Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
1-Methyl-2-[4-phenyl-6-(pyridinium-2-yl)­pyridin-2-yl]­pyridinium diperchlorate, C22H19N32+·2ClO4, (I), and 2-[4-(methoxy­phenyl)-2,2′-bipyridin-6-yl]-1-methyl­pyridinium iodide, C23H20N3O+·I, (II), both crystallize in the monoclinic space group P21/c. In contrast with the monocharged mol­ecule of (II), the doubly charged mol­ecule of (I) contains an additional protonated pyridine ring. One of the two perchlorate counter-anions of (I) interacts with the cation of (I) via an N—H...O hydrogen bond. In (II), two mol­ecules related by a centre of symmetry are connected by weak π–π interactions, forming dimers in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010400825X/na1654sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010400825X/na1654Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010400825X/na1654IIsup3.hkl
Contains datablock II

CCDC references: 243600; 243601

Comment top

Substituted terpyridines, which are common planar tridentate ligands for the complexation of a broad variety of heavy and transition metal ions, are frequently used as building blocks for supramolecular assemblies and composite fluorescent sensors (Cargill Thompson, 1997; Lainé et al., 2002; Goodall et al., 2002; Mutai et al., 2001). Terpyridines can be also exploited for the construction of bifunctional fluorescent reporters, enabling the simultaneous and cooperative spectroscopic recognition of two different analytes, thereby meeting the increasing interest in advanced sensory devices responding to two or more chemical inputs. A straightforward approach to such bifunctional molecules signalling protons and metal ions involves 4'-aryl-substituted 2,2':6',2''-terpyridines equipped with different donor substituents (Li et al., 2004). The stepwise and unexpectedly strong protonation-induced spectroscopic effects observed for these molecules led us synthesize the alkylated compounds, (I) and (II), as model systems for the corresponding protonated ligands. \sch

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively. While the molecule of (II) carries only a single positive charge, protonation of the N atom in pyridine ring 2 gives rise to a second positive charge in the molecule of (I). The H atom at N2 in (I) was found in a difference Fourier map. Its existence also follows from the C6—N2—C7 bond angle of 123.6 (3)°. The bond angles at the non-protonated pyridine N atoms are significantly smaller than 120°, e.g. C1—N1—C5 117.3 (2)° in (I), and C1—N1—C5 117.2 (2)° and C6—N2—C7 117.2 (3)° in (II). In the crystal structure of (I), there are two perchlorate anions, one of which is connected to the molecular cation by an intermolecular N2—H···O1 hydogen bond (Table 2). Furthermore, the protonated atom N2 acts as a donor for an intramolecular N2—H···N1 hydrogen bond. Despite the connection of one perchlorate anion to the cation, both anions show a high degree of rotational disorder, as indicated by the displacement ellipsoids (Fig. 1).

The molecular conformations of (I) and (II) can be described by the dihedral angles between the pyridine rings. These angles are very similar for (I) and (II), as shown by following values. The dihedral angle between rings 1 and 2 is 11.3 (2)° in (I) and 16.5 (1)° in (II), that between rings 1 and 3 is 49.6 (1)° in (I) and 46.8 (1)° in (II), and that between rings 1 and 4 is 30.6 (1)° in (I) and 30.7 (1)° in (II). However, while in (I) the atoms N1 and N2 are in cis positions, in (II) a trans position is observed. This different orientation of pyridine ring 2 is indicated by the N1—C1—C6—N2 torsion angle, which is −10.0 (3)° in (I) and 164.2 (2)° in (II).

ππ electron interactions between pyridine rings of neighbouring molecules are of special interest for the explanation of spectroscopic properties. These interactions are defined by the distance between the ring centroids (DC), the perpendicular distance of the centroid of one ring from the plane of the other (DP?), and the interplanar angle. Surprisingly, only weak ππ electron interactions were observed in the crystal structure of (II). These interactions between two symmetry-related molecules form dimers, as depicted in Fig. 3. The parameters are as follows: for rings N1/C1—C5 and N2/C7—C11(2 − x, −y, 1 − z), and for rings N2/C7—C11 and N1/C1—C5(2 − x, −y, 1 − z), DC = 3.896 (2) Å, DP = 3.493 and 3.835 Å, and the interplanar angle = 16.52°.

Experimental top

For the preparation of (I), a mixture of 4'-phenyl-2,2',6',2''-terpyridine (0.3 g) and methyl-p-toluensulfonate (0.3 g, excess) was dissolved in toluene (5 ml) and refluxed for 12 h. The resulting oil was dissolved in acetonitrile (5 ml) and mixed with with a hot solution of NaClO4 (0.5 g) in acetonitrile (2 ml). The precipitate which formed was filtered off, washed with acetonitrile (2 ml) and ethanol (5 ml), and recrystallized twice from ethanol (yield 0.1 g; m.p. 571–573 K). Spectroscopic analysis: 1H NMR (300 MHz, DMSO-d6, δ, p.p.m.): 4.43 (s, 3H, NCH3), 7.58–7.70 (m, 5H, PyH, PhH), 8.01–804 (d, 2H, PhH), 8.14–8.20 (d, 1H, PyH), 8.25–8.28 (d, 1H, PyH), 8.51–8.60 (m,2H, PyH), 8.76–8.83 (m, 2H, PyH), 8.91–8.95 (d, 1H, PyH), 9.23–9.26 (d, 1H, PyH). For the preparation of (II), CH3I (0.5 g, excess) was added to a solution of 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (0.3 g) in toluene (5 ml). After refluxing the reacting mixture for 8 h, the solvent was evaporated in vacuo and the solid product was recrystallized twice from methanol (yield 0.12 g; m.p. 478–481 K). Spectroscopic analysis: 1H NMR (300 MHz, DMSO-d6, δ, p.p.m.): 3.85 (s, 3H, OCH3), 4.42 (s, 3H, NCH3), 7.14–7.17 (d, 2H, PhH), 7.53–7.57 (m, 1H, PyH), 7.96–8.06 (m, 4H, PyH, PhH), 8.24–8.28 (m, 2H, PyH), 8.42–8.52 (m, 2H, PyH), 8.78–8.84 (m, 2H, PyH), 9.21–9.24 (d, 1H, PyH).

Refinement top

All H-atom positions of (I) and (II) were determined by difference Fourier syntheses and refined isotropically using restraints for a few atoms. Please provide brief details of restraints used.

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL-NT (Sheldrick, 1999) for (I); SHELXTL-NT (Sheldrick, 1999) and CELLGRAF (Reck et al., 1996) for (II). For both compounds, software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. High anisotropic displacement parameters indicate rotational disorder of the perchlorate anions.
[Figure 2] Fig. 2. The molecular structure of (II), showing 30% probability displacement ellpsoids.
[Figure 3] Fig. 3. The arrangement of two symmetry-related molecular cations of (II) connected by ππ electron interactions [symmetry code: (i) 2 − x, −y, 1 − z].
(I) 1-Methyl-2-[4-phenyl-6-(pyridinium-2-yl)pyridin-2-yl]pyridinium diperchlorate top
Crystal data top
C22H19N32+·2ClO4F(000) = 1080
Mr = 524.30Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.015 (2) ÅCell parameters from 134280 reflections
b = 13.073 (4) Åθ = 1.7–27.5°
c = 29.501 (10) ŵ = 0.34 mm1
β = 91.441 (7)°T = 293 K
V = 2319.1 (13) Å3Needle, colourless
Z = 40.55 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5216 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 77
Tmin = 0.831, Tmax = 0.961k = 1614
13428 measured reflectionsl = 3833
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.108P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5216 reflectionsΔρmax = 0.51 e Å3
393 parametersΔρmin = 0.28 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (11)
Crystal data top
C22H19N32+·2ClO4V = 2319.1 (13) Å3
Mr = 524.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.015 (2) ŵ = 0.34 mm1
b = 13.073 (4) ÅT = 293 K
c = 29.501 (10) Å0.55 × 0.15 × 0.12 mm
β = 91.441 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3175 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.961Rint = 0.039
13428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05410 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.51 e Å3
5216 reflectionsΔρmin = 0.28 e Å3
393 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1439 (3)0.31305 (15)0.17264 (6)0.0467 (5)
N20.2176 (5)0.33812 (18)0.25969 (8)0.0592 (6)
N30.3122 (4)0.45453 (17)0.10369 (7)0.0567 (6)
C10.0092 (4)0.25980 (18)0.19914 (8)0.0459 (6)
C20.1423 (4)0.18907 (19)0.18266 (8)0.0493 (6)
C30.1609 (4)0.17174 (18)0.13633 (8)0.0480 (6)
C40.0228 (4)0.22835 (19)0.10857 (8)0.0483 (6)
C50.1258 (4)0.29678 (18)0.12784 (8)0.0454 (6)
C60.0392 (5)0.28151 (17)0.24825 (8)0.0504 (6)
C70.2724 (7)0.3637 (2)0.30235 (10)0.0762 (9)
C80.1393 (8)0.3331 (3)0.33657 (11)0.0843 (11)
C90.0470 (8)0.2770 (2)0.32624 (10)0.0827 (11)
C100.0969 (6)0.2501 (2)0.28207 (9)0.0639 (8)
C110.2851 (4)0.35229 (19)0.09904 (8)0.0484 (6)
C120.4721 (6)0.5026 (3)0.07954 (11)0.0723 (9)
C130.5981 (6)0.4531 (3)0.05042 (11)0.0751 (9)
C140.5667 (5)0.3505 (3)0.04339 (10)0.0675 (8)
C150.4076 (5)0.2997 (2)0.06812 (9)0.0563 (7)
C160.3194 (4)0.09591 (18)0.11665 (9)0.0519 (6)
C170.5200 (5)0.0761 (2)0.13822 (11)0.0620 (7)
C180.6676 (6)0.0066 (3)0.11956 (15)0.0792 (10)
C190.6191 (7)0.0443 (3)0.08044 (16)0.0933 (13)
C200.4231 (8)0.0263 (3)0.05938 (14)0.0831 (11)
C210.2726 (6)0.0443 (2)0.07695 (10)0.0640 (8)
C220.1676 (7)0.5163 (2)0.13237 (13)0.0779 (10)
H2N0.295 (5)0.348 (2)0.2386 (11)0.071 (10)*
H20.227 (5)0.152 (2)0.2039 (9)0.065 (8)*
H40.037 (4)0.2175 (16)0.0772 (8)0.041 (6)*
H70.416 (5)0.401 (2)0.3057 (10)0.067 (8)*
H80.198 (6)0.350 (3)0.3655 (12)0.094 (11)*
H90.163 (5)0.261 (2)0.3473 (11)0.075 (9)*
H100.232 (5)0.219 (2)0.2742 (9)0.057 (8)*
H120.463 (5)0.572 (3)0.0848 (11)0.082 (10)*
H130.715 (7)0.478 (3)0.0309 (13)0.111 (12)*
H140.649 (5)0.3166 (19)0.0240 (9)0.056 (8)*
H150.383 (4)0.228 (2)0.0669 (8)0.052 (7)*
H170.565 (5)0.112 (2)0.1647 (10)0.071 (9)*
H180.805 (6)0.001 (2)0.1348 (11)0.079 (10)*
H190.724 (6)0.094 (2)0.0673 (10)0.083 (10)*
H200.384 (5)0.061 (2)0.0345 (9)0.066 (9)*
H210.132 (6)0.051 (2)0.0669 (10)0.076 (10)*
H2210.229 (5)0.514 (3)0.1616 (7)0.151 (19)*
H2220.165 (5)0.5817 (15)0.1182 (11)0.120 (14)*
H2230.023 (3)0.483 (2)0.1299 (9)0.083 (10)*
Cl10.67194 (12)0.52574 (6)0.22201 (3)0.0676 (3)
O10.6044 (6)0.4251 (2)0.21433 (16)0.1516 (14)
O20.5139 (7)0.5747 (4)0.24582 (13)0.1776 (17)
O30.6842 (7)0.5761 (4)0.18081 (12)0.1889 (19)
O40.8807 (5)0.5251 (2)0.24329 (14)0.1423 (13)
Cl20.95011 (12)0.71573 (5)0.03513 (2)0.0596 (2)
O50.7447 (5)0.7140 (2)0.05727 (11)0.1207 (11)
O61.1291 (5)0.7245 (2)0.06693 (9)0.1188 (11)
O70.9708 (4)0.62420 (18)0.01018 (9)0.1031 (9)
O80.9621 (5)0.79993 (18)0.00478 (8)0.0963 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0525 (12)0.0492 (11)0.0385 (10)0.0045 (9)0.0025 (9)0.0038 (9)
N20.0771 (17)0.0575 (14)0.0429 (13)0.0075 (12)0.0008 (12)0.0034 (11)
N30.0649 (14)0.0568 (13)0.0486 (12)0.0096 (10)0.0078 (10)0.0115 (10)
C10.0532 (14)0.0451 (13)0.0394 (12)0.0010 (11)0.0029 (10)0.0009 (10)
C20.0557 (15)0.0517 (14)0.0407 (13)0.0062 (11)0.0064 (11)0.0046 (11)
C30.0511 (14)0.0488 (13)0.0441 (13)0.0032 (11)0.0000 (10)0.0012 (11)
C40.0544 (15)0.0550 (15)0.0353 (12)0.0035 (11)0.0015 (11)0.0036 (11)
C50.0480 (14)0.0495 (13)0.0389 (12)0.0023 (10)0.0043 (10)0.0053 (10)
C60.0686 (17)0.0435 (13)0.0391 (13)0.0032 (12)0.0014 (12)0.0010 (10)
C70.109 (3)0.0673 (19)0.0513 (18)0.0054 (19)0.0165 (18)0.0112 (15)
C80.143 (3)0.066 (2)0.0437 (17)0.004 (2)0.0070 (19)0.0088 (15)
C90.144 (4)0.0635 (19)0.0415 (16)0.010 (2)0.0199 (19)0.0013 (14)
C100.091 (2)0.0540 (16)0.0473 (15)0.0114 (16)0.0145 (15)0.0035 (12)
C110.0486 (14)0.0586 (15)0.0378 (12)0.0043 (11)0.0007 (10)0.0087 (11)
C120.082 (2)0.069 (2)0.066 (2)0.0233 (17)0.0004 (17)0.0187 (16)
C130.0605 (19)0.105 (3)0.0604 (18)0.0186 (18)0.0117 (15)0.0226 (18)
C140.0576 (18)0.094 (2)0.0516 (16)0.0012 (16)0.0134 (14)0.0121 (16)
C150.0558 (16)0.0668 (18)0.0466 (14)0.0005 (13)0.0063 (12)0.0086 (13)
C160.0591 (16)0.0465 (13)0.0495 (14)0.0031 (11)0.0075 (12)0.0060 (11)
C170.0603 (18)0.0560 (16)0.0691 (19)0.0069 (13)0.0068 (15)0.0134 (15)
C180.067 (2)0.068 (2)0.102 (3)0.0184 (16)0.018 (2)0.017 (2)
C190.092 (3)0.061 (2)0.124 (3)0.0198 (19)0.046 (3)0.004 (2)
C200.106 (3)0.065 (2)0.076 (2)0.002 (2)0.033 (2)0.0138 (18)
C210.074 (2)0.0617 (17)0.0556 (17)0.0004 (15)0.0131 (15)0.0013 (14)
C220.102 (3)0.0539 (18)0.079 (2)0.0029 (18)0.020 (2)0.0049 (16)
Cl10.0626 (5)0.0739 (5)0.0669 (5)0.0031 (3)0.0128 (4)0.0019 (4)
O10.100 (2)0.099 (2)0.256 (4)0.0187 (17)0.014 (2)0.028 (2)
O20.180 (4)0.215 (4)0.141 (3)0.105 (3)0.054 (3)0.025 (3)
O30.172 (4)0.290 (5)0.105 (2)0.064 (4)0.013 (2)0.075 (3)
O40.098 (2)0.108 (2)0.217 (4)0.0095 (16)0.070 (2)0.003 (2)
Cl20.0695 (5)0.0628 (4)0.0471 (4)0.0130 (3)0.0150 (3)0.0056 (3)
O50.111 (2)0.101 (2)0.154 (3)0.0188 (15)0.086 (2)0.0271 (17)
O60.141 (3)0.124 (2)0.0897 (17)0.0425 (18)0.0433 (18)0.0259 (16)
O70.1023 (19)0.0773 (15)0.132 (2)0.0199 (13)0.0509 (16)0.0384 (15)
O80.132 (2)0.0891 (16)0.0675 (14)0.0121 (14)0.0048 (14)0.0202 (12)
Geometric parameters (Å, º) top
N1—C11.336 (3)C13—C141.370 (5)
N1—C51.340 (3)C13—H130.98 (4)
N2—C71.336 (4)C14—C151.387 (4)
N2—C61.340 (3)C14—H140.89 (3)
N2—H2N0.80 (3)C15—H150.95 (3)
N3—C111.353 (3)C16—C211.387 (4)
N3—C121.365 (4)C16—C171.402 (4)
N3—C221.470 (4)C17—C181.376 (4)
C1—C21.378 (3)C17—H170.95 (3)
C1—C61.483 (3)C18—C191.370 (6)
C2—C31.387 (3)C18—H180.95 (3)
C2—H20.95 (3)C19—C201.366 (6)
C3—C41.394 (3)C19—H190.98 (3)
C3—C161.484 (3)C20—C211.385 (5)
C4—C51.377 (4)C20—H200.90 (2)
C4—H40.94 (2)C21—H210.90 (3)
C5—C111.486 (3)C22—H2210.93 (2)
C6—C101.370 (4)C22—H2220.95 (2)
C7—C81.365 (5)C22—H2230.974 (19)
C7—H70.99 (3)Cl1—O21.357 (3)
C8—C91.367 (6)Cl1—O31.386 (3)
C8—H80.94 (4)Cl1—O41.390 (3)
C9—C101.376 (4)Cl1—O11.393 (3)
C9—H90.97 (3)Cl2—O71.412 (2)
C10—H100.93 (3)Cl2—O51.412 (3)
C11—C151.372 (4)Cl2—O61.415 (3)
C12—C131.328 (5)Cl2—O81.422 (2)
C12—H120.92 (3)
C1—N1—C5117.31 (19)C12—C13—H13130 (2)
C7—N2—C6123.6 (3)C14—C13—H13110 (2)
C7—N2—H2N124 (2)C13—C14—C15118.9 (3)
C6—N2—H2N112 (2)C13—C14—H14120.7 (17)
C11—N3—C12119.1 (3)C15—C14—H14120.3 (18)
C11—N3—C22122.0 (2)C11—C15—C14119.9 (3)
C12—N3—C22118.8 (3)C11—C15—H15115.8 (16)
N1—C1—C2123.3 (2)C14—C15—H15124.1 (16)
N1—C1—C6114.3 (2)C21—C16—C17119.3 (3)
C2—C1—C6122.4 (2)C21—C16—C3120.9 (3)
C1—C2—C3119.6 (2)C17—C16—C3119.9 (2)
C1—C2—H2118.1 (16)C18—C17—C16119.6 (3)
C3—C2—H2122.3 (16)C18—C17—H17117.0 (18)
C2—C3—C4117.3 (2)C16—C17—H17123.2 (18)
C2—C3—C16122.0 (2)C19—C18—C17120.6 (4)
C4—C3—C16120.8 (2)C19—C18—H18124 (2)
C5—C4—C3119.5 (2)C17—C18—H18116 (2)
C5—C4—H4123.3 (14)C20—C19—C18120.3 (3)
C3—C4—H4117.2 (14)C20—C19—H19119.2 (19)
N1—C5—C4123.1 (2)C18—C19—H19120.5 (19)
N1—C5—C11116.7 (2)C19—C20—C21120.5 (4)
C4—C5—C11120.1 (2)C19—C20—H20122 (2)
N2—C6—C10118.2 (2)C21—C20—H20118 (2)
N2—C6—C1115.4 (2)C20—C21—C16119.7 (4)
C10—C6—C1126.4 (3)C20—C21—H21123 (2)
N2—C7—C8119.2 (4)C16—C21—H21116 (2)
N2—C7—H7114.3 (17)N3—C22—H221107 (2)
C8—C7—H7126.4 (17)N3—C22—H222104.2 (18)
C7—C8—C9119.0 (3)H221—C22—H222116 (2)
C7—C8—H8113 (2)N3—C22—H223104.4 (16)
C9—C8—H8128 (2)H221—C22—H223113 (2)
C8—C9—C10120.4 (3)H222—C22—H223111 (2)
C8—C9—H9125.0 (19)O2—Cl1—O3106.5 (3)
C10—C9—H9114.1 (19)O2—Cl1—O4113.9 (3)
C6—C10—C9119.5 (3)O3—Cl1—O4109.4 (2)
C6—C10—H10118.7 (17)O2—Cl1—O1108.9 (3)
C9—C10—H10121.1 (17)O3—Cl1—O1109.1 (3)
N3—C11—C15119.8 (2)O4—Cl1—O1108.9 (2)
N3—C11—C5120.2 (2)O7—Cl2—O5108.51 (15)
C15—C11—C5120.0 (2)O7—Cl2—O6109.80 (19)
C13—C12—N3122.3 (3)O5—Cl2—O6110.8 (2)
C13—C12—H12129 (2)O7—Cl2—O8108.73 (16)
N3—C12—H12109 (2)O5—Cl2—O8111.23 (19)
C12—C13—C14119.8 (3)O6—Cl2—O8107.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.80 (3)2.25 (3)2.942 (5)146 (3)
N2—H2N···N10.80 (3)2.18 (3)2.616 (3)115 (3)
C13—H13···O70.98 (4)2.53 (4)3.401 (4)148 (3)
C2—H2···O2i0.95 (3)2.51 (3)3.452 (4)169 (2)
C4—H4···O8ii0.94 (2)2.48 (2)3.393 (4)163.7 (19)
C22—H222···O6iii0.95 (2)2.41 (2)3.341 (4)167 (3)
C19—H19···O6iv0.98 (3)2.53 (3)3.400 (5)148 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x2, y1, z.
(II) 2-[4-(methoxyphenyl)-2,2'-bipyridin-6-yl]-1-methylpyridinium iodide top
Crystal data top
C23H20N3O+·IF(000) = 960
Mr = 481.32Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.854 (4) ÅCell parameters from 11870 reflections
b = 13.448 (4) Åθ = 2.2–27.5°
c = 12.141 (4) ŵ = 1.54 mm1
β = 111.146 (5)°T = 293 K
V = 2109.7 (11) Å3Prism, colourless
Z = 40.48 × 0.45 × 0.35 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4729 independent reflections
Radiation source: fine-focus sealed tube4104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1716
Tmin = 0.483, Tmax = 0.584k = 917
11870 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.3488P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
4729 reflectionsΔρmax = 0.77 e Å3
334 parametersΔρmin = 1.08 e Å3
82 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (8)
Crystal data top
C23H20N3O+·IV = 2109.7 (11) Å3
Mr = 481.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.854 (4) ŵ = 1.54 mm1
b = 13.448 (4) ÅT = 293 K
c = 12.141 (4) Å0.48 × 0.45 × 0.35 mm
β = 111.146 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4729 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4104 reflections with I > 2σ(I)
Tmin = 0.483, Tmax = 0.584Rint = 0.050
11870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03882 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.77 e Å3
4729 reflectionsΔρmin = 1.08 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.544965 (16)0.714875 (16)0.084730 (19)0.06552 (13)
N10.83509 (16)0.10517 (16)0.44809 (18)0.0453 (4)
C10.92148 (18)0.12238 (17)0.5425 (2)0.0440 (5)
O10.8480 (2)0.0257 (2)1.14363 (18)0.0809 (7)
C20.92435 (19)0.11284 (19)0.6580 (2)0.0465 (5)
H20.989 (2)0.123 (2)0.723 (3)0.049 (7)*
N21.09247 (18)0.1904 (2)0.6072 (2)0.0584 (6)
C30.83606 (19)0.08379 (18)0.6791 (2)0.0445 (5)
N30.62810 (17)0.11599 (18)0.26728 (19)0.0509 (5)
C40.7459 (2)0.0689 (2)0.5808 (2)0.0472 (5)
H40.684 (3)0.052 (2)0.587 (3)0.052 (8)*
C50.74991 (18)0.08017 (18)0.4689 (2)0.0444 (5)
C61.01524 (19)0.15013 (18)0.5174 (2)0.0472 (5)
C71.1778 (3)0.2160 (3)0.5870 (4)0.0716 (9)
H71.229 (4)0.242 (3)0.657 (4)0.087 (12)*
C81.1894 (3)0.2040 (3)0.4806 (4)0.0730 (10)
H81.251 (2)0.223 (2)0.475 (3)0.063 (10)*
C91.1093 (3)0.1634 (2)0.3878 (4)0.0685 (8)
H91.112 (4)0.162 (3)0.310 (4)0.095 (13)*
C101.0208 (3)0.1356 (2)0.4066 (3)0.0573 (6)
H100.970 (3)0.107 (3)0.350 (3)0.071 (10)*
C110.65729 (19)0.05651 (19)0.3635 (2)0.0459 (5)
C120.5477 (2)0.0904 (3)0.1690 (3)0.0659 (8)
H120.532 (3)0.139 (3)0.117 (4)0.088 (12)*
C130.4959 (3)0.0033 (3)0.1632 (3)0.0749 (9)
H130.436 (4)0.014 (3)0.098 (4)0.092 (13)*
C140.5221 (3)0.0572 (3)0.2597 (3)0.0710 (8)
H140.489 (3)0.118 (3)0.263 (4)0.087 (12)*
C150.6025 (2)0.0298 (2)0.3606 (3)0.0568 (6)
H150.627 (3)0.067 (3)0.429 (3)0.067 (10)*
C160.8378 (2)0.06681 (19)0.8004 (2)0.0466 (5)
C170.9055 (3)0.1194 (2)0.8960 (3)0.0618 (7)
H170.949 (3)0.167 (3)0.885 (4)0.074 (11)*
C180.9066 (3)0.1046 (3)1.0086 (3)0.0706 (9)
H180.950 (3)0.135 (3)1.076 (4)0.079 (11)*
C190.8415 (3)0.0349 (2)1.0287 (2)0.0582 (6)
C200.7763 (2)0.0206 (2)0.9369 (2)0.0546 (6)
H200.739 (3)0.074 (3)0.947 (3)0.079 (11)*
C210.7747 (2)0.0038 (2)0.8226 (2)0.0522 (6)
H210.725 (2)0.045 (2)0.757 (3)0.058 (8)*
C220.6785 (3)0.2129 (2)0.2662 (4)0.0673 (9)
H2230.639 (2)0.2531 (19)0.203 (2)0.060 (9)*
H2220.685 (3)0.251 (2)0.335 (3)0.097 (14)*
H2210.7442 (19)0.206 (2)0.265 (4)0.110 (19)*
C230.7822 (3)0.0437 (3)1.1689 (3)0.0711 (9)
H2330.797 (3)0.037 (3)1.251 (4)0.080 (11)*
H2320.709 (3)0.036 (3)1.121 (4)0.082 (12)*
H2310.806 (3)0.115 (3)1.150 (4)0.081 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.06776 (18)0.07172 (18)0.06853 (19)0.00400 (8)0.03841 (13)0.00452 (8)
N10.0461 (10)0.0461 (10)0.0463 (10)0.0024 (8)0.0198 (8)0.0028 (8)
C10.0427 (11)0.0419 (12)0.0492 (12)0.0032 (9)0.0185 (10)0.0034 (9)
O10.1092 (19)0.0934 (17)0.0409 (11)0.0192 (15)0.0281 (12)0.0018 (11)
C20.0449 (12)0.0476 (12)0.0467 (13)0.0001 (10)0.0159 (10)0.0014 (10)
N20.0467 (12)0.0659 (13)0.0619 (14)0.0040 (11)0.0189 (10)0.0077 (12)
C30.0482 (12)0.0441 (11)0.0422 (11)0.0020 (9)0.0176 (9)0.0008 (9)
N30.0479 (10)0.0583 (13)0.0478 (11)0.0068 (9)0.0187 (9)0.0039 (9)
C40.0438 (12)0.0540 (13)0.0462 (12)0.0015 (10)0.0190 (10)0.0000 (10)
C50.0452 (11)0.0439 (12)0.0441 (12)0.0013 (9)0.0163 (9)0.0011 (9)
C60.0464 (12)0.0417 (11)0.0572 (14)0.0057 (9)0.0230 (11)0.0073 (10)
C70.0514 (16)0.077 (2)0.086 (2)0.0085 (14)0.0249 (17)0.0138 (17)
C80.0576 (17)0.0689 (19)0.108 (3)0.0064 (14)0.0482 (19)0.0190 (17)
C90.077 (2)0.0615 (18)0.088 (2)0.0104 (15)0.0539 (18)0.0085 (16)
C100.0608 (15)0.0551 (15)0.0637 (16)0.0030 (13)0.0316 (14)0.0003 (13)
C110.0455 (12)0.0520 (12)0.0430 (11)0.0025 (10)0.0192 (10)0.0010 (10)
C120.0548 (15)0.088 (2)0.0501 (15)0.0102 (15)0.0134 (12)0.0054 (15)
C130.0539 (16)0.104 (3)0.0584 (18)0.0058 (17)0.0099 (14)0.0160 (18)
C140.0589 (16)0.077 (2)0.076 (2)0.0158 (15)0.0229 (15)0.0147 (16)
C150.0545 (14)0.0595 (16)0.0571 (16)0.0061 (12)0.0210 (12)0.0036 (13)
C160.0503 (12)0.0482 (12)0.0429 (12)0.0010 (10)0.0186 (10)0.0001 (10)
C170.080 (2)0.0560 (15)0.0488 (14)0.0183 (14)0.0219 (13)0.0038 (12)
C180.093 (2)0.0683 (18)0.0448 (15)0.0246 (17)0.0178 (15)0.0086 (13)
C190.0726 (17)0.0622 (16)0.0411 (13)0.0000 (13)0.0222 (12)0.0013 (11)
C200.0571 (14)0.0631 (16)0.0483 (14)0.0075 (13)0.0246 (12)0.0005 (12)
C210.0523 (13)0.0627 (15)0.0429 (12)0.0084 (12)0.0189 (11)0.0059 (11)
C220.0652 (19)0.0637 (19)0.069 (2)0.0034 (13)0.0192 (16)0.0214 (15)
C230.081 (2)0.091 (2)0.0518 (16)0.0102 (19)0.0377 (16)0.0117 (16)
Geometric parameters (Å, º) top
N1—C51.336 (3)C10—H100.87 (4)
N1—C11.345 (3)C11—C151.380 (4)
C1—C21.395 (4)C12—C131.362 (6)
C1—C61.485 (3)C12—H120.88 (5)
O1—C191.370 (3)C13—C141.363 (6)
O1—C231.413 (4)C13—H130.94 (4)
C2—C31.393 (4)C14—C151.375 (4)
C2—H20.96 (3)C14—H140.95 (4)
N2—C61.335 (4)C15—H150.92 (4)
N2—C71.337 (4)C16—C211.381 (4)
C3—C41.396 (4)C16—C171.394 (4)
C3—C161.482 (3)C17—C181.375 (4)
N3—C121.351 (4)C17—H170.92 (3)
N3—C111.352 (3)C18—C191.383 (4)
N3—C221.481 (4)C18—H180.92 (4)
C4—C51.388 (3)C19—C201.375 (4)
C4—H40.91 (3)C20—C211.398 (4)
C5—C111.483 (3)C20—H200.91 (4)
C6—C101.389 (4)C21—H211.01 (3)
C7—C81.368 (6)C22—H2230.94 (2)
C7—H70.96 (5)C22—H2220.96 (2)
C8—C91.377 (6)C22—H2210.92 (2)
C8—H80.92 (2)C23—H2330.95 (4)
C9—C101.378 (4)C23—H2320.97 (4)
C9—H90.95 (5)C23—H2311.07 (4)
C5—N1—C1117.2 (2)C13—C12—H12128 (3)
N1—C1—C2122.3 (2)C12—C13—C14119.7 (3)
N1—C1—C6116.4 (2)C12—C13—H13123 (3)
C2—C1—C6121.3 (2)C14—C13—H13117 (3)
C19—O1—C23118.0 (3)C13—C14—C15119.0 (3)
C3—C2—C1120.2 (2)C13—C14—H14125 (3)
C3—C2—H2120.5 (18)C15—C14—H14116 (3)
C1—C2—H2119.3 (18)C14—C15—C11120.6 (3)
C6—N2—C7117.2 (3)C14—C15—H15125 (2)
C2—C3—C4117.2 (2)C11—C15—H15115 (2)
C2—C3—C16121.7 (2)C21—C16—C17118.0 (2)
C4—C3—C16121.1 (2)C21—C16—C3121.0 (2)
C12—N3—C11120.5 (3)C17—C16—C3120.9 (2)
C12—N3—C22117.2 (3)C18—C17—C16121.1 (3)
C11—N3—C22122.2 (2)C18—C17—H17118 (3)
C5—C4—C3118.8 (2)C16—C17—H17121 (3)
C5—C4—H4118 (2)C17—C18—C19120.0 (3)
C3—C4—H4123 (2)C17—C18—H18126 (3)
N1—C5—C4124.2 (2)C19—C18—H18114 (2)
N1—C5—C11116.0 (2)O1—C19—C20124.0 (3)
C4—C5—C11119.6 (2)O1—C19—C18115.7 (3)
N2—C6—C10122.6 (3)C20—C19—C18120.3 (3)
N2—C6—C1116.0 (2)C19—C20—C21119.2 (3)
C10—C6—C1121.4 (2)C19—C20—H20124 (3)
N2—C7—C8123.8 (4)C21—C20—H20117 (3)
N2—C7—H7111 (3)C16—C21—C20121.3 (2)
C8—C7—H7126 (3)C16—C21—H21121.3 (18)
C7—C8—C9119.0 (3)C20—C21—H21117.4 (18)
C7—C8—H8117 (2)N3—C22—H223112.3 (18)
C9—C8—H8124 (2)N3—C22—H222111 (2)
C8—C9—C10118.4 (3)H223—C22—H222105 (2)
C8—C9—H9121 (3)N3—C22—H221113 (2)
C10—C9—H9120 (3)H223—C22—H221109 (2)
C9—C10—C6119.1 (3)H222—C22—H221107 (2)
C9—C10—H10120 (3)O1—C23—H233105 (2)
C6—C10—H10121 (3)O1—C23—H232115 (3)
N3—C11—C15119.0 (2)H233—C23—H232114 (4)
N3—C11—C5121.0 (2)O1—C23—H231106 (2)
C15—C11—C5120.0 (2)H233—C23—H231110 (3)
N3—C12—C13121.1 (3)H232—C23—H231107 (3)
N3—C12—H12111 (3)
C5—N1—C1—C21.4 (4)N1—C5—C11—N346.6 (3)
C5—N1—C1—C6179.9 (2)C4—C5—C11—N3137.7 (2)
N1—C1—C2—C30.5 (4)N1—C5—C11—C15130.2 (3)
C6—C1—C2—C3178.1 (2)C4—C5—C11—C1545.5 (3)
C1—C2—C3—C42.4 (4)C11—N3—C12—C131.8 (4)
C1—C2—C3—C16176.2 (2)C22—N3—C12—C13179.0 (3)
C2—C3—C4—C52.3 (4)N3—C12—C13—C143.2 (5)
C16—C3—C4—C5176.3 (2)C12—C13—C14—C151.6 (6)
C1—N1—C5—C41.5 (4)C13—C14—C15—C111.2 (5)
C1—N1—C5—C11176.9 (2)N3—C11—C15—C142.6 (4)
C3—C4—C5—N10.4 (4)C5—C11—C15—C14174.2 (3)
C3—C4—C5—C11174.9 (2)C2—C3—C16—C21147.8 (3)
C7—N2—C6—C100.7 (4)C4—C3—C16—C2130.6 (4)
C7—N2—C6—C1180.0 (3)C2—C3—C16—C1730.1 (4)
N1—C1—C6—N2164.2 (2)C4—C3—C16—C17151.5 (3)
C2—C1—C6—N217.2 (3)C21—C16—C17—C182.7 (5)
N1—C1—C6—C1015.2 (3)C3—C16—C17—C18179.4 (3)
C2—C1—C6—C10163.5 (3)C16—C17—C18—C191.5 (6)
C6—N2—C7—C80.6 (5)C23—O1—C19—C201.4 (5)
N2—C7—C8—C90.0 (5)C23—O1—C19—C18179.3 (3)
C7—C8—C9—C100.6 (5)C17—C18—C19—O1179.8 (3)
C8—C9—C10—C60.5 (5)C17—C18—C19—C200.8 (6)
N2—C6—C10—C90.2 (4)O1—C19—C20—C21178.9 (3)
C1—C6—C10—C9179.5 (3)C18—C19—C20—C211.7 (5)
C12—N3—C11—C151.1 (4)C17—C16—C21—C201.7 (4)
C22—N3—C11—C15175.9 (3)C3—C16—C21—C20179.6 (3)
C12—N3—C11—C5175.7 (2)C19—C20—C21—C160.5 (5)
C22—N3—C11—C57.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N20.96 (3)2.51 (3)2.816 (4)98 (2)
C10—H10···N10.87 (4)2.55 (4)2.824 (4)99 (3)
C22—H221···N10.92 (2)2.52 (4)2.868 (4)103 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H19N32+·2ClO4C23H20N3O+·I
Mr524.30481.32
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)6.015 (2), 13.073 (4), 29.501 (10)13.854 (4), 13.448 (4), 12.141 (4)
β (°) 91.441 (7) 111.146 (5)
V3)2319.1 (13)2109.7 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.341.54
Crystal size (mm)0.55 × 0.15 × 0.120.48 × 0.45 × 0.35
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Multi-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.831, 0.9610.483, 0.584
No. of measured, independent and
observed [I > 2σ(I)] reflections
13428, 5216, 3175 11870, 4729, 4104
Rint0.0390.050
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.174, 0.99 0.038, 0.124, 1.16
No. of reflections52164729
No. of parameters393334
No. of restraints1082
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.280.77, 1.08

Computer programs: SMART-NT (Bruker, 1999), SAINT-NT (Bruker, 1999), SAINT-NT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Sheldrick, 1999) and CELLGRAF (Reck et al., 1996), SHELXL97.

Selected bond lengths (Å) for (I) top
N1—C11.336 (3)N3—C121.365 (4)
N1—C51.340 (3)N3—C221.470 (4)
N2—C71.336 (4)C1—C61.483 (3)
N2—C61.340 (3)C3—C161.484 (3)
N3—C111.353 (3)C5—C111.486 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.80 (3)2.25 (3)2.942 (5)146 (3)
N2—H2N···N10.80 (3)2.18 (3)2.616 (3)115 (3)
C13—H13···O70.98 (4)2.53 (4)3.401 (4)148 (3)
C2—H2···O2i0.95 (3)2.51 (3)3.452 (4)169 (2)
C4—H4···O8ii0.94 (2)2.48 (2)3.393 (4)163.7 (19)
C22—H222···O6iii0.95 (2)2.41 (2)3.341 (4)167 (3)
C19—H19···O6iv0.98 (3)2.53 (3)3.400 (5)148 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x2, y1, z.
Selected geometric parameters (Å, º) for (II) top
N1—C51.336 (3)N2—C71.337 (4)
N1—C11.345 (3)C3—C161.482 (3)
C1—C61.485 (3)N3—C121.351 (4)
O1—C191.370 (3)N3—C111.352 (3)
O1—C231.413 (4)N3—C221.481 (4)
N2—C61.335 (4)C5—C111.483 (3)
C19—O1—C23118.0 (3)C12—N3—C11120.5 (3)
C6—N2—C7117.2 (3)C12—N3—C22117.2 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N20.96 (3)2.51 (3)2.816 (4)98 (2)
C10—H10···N10.87 (4)2.55 (4)2.824 (4)99 (3)
C22—H221···N10.92 (2)2.52 (4)2.868 (4)103 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds