxv—Pr1—Mo2ii11.70 (7)
O2xxvi—Pr1—O1ii132.08 (9)O2xxvi—Pr1—Mo2ii67.72 (7)
O2—Pr1—O1ii54.82 (9)O2—Pr1—Mo2ii81.61 (7)
O4—Pr1—O1ii117.03 (9)O4—Pr1—Mo2ii77.88 (6)
O4xxvii—Pr1—O1ii53.65 (9)O4xxvii—Pr1—Mo2ii119.25 (8)
O4xxv—Pr1—O1ii116.99 (9)O4xxv—Pr1—Mo2ii106.66 (8)
O4iii—Pr1—O1ii53.60 (9)O4iii—Pr1—Mo2ii170.18 (8)
O1i—Pr1—O1ii89.380 (10)O1i—Pr1—Mo2ii65.91 (5)
O1xx—Pr1—O1ii89.380 (10)O1xx—Pr1—Mo2ii121.95 (5)
O1xxviii—Pr1—O1ii168.05 (10)O1xxviii—Pr1—Mo2ii53.15 (5)
O2xxiv—Pr1—Mo1ii157.72 (7)O1ii—Pr1—Mo2ii136.11 (5)
O2xxv—Pr1—Mo1ii35.24 (7)Mo1ii—Pr1—Mo2ii42.420 (7)
O2xxvi—Pr1—Mo1ii83.95 (7)Mo1xxviii—Pr1—Mo2ii151.374 (14)
O2—Pr1—Mo1ii102.36 (7)Mo1xx—Pr1—Mo2ii93.069 (9)
O4—Pr1—Mo1ii36.25 (6)Mo1i—Pr1—Mo2ii94.934 (9)
O4xxvii—Pr1—Mo1ii93.30 (9)Pr1iii—Pr1—Mo2ii125.506 (6)
O4xxv—Pr1—Mo1ii77.41 (9)Mo1iv—Pr1—Mo2ii118.620 (12)
O4iii—Pr1—Mo1ii130.24 (6)Mo1v—Pr1—Mo2ii35.318 (8)
O1i—Pr1—Mo1ii55.40 (5)Mo1xxi—Pr1—Mo2ii105.352 (10)
O1xx—Pr1—Mo1ii122.87 (5)Mo1xxix—Pr1—Mo2ii53.008 (8)
O1xxviii—Pr1—Mo1ii34.01 (5)Mo2v—Pr1—Mo2ii68.563 (5)
O1ii—Pr1—Mo1ii143.51 (5)Mo2xviii—Pr1—Mo2ii149.885 (11)
O2xxiv—Pr1—Mo1xxviii35.24 (7)Mo2xxix—Pr1—Mo2ii81.245 (10)
O2xxv—Pr1—Mo1xxviii157.72 (7)Mo2xxx—Pr1—Mo2ii130.674 (11)
O2xxvi—Pr1—Mo1xxviii102.36 (7)Mo2vi—Pr1—Mo2ii108.987 (13)
O2—Pr1—Mo1xxviii83.95 (7)Mo2i—Pr1—Mo2ii70.286 (6)
O4—Pr1—Mo1xxviii130.24 (6)O2xxiv—Pr1—Mo2xix81.61 (7)
O4xxvii—Pr1—Mo1xxviii77.41 (9)O2xxv—Pr1—Mo2xix67.72 (7)
O4xxv—Pr1—Mo1xxviii93.30 (9)O2xxvi—Pr1—Mo2xix117.02 (7)
O4iii—Pr1—Mo1xxviii36.25 (6)O2—Pr1—Mo2xix11.70 (7)
O1i—Pr1—Mo1xxviii122.87 (5)O4—Pr1—Mo2xix106.66 (8)
O1xx—Pr1—Mo1xxviii55.40 (5)O4xxvii—Pr1—Mo2xix77.88 (6)
O1xxviii—Pr1—Mo1xxviii143.51 (5)O4xxv—Pr1—Mo2xix170.18 (8)
O1ii—Pr1—Mo1xxviii34.01 (5)O4iii—Pr1—Mo2xix119.25 (8)
Mo1ii—Pr1—Mo1xxviii166.201 (19)O1i—Pr1—Mo2xix53.15 (5)
O2xxiv—Pr1—Mo1xx102.36 (7)O1xx—Pr1—Mo2xix136.11 (5)
O2xxv—Pr1—Mo1xx83.95 (7)O1xxviii—Pr1—Mo2xix121.95 (5)
O2xxvi—Pr1—Mo1xx157.72 (7)O1ii—Pr1—Mo2xix65.91 (5)
O2—Pr1—Mo1xx35.24 (7)Mo1ii—Pr1—Mo2xix94.934 (9)
O4—Pr1—Mo1xx77.41 (9)Mo1xxviii—Pr1—Mo2xix93.069 (9)
O4xxvii—Pr1—Mo1xx36.25 (6)Mo1xx—Pr1—Mo2xix42.420 (7)
O4xxv—Pr1—Mo1xx130.24 (6)Mo1i—Pr1—Mo2xix151.374 (14)
O4iii—Pr1—Mo1xx93.30 (9)Pr1iii—Pr1—Mo2xix125.506 (6)
O1i—Pr1—Mo1xx34.01 (5)Mo1iv—Pr1—Mo2xix105.352 (10)
O1xx—Pr1—Mo1xx143.51 (5)Mo1v—Pr1—Mo2xix53.008 (8)
O1xxviii—Pr1—Mo1xx122.87 (5)Mo1xxi—Pr1—Mo2xix35.318 (8)
O1ii—Pr1—Mo1xx55.40 (5)Mo1xxix—Pr1—Mo2xix118.620 (12)
Mo1ii—Pr1—Mo1xx89.173 (2)Mo2v—Pr1—Mo2xix81.245 (10)
Mo1xxviii—Pr1—Mo1xx89.173 (2)Mo2xviii—Pr1—Mo2xix130.674 (11)
O2xxiv—Pr1—Mo1i83.95 (7)Mo2xxix—Pr1—Mo2xix149.885 (11)
O2xxv—Pr1—Mo1i102.36 (7)Mo2xxx—Pr1—Mo2xix68.563 (5)
O2xxvi—Pr1—Mo1i35.24 (7)Mo2vi—Pr1—Mo2xix70.286 (6)
O2—Pr1—Mo1i157.72 (7)Mo2i—Pr1—Mo2xix108.987 (13)
O4—Pr1—Mo1i93.30 (9)Mo2ii—Pr1—Mo2xix70.286 (6)
O4xxvii—Pr1—Mo1i130.24 (6)O2xxiv—Pr1—Pr1vii63.13 (7)
O4xxv—Pr1—Mo1i36.25 (6)O2xxv—Pr1—Pr1vii63.13 (7)
O4iii—Pr1—Mo1i77.41 (9)O2xxvi—Pr1—Pr1vii63.13 (7)
O1i—Pr1—Mo1i143.51 (5)O2—Pr1—Pr1vii63.13 (7)
O1xx—Pr1—Mo1i34.01 (5)O4—Pr1—Pr1vii131.88 (6)
O1xxviii—Pr1—Mo1i55.40 (5)O4xxvii—Pr1—Pr1vii131.88 (6)
O1ii—Pr1—Mo1i122.87 (5)O4xxv—Pr1—Pr1vii131.88 (6)
Mo1ii—Pr1—Mo1i89.173 (2)O4iii—Pr1—Pr1vii131.88 (6)
Mo1xxviii—Pr1—Mo1i89.173 (2)O1i—Pr1—Pr1vii95.97 (5)
Mo1xx—Pr1—Mo1i166.201 (18)O1xx—Pr1—Pr1vii95.97 (5)
O2xxiv—Pr1—Pr1iii116.87 (7)O1xxviii—Pr1—Pr1vii95.97 (5)
O2xxv—Pr1—Pr1iii116.87 (7)O1ii—Pr1—Pr1vii95.97 (5)
O2xxvi—Pr1—Pr1iii116.87 (7)Mo1ii—Pr1—Pr1vii96.900 (9)
O2—Pr1—Pr1iii116.87 (7)Mo1xxviii—Pr1—Pr1vii96.900 (9)
O4—Pr1—Pr1iii48.12 (6)Mo1xx—Pr1—Pr1vii96.900 (9)
O4xxvii—Pr1—Pr1iii48.12 (6)Mo1i—Pr1—Pr1vii96.900 (9)
O4xxv—Pr1—Pr1iii48.12 (6)Pr1iii—Pr1—Pr1vii180.0
O4iii—Pr1—Pr1iii48.12 (6)Mo1iv—Pr1—Pr1vii73.137 (8)
O1i—Pr1—Pr1iii84.03 (5)Mo1v—Pr1—Pr1vii73.137 (8)
O1xx—Pr1—Pr1iii84.03 (5)Mo1xxi—Pr1—Pr1vii73.137 (8)
O1xxviii—Pr1—Pr1iii84.03 (5)Mo1xxix—Pr1—Pr1vii73.137 (8)
O1ii—Pr1—Pr1iii84.03 (5)Mo2v—Pr1—Pr1vii115.471 (6)
Mo1ii—Pr1—Pr1iii83.100 (9)Mo2xviii—Pr1—Pr1vii115.471 (7)
Mo1xxviii—Pr1—Pr1iii83.100 (9)Mo2xxix—Pr1—Pr1vii115.471 (6)
Mo1xx—Pr1—Pr1iii83.100 (9)Mo2xxx—Pr1—Pr1vii115.471 (6)
Mo1i—Pr1—Pr1iii83.100 (9)Mo2vi—Pr1—Pr1vii54.494 (6)
O2xxiv—Pr1—Mo1iv24.82 (7)Mo2i—Pr1—Pr1vii54.494 (6)
O2xxv—Pr1—Mo1iv130.20 (8)Mo2ii—Pr1—Pr1vii54.494 (6)
O2xxvi—Pr1—Mo1iv60.94 (7)Mo2xix—Pr1—Pr1vii54.494 (6)
O2—Pr1—Mo1iv102.92 (7)O3viii—Mo1—O1ix89.81 (15)
O4—Pr1—Mo1iv147.52 (8)O3viii—Mo1—O1viii90.58 (11)
O4xxvii—Pr1—Mo1iv119.06 (9)O1ix—Mo1—O1viii88.90 (15)
O4xxv—Pr1—Mo1iv84.35 (8)O3viii—Mo1—O2x88.40 (14)
O4iii—Pr1—Mo1iv62.85 (6)O1ix—Mo1—O2x172.05 (12)
O1i—Pr1—Mo1iv156.88 (5)O1viii—Mo1—O2x83.38 (12)
O1xx—Pr1—Mo1iv30.76 (5)O3viii—Mo1—O4ii95.33 (11)
O1xxviii—Pr1—Mo1iv111.64 (5)O1ix—Mo1—O4ii84.22 (14)
O1ii—Pr1—Mo1iv72.03 (5)O1viii—Mo1—O4ii170.90 (12)
Mo1ii—Pr1—Mo1iv144.458 (10)O2x—Mo1—O4ii103.65 (14)
Mo1xxviii—Pr1—Mo1iv41.927 (10)O3viii—Mo1—O2viii172.24 (14)
Mo1xx—Pr1—Mo1iv125.376 (10)O1ix—Mo1—O2viii82.90 (12)
Mo1i—Pr1—Mo1iv59.386 (10)O1viii—Mo1—O2viii86.63 (11)
Pr1iii—Pr1—Mo1iv106.863 (8)O2x—Mo1—O2viii98.46 (12)
O2xxiv—Pr1—Mo1v130.20 (8)O4ii—Mo1—O2viii86.62 (11)
O2xxv—Pr1—Mo1v24.82 (7)O3viii—Mo1—Mo2xi89.86 (10)
O2xxvi—Pr1—Mo1v102.92 (7)O1ix—Mo1—Mo2xi136.19 (8)
O2—Pr1—Mo1v60.94 (7)O1viii—Mo1—Mo2xi134.91 (9)
O4—Pr1—Mo1v62.85 (6)O2x—Mo1—Mo2xi51.56 (8)
O4xxvii—Pr1—Mo1v84.35 (8)O4ii—Mo1—Mo2xi52.22 (11)
O4xxv—Pr1—Mo1v119.06 (9)O2viii—Mo1—Mo2xi97.23 (8)
O4iii—Pr1—Mo1v147.52 (8)O3viii—Mo1—Mo1xi137.76 (12)
O1i—Pr1—Mo1v30.76 (5)O1ix—Mo1—Mo1xi131.32 (9)
O1xx—Pr1—Mo1v156.88 (5)O1viii—Mo1—Mo1xi82.35 (8)
O1xxviii—Pr1—Mo1v72.03 (5)O2x—Mo1—Mo1xi49.50 (8)
O1ii—Pr1—Mo1v111.64 (5)O4ii—Mo1—Mo1xi97.74 (10)
Mo1ii—Pr1—Mo1v41.927 (10)O2viii—Mo1—Mo1xi48.96 (9)
Mo1xxviii—Pr1—Mo1v144.458 (10)Mo2xi—Mo1—Mo1xi67.837 (14)
Mo1xx—Pr1—Mo1v59.386 (10)O3viii—Mo1—Mo1xii46.69 (8)
Mo1i—Pr1—Mo1v125.376 (10)O1ix—Mo1—Mo1xii92.30 (8)
Pr1iii—Pr1—Mo1v106.863 (8)O1viii—Mo1—Mo1xii137.23 (8)
Mo1iv—Pr1—Mo1v146.274 (16)O2x—Mo1—Mo1xii92.11 (8)
O2xxiv—Pr1—Mo1xxi60.94 (7)O4ii—Mo1—Mo1xii49.34 (7)
O2xxv—Pr1—Mo1xxi102.92 (7)O2viii—Mo1—Mo1xii135.94 (8)
O2xxvi—Pr1—Mo1xxi130.20 (8)Mo2xi—Mo1—Mo1xii57.654 (10)
O2—Pr1—Mo1xxi24.82 (7)Mo1xi—Mo1—Mo1xii125.483 (14)
O4—Pr1—Mo1xxi119.06 (9)O3viii—Mo1—Mo2133.36 (8)
O4xxvii—Pr1—Mo1xxi62.85 (6)O1ix—Mo1—Mo289.20 (8)
O4xxv—Pr1—Mo1xxi147.52 (8)O1viii—Mo1—Mo242.78 (8)
O4iii—Pr1—Mo1xxi84.35 (8)O2x—Mo1—Mo286.41 (8)
O1i—Pr1—Mo1xxi72.03 (5)O4ii—Mo1—Mo2130.88 (8)
O1xx—Pr1—Mo1xxi111.64 (5)O2viii—Mo1—Mo244.27 (8)
O1xxviii—Pr1—Mo1xxi156.88 (5)Mo2xi—Mo1—Mo2121.095 (13)
O1ii—Pr1—Mo1xxi30.76 (5)Mo1xi—Mo1—Mo253.257 (15)
Mo1ii—Pr1—Mo1xxi125.376 (10)Mo1xii—Mo1—Mo2178.501 (11)
Mo1xxviii—Pr1—Mo1xxi59.386 (10)O3viii—Mo1—Pr1ii137.22 (10)
Mo1xx—Pr1—Mo1xxi41.927 (10)O1ix—Mo1—Pr1ii66.73 (9)
Mo1i—Pr1—Mo1xxi144.458 (10)O1viii—Mo1—Pr1ii122.38 (8)
Pr1iii—Pr1—Mo1xxi106.863 (8)O2x—Mo1—Pr1ii119.24 (9)
Mo1iv—Pr1—Mo1xxi85.173 (5)O4ii—Mo1—Pr1ii49.16 (8)
Mo1v—Pr1—Mo1xxi85.173 (5)O2viii—Mo1—Pr1ii41.23 (8)
O2xxiv—Pr1—Mo1xxix102.92 (7)Mo2xi—Mo1—Pr1ii84.680 (13)
O2xxv—Pr1—Mo1xxix60.94 (7)Mo1xi—Mo1—Pr1ii78.127 (14)
O2xxvi—Pr1—Mo1xxix24.82 (7)Mo1xii—Mo1—Pr1ii96.900 (9)
O2—Pr1—Mo1xxix130.20 (8)Mo2—Mo1—Pr1ii83.684 (14)
O4—Pr1—Mo1xxix84.35 (8)O3viii—Mo1—Pr1xiii81.74 (11)
O4xxvii—Pr1—Mo1xxix147.52 (8)O1ix—Mo1—Pr1xiii143.15 (8)
O4xxv—Pr1—Mo1xxix62.85 (6)O1viii—Mo1—Pr1xiii55.63 (8)
O4iii—Pr1—Mo1xxix119.06 (9)O2x—Mo1—Pr1xiii28.90 (8)
O1i—Pr1—Mo1xxix111.64 (5)O4ii—Mo1—Pr1xiii132.09 (11)
O1xx—Pr1—Mo1xxix72.03 (5)O2viii—Mo1—Pr1xiii102.53 (9)
O1xxviii—Pr1—Mo1xxix30.76 (5)Mo2xi—Mo1—Pr1xiii79.889 (13)
O1ii—Pr1—Mo1xxix156.88 (5)Mo1xi—Mo1—Pr1xiii59.946 (12)
Mo1ii—Pr1—Mo1xxix59.386 (10)Mo1xii—Mo1—Pr1xiii106.863 (8)
Mo1xxviii—Pr1—Mo1xxix125.376 (10)Mo2—Mo1—Pr1xiii71.870 (13)
Mo1xx—Pr1—Mo1xxix144.458 (10)Pr1ii—Mo1—Pr1xiii138.073 (10)
Mo1i—Pr1—Mo1xxix41.927 (10)O1viii—Mo2—O1xv92.21 (16)
Pr1iii—Pr1—Mo1xxix106.863 (8)O1viii—Mo2—O3xiv86.78 (12)
Mo1iv—Pr1—Mo1xxix85.173 (4)O1xv—Mo2—O3xiv86.78 (12)
Mo1v—Pr1—Mo1xxix85.173 (5)O1viii—Mo2—O2xv170.62 (13)
Mo1xxi—Pr1—Mo1xxix146.274 (16)O1xv—Mo2—O2xv88.70 (12)
O2xxiv—Pr1—Mo2v158.52 (7)O3xiv—Mo2—O2xv83.95 (12)
O2xxv—Pr1—Mo2v57.19 (7)O1viii—Mo2—O2viii88.70 (12)
O2xxvi—Pr1—Mo2v121.39 (7)O1xv—Mo2—O2viii170.62 (13)
O2—Pr1—Mo2v82.41 (7)O3xiv—Mo2—O2viii83.95 (12)
O4—Pr1—Mo2v25.42 (8)O2xv—Mo2—O2viii88.89 (17)
O4xxvii—Pr1—Mo2v56.23 (9)O1viii—Mo2—O4xiii84.66 (12)
O4xxv—Pr1—Mo2v88.95 (8)O1xv—Mo2—O4xiii84.66 (12)
O4iii—Pr1—Mo2v109.21 (6)O3xiv—Mo2—O4xiii167.64 (16)
O1i—Pr1—Mo2v28.31 (5)O2xv—Mo2—O4xiii104.72 (12)
O1xx—Pr1—Mo2v142.27 (5)O2viii—Mo2—O4xiii104.72 (12)
O1xxviii—Pr1—Mo2v68.08 (5)O1viii—Mo2—Mo1xi87.76 (8)
O1ii—Pr1—Mo2v106.49 (5)O1xv—Mo2—Mo1xi137.06 (9)
Mo1ii—Pr1—Mo2v37.630 (8)O3xiv—Mo2—Mo1xi136.00 (8)
Mo1xxviii—Pr1—Mo2v133.523 (12)O2xv—Mo2—Mo1xi97.92 (8)
Mo1xx—Pr1—Mo2v56.160 (8)O2viii—Mo2—Mo1xi52.29 (9)
Mo1i—Pr1—Mo2v116.972 (10)O4xiii—Mo2—Mo1xi52.56 (9)
Pr1iii—Pr1—Mo2v64.529 (7)O1viii—Mo2—Mo1xvi137.06 (9)
Mo1iv—Pr1—Mo2v171.373 (13)O1xv—Mo2—Mo1xvi87.76 (8)
Mo1v—Pr1—Mo2v42.338 (6)O3xiv—Mo2—Mo1xvi136.00 (7)
Mo1xxi—Pr1—Mo2v97.713 (8)O2xv—Mo2—Mo1xvi52.29 (9)
Mo1xxix—Pr1—Mo2v96.621 (8)O2viii—Mo2—Mo1xvi97.92 (8)
O2xxiv—Pr1—Mo2xviii57.19 (7)O4xiii—Mo2—Mo1xvi52.56 (9)
O2xxv—Pr1—Mo2xviii158.52 (7)Mo1xi—Mo2—Mo1xvi64.692 (19)
O2xxvi—Pr1—Mo2xviii82.41 (7)O1viii—Mo2—Mo143.84 (8)
O2—Pr1—Mo2xviii121.39 (7)O1xv—Mo2—Mo1136.02 (8)
O4—Pr1—Mo2xviii109.21 (6)O3xiv—Mo2—Mo188.502 (11)
O4xxvii—Pr1—Mo2xviii88.95 (8)O2xv—Mo2—Mo1134.16 (9)
O4xxv—Pr1—Mo2xviii56.23 (9)O2viii—Mo2—Mo145.30 (9)
O4iii—Pr1—Mo2xviii25.42 (8)O4xiii—Mo2—Mo191.474 (11)
O1i—Pr1—Mo2xviii142.27 (5)Mo1xi—Mo2—Mo158.905 (13)
O1xx—Pr1—Mo2xviii28.31 (5)Mo1xvi—Mo2—Mo1123.590 (15)
O1xxviii—Pr1—Mo2xviii106.49 (5)O1viii—Mo2—Mo1xvii136.02 (8)
O1ii—Pr1—Mo2xviii68.08 (5)O1xv—Mo2—Mo1xvii43.84 (8)
Mo1ii—Pr1—Mo2xviii133.523 (12)O3xiv—Mo2—Mo1xvii88.502 (11)
Mo1xxviii—Pr1—Mo2xviii37.630 (8)O2xv—Mo2—Mo1xvii45.30 (9)
Mo1xx—Pr1—Mo2xviii116.972 (10)O2viii—Mo2—Mo1xvii134.16 (9)
Mo1i—Pr1—Mo2xviii56.160 (8)O4xiii—Mo2—Mo1xvii91.474 (11)
Pr1iii—Pr1—Mo2xviii64.529 (6)Mo1xi—Mo2—Mo1xvii123.590 (15)
Mo1iv—Pr1—Mo2xviii42.338 (6)Mo1xvi—Mo2—Mo1xvii58.905 (13)
Mo1v—Pr1—Mo2xviii171.373 (13)Mo1—Mo2—Mo1xvii177.00 (2)
Mo1xxi—Pr1—Mo2xviii96.621 (8)O1viii—Mo2—Pr1xiii51.33 (9)
Mo1xxix—Pr1—Mo2xviii97.713 (8)O1xv—Mo2—Pr1xiii89.71 (8)
Mo2v—Pr1—Mo2xviii129.058 (13)O3xiv—Mo2—Pr1xiii137.80 (9)
O2xxiv—Pr1—Mo2xxix121.39 (7)O2xv—Mo2—Pr1xiii138.03 (9)
O2xxv—Pr1—Mo2xxix82.41 (7)O2viii—Mo2—Pr1xiii98.12 (9)
O2xxvi—Pr1—Mo2xxix57.19 (7)O4xiii—Mo2—Pr1xiii33.48 (7)
O2—Pr1—Mo2xxix158.52 (7)Mo1xi—Mo2—Pr1xiii57.690 (10)
O4—Pr1—Mo2xxix56.23 (9)Mo1xvi—Mo2—Pr1xiii85.738 (14)
O4xxvii—Pr1—Mo2xxix109.21 (6)Mo1—Mo2—Pr1xiii65.791 (10)
O4xxv—Pr1—Mo2xxix25.42 (8)Mo1xvii—Mo2—Pr1xiii116.727 (14)
O4iii—Pr1—Mo2xxix88.95 (8)O1viii—Mo2—Pr1xviii89.71 (9)
O1i—Pr1—Mo2xxix106.49 (5)O1xv—Mo2—Pr1xviii51.33 (9)
O1xx—Pr1—Mo2xxix68.08 (5)O3xiv—Mo2—Pr1xviii137.80 (9)
O1xxviii—Pr1—Mo2xxix28.31 (5)O2xv—Mo2—Pr1xviii98.12 (9)
O1ii—Pr1—Mo2xxix142.27 (5)O2viii—Mo2—Pr1xviii138.03 (9)
Mo1ii—Pr1—Mo2xxix56.160 (8)O4xiii—Mo2—Pr1xviii33.48 (7)
Mo1xxviii—Pr1—Mo2xxix116.972 (10)Mo1xi—Mo2—Pr1xviii85.738 (14)
Mo1xx—Pr1—Mo2xxix133.523 (12)Mo1xvi—Mo2—Pr1xviii57.690 (10)
Mo1i—Pr1—Mo2xxix37.630 (8)Mo1—Mo2—Pr1xviii116.727 (14)
Pr1iii—Pr1—Mo2xxix64.529 (6)Mo1xvii—Mo2—Pr1xviii65.791 (10)
Mo1iv—Pr1—Mo2xxix96.621 (8)Pr1xiii—Mo2—Pr1xviii50.942 (13)
Mo1v—Pr1—Mo2xxix97.713 (8)Mo2xix—O1—Mo1ix131.55 (15)
Mo1xxi—Pr1—Mo2xxix171.373 (13)Mo2xix—O1—Mo1xx93.38 (12)
Mo1xxix—Pr1—Mo2xxix42.338 (6)Mo1ix—O1—Mo1xx135.07 (15)
Mo2v—Pr1—Mo2xxix79.342 (5)Mo2xix—O1—Pr1ii100.35 (11)
Mo2xviii—Pr1—Mo2xxix79.342 (5)Mo1ix—O1—Pr1ii79.26 (9)
O2xxiv—Pr1—Mo2xxx82.41 (7)Mo1xx—O1—Pr1ii93.62 (10)
O2xxv—Pr1—Mo2xxx121.39 (7)Mo2xix—O2—Mo1xxi76.14 (11)
O2xxvi—Pr1—Mo2xxx158.52 (7)Mo2xix—O2—Mo1xx90.43 (12)
O2—Pr1—Mo2xxx57.19 (7)Mo1xxi—O2—Mo1xx81.54 (12)
O4—Pr1—Mo2xxx88.95 (8)Mo2xix—O2—Pr1154.66 (16)
O4xxvii—Pr1—Mo2xxx25.42 (8)Mo1xxi—O2—Pr1126.28 (14)
O4xxv—Pr1—Mo2xxx109.21 (6)Mo1xx—O2—Pr1103.54 (12)
O4iii—Pr1—Mo2xxx56.23 (9)Mo1xx—O3—Mo1xxii86.62 (16)
O1i—Pr1—Mo2xxx68.08 (5)Mo1xx—O3—Mo2xiv136.48 (8)
O1xx—Pr1—Mo2xxx106.49 (5)Mo1xxii—O3—Mo2xiv136.48 (8)
O1xxviii—Pr1—Mo2xxx142.27 (5)Mo2v—O4—Mo1xxiii75.22 (13)
O1ii—Pr1—Mo2xxx28.31 (5)Mo2v—O4—Mo1ii75.22 (13)
Mo1ii—Pr1—Mo2xxx116.972 (10)Mo1xxiii—O4—Mo1ii81.31 (15)
Mo1xxviii—Pr1—Mo2xxx56.160 (8)Mo2v—O4—Pr1121.11 (12)
Mo1xx—Pr1—Mo2xxx37.630 (8)Mo1xxiii—O4—Pr1161.8 (2)
Mo1i—Pr1—Mo2xxx133.523 (12)Mo1ii—O4—Pr194.59 (4)
Pr1iii—Pr1—Mo2xxx64.529 (6)Mo2v—O4—Pr1iii121.11 (12)
Mo1iv—Pr1—Mo2xxx97.713 (8)Mo1xxiii—O4—Pr1iii94.59 (4)
Mo1v—Pr1—Mo2xxx96.621 (8)Mo1ii—O4—Pr1iii161.8 (2)
Mo1xxi—Pr1—Mo2xxx42.338 (6)Pr1—O4—Pr1iii83.75 (12)
Symmetry codes: (i) y+1/2, x+1/2, z1/2; (ii) x+1/2, y1/2, z1/2; (iii) x, y, z; (iv) x, y1, z; (v) x, y+1, z; (vi) x1/2, y+1/2, z1/2; (vii) x, y, z1; (viii) y+1/2, x1/2, z1/2; (ix) x+1, y1, z; (x) y, x1, z; (xi) x+1/2, y3/2, z1/2; (xii) x, y, z1; (xiii) x, y1, z; (xiv) x+1, y1, z; (xv) y+1/2, x1/2, z+1/2; (xvi) x+1/2, y3/2, z+1/2; (xvii) x, y, z; (xviii) x, y1, z; (xix) y1/2, x1/2, z1/2; (xx) y1/2, x1/2, z1/2; (xxi) y+1, x, z; (xxii) y1/2, x1/2, z+1/2; (xxiii) x+1/2, y1/2, z+1/2; (xxiv) y, x, z; (xxv) y, x, z; (xxvi) x, y, z; (xxvii) y, x, z; (xxviii) x1/2, y+1/2, z1/2; (xxix) y1, x, z; (xxx) y+1, x, z.

Experimental details

Crystal data
Chemical formulaPrMo6O12
Mr908.55
Crystal system, space groupTetragonal, I4/m
Temperature (K)293
a, c (Å)9.9147 (3), 8.6508 (6)
V3)850.38 (7)
Z4
Radiation typeMo Kα
µ (mm1)14.25
Crystal size (mm)0.29 × 0.03 × 0.02
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionNumerical
(Coppens, 1970)
Tmin, Tmax0.340, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
1494, 1385, 1242
Rint0.036
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.18
No. of reflections1385
No. of parameters50
w = 1/[σ2(Fo2) + (0.0281P)2 + 24.9952P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.40, 2.99

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected bond lengths (Å) top
Pr1—O22.401 (3)Mo1—Mo2v2.5589 (5)
Pr1—O42.688 (3)Mo1—Mo1v2.7344 (7)
Mo1—O3i1.996 (3)Mo1—Mo1vi2.7381 (7)
Mo1—O1ii2.017 (3)Mo1—Mo22.9573 (4)
Mo1—O1i2.052 (3)Mo2—O1i2.012 (3)
Mo1—O2iii2.085 (3)Mo2—O3vii2.036 (4)
Mo1—O4iv2.101 (3)Mo2—O2viii2.064 (3)
Mo1—O2i2.102 (3)Mo2—O4ix2.092 (4)
Symmetry codes: (i) y+1/2, x1/2, z1/2; (ii) x+1, y1, z; (iii) y, x1, z; (iv) x+1/2, y1/2, z1/2; (v) x+1/2, y3/2, z1/2; (vi) x, y, z1; (vii) x+1, y1, z; (viii) y+1/2, x1/2, z+1/2; (ix) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds