Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C18H15BrN2O5, a promising N-protected α-amino acid, was synthesized directly from an unusual bromo dipole and a 4-(aryl­methyl­ene)­oxazolone. The crystal packing of the title compound is a racemic mixture. Peculiar graph-set motifs driven by the most important hydrogen bonds are described.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010401265X/na1666sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401265X/na1666Isup2.hkl
Contains datablock I

CCDC reference: 245888

Comment top

As part of a search for biologically active heterocyclic compounds, the α-amino acid (I) was prepared from bromonitrile oxide, (1), and (Z)-4-Arylmethylene-1,3-oxazol-5-one, (2) (Foti et al., 2004). The reaction appeared to proceed through complete substrate-controlled diastereoselectivity and the unexpected amino acid, (I), was directly isolated after the opening of the fragile oxazolone ring (scheme 1).

Compound (I) is an isoxazoline substituted with (i) a Br atom, (ii) a para-methoxy-phenyl group, (iii) a benzoylamine group and (iv) a carboxylic acid group. The molecule in the asymmetric unit contains two chiral C atoms, C2 and C3, whose configurations are S and R (Fig. 1). Since the compound crystallizes in the centrosymmetric space group P21/c, in the solid state it is a racemic mixture. Despite the sp3 hybridization of these C atoms, the isoxazoline ring looks flat [the maximum deviation from the plane is 0.108 (5) Å for atom C2] because of the extended π conjugation over the other sp2-hybridized C atom and the heteroatoms (see the geometrical parameters for atoms O3 and N2 in Table 1). The amide linkage is found in the usual trans conformation [C2—N1—C12—C13 = 179.3 (4)°]; the benzamide moiety, as usual, does not deviate from planarity, allowing an extended π conjugation on atoms C12, N1 and O5. Bond distances and angles of the benzamide fragment are in good agreement with the corresponding values reported in related compounds (Bunuel et al., 1996; Bunuel et al., 1997). Early studies (Domiano et al., 1979) have already reported a large asymmetry in the methoxy-ring angles for anisole moieties. This asymmetry has been ascribed to some degree of conjugation between the O atom and the phenyl ring; we have found evidence to support this interpretation, by analysing the electron density of structures concerning compounds of pharmacological interest and by running theoretical calculations (Bruno et al., 1999; Bruno et al., 2001). In this case, the asymmetry is noticeable for the C7—C8—O4 [124.4 (5)°] and C9—C8—O4 [115.7 (4)°] angles, as well as in the planarity of the methoxy group with respect to the phenyl ring [C7—C8—O4—C11 = −5.1 (8)°], all of which are determined by conjugation effects. Evident conformational freedom generates disorder for the terminal carboxylic acid and para-methoxyphenyl groups, as evidenced by the displacement parameters and structural resolution warnings. The crystal packing is essentially governed by intermolecular hydrogen bonds. The most important interaction links two enantiomeric molecules related by an inversion centre. The other noteworthy hydrogen-bonding interaction develops chains along the [101] direction. In summary, the first level graph-set definition (Bernstein et al., 1995) for this arrangement is C(10)R22(10). The three-dimensional packing takes the form of linear coupled strands running along the [101] axis (Fig. 2).

Experimental top

Scheme 2 reports the reaction in tetrahydrofurane (THF) leading to (I) as described by Foti et al. (2004). After purification, suitable crystals were obtained by slow evaporation from acetone solutions.

Refinement top

H atoms were located in a difference Fourier map, and were then placed in idealized positions and included in the refinement using a riding model.

Computing details top

Data collection: XSCANS (Siemens, 1989); cell refinement: XSCANS; data reduction: XPREPW (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Bruker, 1997); software used to prepare material for publication: 'PARST97 (Nardelli, 1995) and WinGX-PC (Farrugia, 1999)'.

Figures top
[Figure 1] Fig. 1. A view of (I), with 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I), showing intermolecular interactions as dashed lines.
5-Benzoylamino-3-bromo-4-(4-methoxy-phenyl)-4,5-dihydro-isoxazole- 5-carboxylic acid top
Crystal data top
C18H15BrN2O5F(000) = 848
Mr = 419.23Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 39 reflections
a = 9.9280 (8) Åθ = 5.2–13.9°
b = 19.9509 (17) ŵ = 2.31 mm1
c = 9.5841 (14) ÅT = 298 K
β = 107.875 (9)°Irregular, colourless
V = 1806.7 (4) Å30.5 × 0.38 × 0.3 mm
Z = 4
Data collection top
Bruker P4
diffractometer
Rint = 0.021
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: integration
(XPREPW; Bruker, 1997)
h = 1111
Tmin = 0.305, Tmax = 0.579k = 123
3980 measured reflectionsl = 111
3157 independent reflections3 standard reflections every 197 reflections
1773 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0481P)2 + 3.8612P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.059(Δ/σ)max = 0.001
wR(F2) = 0.149Δρmax = 0.65 e Å3
S = 1.02Δρmin = 0.86 e Å3
3157 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
237 parametersExtinction coefficient: 0.0040 (7)
0 restraints
Crystal data top
C18H15BrN2O5V = 1806.7 (4) Å3
Mr = 419.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9280 (8) ŵ = 2.31 mm1
b = 19.9509 (17) ÅT = 298 K
c = 9.5841 (14) Å0.5 × 0.38 × 0.3 mm
β = 107.875 (9)°
Data collection top
Bruker P4
diffractometer
1773 reflections with I > 2σ(I)
Absorption correction: integration
(XPREPW; Bruker, 1997)
Rint = 0.021
Tmin = 0.305, Tmax = 0.5793 standard reflections every 197 reflections
3980 measured reflections intensity decay: none
3157 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
3157 reflectionsΔρmin = 0.86 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22027 (9)0.72836 (4)0.17025 (11)0.1073 (5)
N20.2661 (5)0.6082 (3)0.3096 (6)0.0641 (14)
N10.3490 (4)0.47665 (19)0.1148 (4)0.0386 (10)
H10.30480.47710.02240.046*
O10.6249 (4)0.53704 (19)0.1837 (4)0.0494 (9)
O20.5964 (5)0.5553 (2)0.4069 (4)0.0762 (13)
H20.68310.55650.43450.114*
O30.3179 (4)0.54213 (18)0.3046 (4)0.0527 (10)
O40.0749 (4)0.5737 (2)0.4601 (4)0.0617 (11)
O50.4433 (4)0.41504 (18)0.3180 (4)0.0541 (10)
C10.5501 (5)0.5421 (2)0.2631 (5)0.0373 (12)
C20.3885 (5)0.5383 (2)0.1914 (5)0.0369 (12)
C30.3374 (5)0.6016 (2)0.0965 (6)0.0465 (14)
H3A0.41950.62550.08480.056*
C40.2802 (6)0.6393 (3)0.2005 (7)0.0578 (17)
C50.2280 (5)0.5928 (2)0.0522 (6)0.0425 (13)
C60.2624 (5)0.6071 (3)0.1774 (6)0.0487 (14)
H6A0.35390.62130.16850.058*
C70.1663 (5)0.6011 (3)0.3164 (6)0.0482 (14)
H7A0.19320.61020.39930.058*
C80.0304 (5)0.5813 (3)0.3293 (6)0.0462 (13)
C90.0067 (5)0.5661 (3)0.2047 (6)0.0537 (15)
H9A0.09790.55160.21340.064*
C100.0909 (5)0.5724 (3)0.0691 (6)0.0513 (14)
H10A0.06430.56270.01370.062*
C110.0421 (7)0.5928 (4)0.5889 (6)0.083 (2)
H11A0.12420.58720.67280.124*
H11B0.03330.56520.59960.124*
H11C0.01310.63890.58120.124*
C120.3805 (5)0.4171 (3)0.1863 (6)0.0402 (12)
C130.3348 (5)0.3547 (2)0.1004 (6)0.0401 (12)
C140.3989 (7)0.2960 (3)0.1602 (8)0.0690 (18)
H14A0.46890.29670.25060.083*
C150.3609 (9)0.2362 (3)0.0882 (10)0.095 (3)
H15A0.40640.1970.12940.115*
C160.2575 (10)0.2340 (4)0.0424 (10)0.093 (2)
H16A0.23330.19340.09160.111*
C170.1887 (9)0.2917 (4)0.1019 (8)0.089 (2)
H17A0.11520.290.18970.107*
C180.2284 (7)0.3527 (3)0.0318 (6)0.0626 (17)
H18A0.18350.3920.07370.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0908 (6)0.0532 (4)0.1516 (9)0.0195 (4)0.0015 (5)0.0267 (5)
N20.056 (3)0.063 (3)0.077 (4)0.004 (3)0.024 (3)0.029 (3)
N10.045 (2)0.038 (2)0.029 (2)0.0034 (19)0.0048 (19)0.002 (2)
O10.044 (2)0.071 (3)0.0335 (19)0.0023 (19)0.0125 (17)0.0019 (19)
O20.082 (3)0.079 (3)0.057 (3)0.013 (2)0.007 (2)0.004 (2)
O30.058 (2)0.052 (2)0.057 (2)0.0050 (19)0.032 (2)0.011 (2)
O40.047 (2)0.086 (3)0.045 (2)0.008 (2)0.0050 (19)0.009 (2)
O50.073 (3)0.051 (2)0.034 (2)0.0021 (19)0.009 (2)0.0034 (18)
C10.047 (3)0.035 (3)0.026 (3)0.006 (2)0.005 (2)0.000 (2)
C20.042 (3)0.037 (3)0.033 (3)0.007 (2)0.014 (2)0.003 (2)
C30.039 (3)0.039 (3)0.055 (3)0.006 (2)0.003 (3)0.002 (3)
C40.050 (3)0.042 (3)0.070 (4)0.004 (3)0.000 (3)0.023 (3)
C50.041 (3)0.035 (3)0.046 (3)0.001 (2)0.005 (3)0.005 (3)
C60.031 (3)0.045 (3)0.067 (4)0.004 (2)0.010 (3)0.009 (3)
C70.043 (3)0.054 (3)0.050 (3)0.002 (3)0.019 (3)0.010 (3)
C80.037 (3)0.049 (3)0.048 (3)0.000 (2)0.007 (3)0.008 (3)
C90.033 (3)0.071 (4)0.056 (4)0.014 (3)0.012 (3)0.002 (3)
C100.040 (3)0.062 (4)0.052 (3)0.008 (3)0.015 (3)0.005 (3)
C110.080 (5)0.114 (6)0.046 (4)0.016 (4)0.006 (3)0.014 (4)
C120.041 (3)0.043 (3)0.038 (3)0.001 (2)0.015 (2)0.008 (3)
C130.049 (3)0.036 (3)0.039 (3)0.005 (2)0.019 (3)0.002 (2)
C140.075 (4)0.047 (4)0.078 (5)0.003 (3)0.014 (4)0.002 (3)
C150.115 (6)0.043 (4)0.121 (7)0.007 (4)0.025 (6)0.005 (5)
C160.138 (7)0.050 (4)0.095 (6)0.031 (5)0.042 (6)0.023 (5)
C170.125 (6)0.067 (5)0.061 (4)0.032 (5)0.005 (4)0.013 (4)
C180.086 (4)0.046 (3)0.047 (4)0.015 (3)0.007 (3)0.002 (3)
Geometric parameters (Å, º) top
Br1—C41.868 (6)C7—C81.374 (7)
N2—C41.260 (8)C7—H7A0.93
N2—O31.421 (6)C8—C91.387 (7)
N1—C121.360 (6)C9—C101.367 (7)
N1—C21.424 (6)C9—H9A0.93
N1—H10.86C10—H10A0.93
O1—C11.220 (6)C11—H11A0.96
O2—C11.338 (6)C11—H11B0.96
O2—H20.82C11—H11C0.96
O3—C21.463 (5)C12—C131.484 (7)
O4—C81.373 (6)C13—C141.373 (7)
O4—C111.422 (7)C13—C181.378 (7)
O5—C121.224 (6)C14—C151.370 (9)
C1—C21.541 (7)C14—H14A0.93
C2—C31.548 (7)C15—C161.355 (10)
C3—C41.493 (8)C15—H15A0.93
C3—C51.514 (7)C16—C171.371 (10)
C3—H3A0.98C16—H16A0.93
C5—C61.375 (7)C17—C181.387 (8)
C5—C101.382 (7)C17—H17A0.93
C6—C71.385 (7)C18—H18A0.93
C6—H6A0.93
C4—N2—O3107.2 (5)O4—C8—C9115.7 (4)
C12—N1—C2120.7 (4)C7—C8—C9119.9 (5)
C12—N1—H1119.6C10—C9—C8120.0 (5)
C2—N1—H1119.6C10—C9—H9A120
C1—O2—H2109.5C8—C9—H9A120
N2—O3—C2109.5 (4)C9—C10—C5121.5 (5)
C8—O4—C11116.7 (4)C9—C10—H10A119.2
O1—C1—O2125.2 (5)C5—C10—H10A119.2
O1—C1—C2117.9 (4)O4—C11—H11A109.5
O2—C1—C2116.8 (4)O4—C11—H11B109.5
N1—C2—O3108.0 (4)H11A—C11—H11B109.5
N1—C2—C1110.9 (4)O4—C11—H11C109.5
O3—C2—C1109.7 (4)H11A—C11—H11C109.5
N1—C2—C3114.4 (4)H11B—C11—H11C109.5
O3—C2—C3104.4 (4)O5—C12—N1120.9 (5)
C1—C2—C3109.3 (4)O5—C12—C13121.1 (5)
C4—C3—C5112.1 (4)N1—C12—C13118.0 (4)
C4—C3—C298.2 (4)C14—C13—C18119.0 (5)
C5—C3—C2118.0 (4)C14—C13—C12117.4 (5)
C4—C3—H3A109.3C18—C13—C12123.6 (5)
C5—C3—H3A109.3C15—C14—C13120.8 (7)
C2—C3—H3A109.3C15—C14—H14A119.6
N2—C4—C3117.9 (5)C13—C14—H14A119.6
N2—C4—Br1119.1 (5)C16—C15—C14120.5 (7)
C3—C4—Br1123.0 (5)C16—C15—H15A119.7
C6—C5—C10117.3 (5)C14—C15—H15A119.7
C6—C5—C3119.9 (5)C15—C16—C17119.7 (7)
C10—C5—C3122.7 (5)C15—C16—H16A120.1
C5—C6—C7122.6 (5)C17—C16—H16A120.1
C5—C6—H6A118.7C16—C17—C18120.3 (7)
C7—C6—H6A118.7C16—C17—H17A119.9
C8—C7—C6118.6 (5)C18—C17—H17A119.9
C8—C7—H7A120.7C13—C18—C17119.7 (6)
C6—C7—H7A120.7C13—C18—H18A120.2
O4—C8—C7124.4 (5)C17—C18—H18A120.2
C4—N2—O3—C29.3 (6)C2—C3—C5—C1066.9 (7)
C12—N1—C2—O360.9 (5)C10—C5—C6—C70.7 (8)
C12—N1—C2—C159.3 (5)C3—C5—C6—C7178.9 (5)
C12—N1—C2—C3176.6 (4)C5—C6—C7—C81.3 (8)
N2—O3—C2—N1138.4 (4)C11—O4—C8—C75.1 (8)
N2—O3—C2—C1100.7 (4)C11—O4—C8—C9176.4 (5)
N2—O3—C2—C316.3 (5)C6—C7—C8—O4179.7 (5)
O1—C1—C2—N158.1 (6)C6—C7—C8—C91.8 (8)
O2—C1—C2—N1126.3 (5)O4—C8—C9—C10179.7 (5)
O1—C1—C2—O3177.3 (4)C7—C8—C9—C101.6 (9)
O2—C1—C2—O37.1 (6)C8—C9—C10—C51.0 (9)
O1—C1—C2—C368.9 (6)C6—C5—C10—C90.5 (8)
O2—C1—C2—C3106.8 (5)C3—C5—C10—C9178.7 (5)
N1—C2—C3—C4133.4 (4)C2—N1—C12—O50.1 (7)
O3—C2—C3—C415.7 (4)C2—N1—C12—C13179.3 (4)
C1—C2—C3—C4101.6 (4)O5—C12—C13—C1418.6 (7)
N1—C2—C3—C512.9 (6)N1—C12—C13—C14162.3 (5)
O3—C2—C3—C5104.8 (5)O5—C12—C13—C18158.6 (5)
C1—C2—C3—C5137.9 (5)N1—C12—C13—C1820.6 (7)
O3—N2—C4—C32.4 (7)C18—C13—C14—C151.8 (10)
O3—N2—C4—Br1179.2 (3)C12—C13—C14—C15179.1 (6)
C5—C3—C4—N2112.9 (6)C13—C14—C15—C161.1 (12)
C2—C3—C4—N211.9 (6)C14—C15—C16—C171.1 (13)
C5—C3—C4—Br163.8 (6)C15—C16—C17—C182.6 (12)
C2—C3—C4—Br1171.4 (4)C14—C13—C18—C170.3 (9)
C4—C3—C5—C6132.0 (5)C12—C13—C18—C17177.5 (6)
C2—C3—C5—C6115.0 (5)C16—C17—C18—C131.9 (11)
C4—C3—C5—C1046.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.312.963 (5)133
O2—H2···O4ii0.822.333.139 (6)170
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H15BrN2O5
Mr419.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.9280 (8), 19.9509 (17), 9.5841 (14)
β (°) 107.875 (9)
V3)1806.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.5 × 0.38 × 0.3
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionIntegration
(XPREPW; Bruker, 1997)
Tmin, Tmax0.305, 0.579
No. of measured, independent and
observed [I > 2σ(I)] reflections
3980, 3157, 1773
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.149, 1.02
No. of reflections3157
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.86

Computer programs: XSCANS (Siemens, 1989), XSCANS, XPREPW (Bruker, 1997), SIR97 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), XPW (Bruker, 1997), 'PARST97 (Nardelli, 1995) and WinGX-PC (Farrugia, 1999)'.

Selected geometric parameters (Å, º) top
Br1—C41.868 (6)O2—C11.338 (6)
N2—C41.260 (8)O3—C21.463 (5)
N2—O31.421 (6)O4—C81.373 (6)
N1—C21.424 (6)O4—C111.422 (7)
O1—C11.220 (6)
C4—N2—O3107.2 (5)O4—C8—C7124.4 (5)
C12—N1—C2120.7 (4)O4—C8—C9115.7 (4)
N2—O3—C2109.5 (4)C7—C8—C9119.9 (5)
C8—O4—C11116.7 (4)
C4—N2—O3—C29.3 (6)O5—C12—C13—C1418.6 (7)
O3—N2—C4—C32.4 (7)N1—C12—C13—C14162.3 (5)
C2—C3—C4—N211.9 (6)O5—C12—C13—C18158.6 (5)
C11—O4—C8—C75.1 (8)N1—C12—C13—C1820.6 (7)
C11—O4—C8—C9176.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.312.963 (5)133
O2—H2···O4ii0.822.333.139 (6)170
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds