Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C15H16Cl4N5O2P3, is a cyclo­phosphazenic lariat (PNP-pivot) ether with a spiro-cyclic 12-membered macrocyclic ligand containing two ether O and two N atoms; the phosphazene ring is nearly planar. In the macrocyclic ring, there is a four-center (trifurcate) N—H...O/N—H...N hydrogen bond. The relative inner-hole size of the macrocycle is estimated as approximately 0.95 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104006894/na1648sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006894/na1648Isup2.hkl
Contains datablock I

CCDC reference: 243590

Comment top

N3P3Cl6 is a standard compound for trimeric phosphazene derivatives. It has potential use in the preparation of new small organocyclophosphazenes and high polymeric phosphazene derivatives with inorganic backbones and various side groups (Allcock et al., 1992; Olshavsky & Allcock, 1995; Hökelek et al., 1996).

The structures of the organic, inorganic or organometallic side groups are highly effective in determining the specific physical and chemical properties of phosphazene polymers (Allcock et al., 1987, 1996). Some of the polymeric phosphazene derivatives may be useful as high refractive index glasses (Olshavsky & Allcock, 1995), ferroelectric and non-linear optical polymers (Dembek et al., 1991; Allcock et al., 1995), liquid crystalline materials (Allcock & Kim, 1991) and biomedical materials (Cohen et al., 1990).

The crystal structures of N3P3Cl6 (Bullen, 1971) and a few of its derivatives with bulky phenoxy groups have been reported.

In the literature, there are only a limited number of reports concerning the structures of the cyclophosphazenic lariat (PNP-pivot) ethers (Yıldız et al., 1999; Brandt et al., 1999, 2001; Bartsch et al., 2002).

Two kinds of compounds are expected to be formed from the reaction of N3P3Cl6 with propylene glycol bis(2-aminophenyl ether), namely spiro- and ansa-cyclophosphazenic lariat ethers. However, only the spiro-cyclic 12-membered macrocyclic ligand, (I), has been isolated, which is a new class of macrocyclic multidentate ligand where the macrocycle and the phosphazene rings are linked, forming a novel structure.

The title compound, (I), may be a potential ion-selective reagent for lithium and transition metal cations. The structure determination of (I) was carried out in order to estimate the macrocyclic ring hole size and to understand the influence of the highly hindered macrocyclic ring on the structure of the cyclic trimeric phosphazene. The macrocyclic ring (Fig. 1) comprises two ether O and two N atoms. The intramolecular P3···C13 [5.222 (3) Å], C10···C21 [5.123 (4) Å], N4···O11 [2.730 (4) Å], N4···O15 [2.891 (4) Å], N22···O11 [4.712 (4) Å] and N22···O15 [2.729 (4) Å] distances may indicate the hole size of the macrocyclic ring. When only the N and O atoms are taken into account, the mean N···O distance is 3.266 (4) Å. A least-squares plane defined by atoms N4, N22, O11 and O15 has maximum deviations on either side of the plane of 0.145 (2), −0.122(2, −0.080 (2) and 0.070 (2) Å, respectively.

The relative macrocyclic inner-hole size is estimated as approximately 0.95 Å, taking into account the best least-squares plane defined by atoms N4, N22, O11 and O15. and the trifurcate hydrogen bond in the macrocycle, using the `modified covalent radii' of Nsp2 (0.66 Å) and Osp3 (0.76 Å) atoms (Goodwin et al., 1982; Adam et al., 1983; Drummond et al., 1982). The macrocycle is contracted with a trifurcate N—H···O/N—H···N hydrogen bond, where the central part of the macrocycle is occupied by the trifurcate hydrogen bond.

The phosphazene ring is nearly planar. The P—N bonds are in the range 1.552 (2)–1.604 (2) Å. The P—N bonds have a regular variation with the distance from P3 in the ring: P3—N3 P3—N2 > P1—N3 P2—N2 < P1—N1 P2—N1. The phosphazene ring P—N bonds (Table 1) have double-bond character. On the other hand, the P—N bonds in the macrocycle are near the lower limit of the single-bond length. In phosphazene derivatives, the P—N single and double bonds are generally in the ranges 1.628–1.691 and 1.571–1.604 Å, respectively (Allen et al., 1987). The shortening in the macroring P—N bonds may probably be due to electron releasing from the N atoms of the macrocycle to the phosphazene ring.

In the phosphazene ring, for the angles nearest to the macrocycle, viz. endocyclic α(N2—P3—N3) and exocyclic α'(N4—P3—N22), α is decreased while α' is increased with increasing electron supply and repulsions of the substituents relative to the standard compound N3P3Cl6. The β(P2—N2—P3) and β(P1—N3—P3) values are seen to change considerably and seem to increase with increasing electron supply to the N3P3 ring (Kılıç et al., 1996). In (I), β(P2—N2—P3) β(P1—N3—P3) > (P1—N1—P2); the α [114.6 (1)°] angle is significantly smaller and the α' angle [103.3 (1)°] a little larger than the corresponding values [118.3 (2) and 101.2 (1)°, respectively], but the β angles [123.3 (1) and 123.2 (1)°] are larger than the reported value [121.4 (3)°] in N3P3Cl6 standard compound (Bullen, 1971).

On the other hand, the α angle [114.6 (1)°] is larger than the corresponding value [109.2 (4)°] in [N3P3Cl4(NPPh3)2] (Fincham et al., 1986), but is not significantly different from the values [114.4 (1) and 114.5 (2)°] in [N3P3Cl5(NPPh3)] (Fincham et al., 1986) and [N3P3Cl4Ph(PPh2)] (Allcock et al., 1990) and is a little smaller than the α values [115.8 (1), 115.1 (1) and 115.8 (1)°] in N3P3Cl2[(OC6H3)(NO2)CH2(OC6H3)(NO2)(Ph2)] (Hökelek et al., 2001), [N3P3Cl5(OC6H2-2,6tBu2–4-Me] (Hökelek et al., 1999) and [N3P3Cl5(OC6H2(tBu)3-2,4,6)] (Kılıç et al., 1996), respectively. In (I), the macrocycle releases electrons to the N3P3 ring as seen for one of the NPPh3 groups in [N3P3Cl4(NPPh3)2] (Fincham et al., 1986); the NPPh3 group is known to be a very strong electron-releasing group in phosphazene chemistry.

In the macrocycle, there is a four-center (trifurcate) N—H···O/N—H···N hydrogen bond (Table 2). The Cremer & Pople (1975) total puckering amplitude for the macrocycle is QT = 1.602 (4) Å and the torsion angles (Table 1) have the sequence -ap, +ap, +sp, -sc, +ap, -sc, -sc, -sc, +ap, +sp, -ac, +sc (sp denotes synperiplanar, sc synclinal and ap antiperiplanar), corresponding to the P3—N4, ···, N22—P3 bond sequence. The conformation of the macrocyclic ring is conditioned by the three hydrogen bonds (Fig. 1) and planarity of the two benzo-fused N—C—C—O systems.

As can be seen from the packing diagram (Fig. 2), the macrocyclic ligands are elongated approximately parallel to the (0 1/2 1) planes and stacked along the a axis. Dipole–dipole and van der Waals interactions are also effective in the molecular packing.

Experimental top

A solution of N3P3Cl6 (2.5 g, 7.18 mmol) in acetonitrile (100 ml) was added dropwise to a mixture of propylene glycol bis(2-aminophenyl ether) (1.85 g, 7.20 mmol) and NEt3 (3.63 g, 35.9 mmol) in acetonitrile (50 ml) at 263 K for over 1 h. After the mixture had been allowed to come to an ambient temperature, it was continued to be stirred for 26 h with argon being passed over the reaction mixture. The precipitated amine hydrochloride was filtered off and the solvent was evaporated in reduced pressure. The residue was dissolved in benzene (20 ml) and subjected to column chromatography (silica gel 40 g; eluant benzene) and crystallized from benzene–dichloromethane (2:1) (m.p. 467 K; yield 2.53 g, 66%).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The broken lines show hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of (I).
4,4,6,6-Tetrachlorocyclo-2,2-(propylenedioxydi-o-phenylenediimino)- 2λ5,4λ5,6λ5-triazatriphosphorine top
Crystal data top
C15H16Cl4N5O2P3F(000) = 1080
Mr = 533.04Dx = 1.618 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.7094 (6) Åθ = 10–15°
b = 22.404 (2) ŵ = 0.78 mm1
c = 12.6960 (14) ÅT = 293 K
β = 93.751 (7)°Block, colourless
V = 2188.2 (4) Å30.40 × 0.25 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 26.3°, θmin = 2.4°
Graphite monochromatorh = 09
non–profiled ω scansk = 270
4703 measured reflectionsl = 1515
4385 independent reflections3 standard reflections every 120 min
3132 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0525P)2 + 1.1216P]
where P = (Fo2 + 2Fc2)/3
4385 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C15H16Cl4N5O2P3V = 2188.2 (4) Å3
Mr = 533.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7094 (6) ŵ = 0.78 mm1
b = 22.404 (2) ÅT = 293 K
c = 12.6960 (14) Å0.40 × 0.25 × 0.25 mm
β = 93.751 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
4703 measured reflections3 standard reflections every 120 min
4385 independent reflections intensity decay: 1%
3132 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
4385 reflectionsΔρmin = 0.38 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P11.22064 (8)0.05702 (3)0.76557 (6)0.03818 (19)
P20.90504 (8)0.00286 (3)0.77674 (6)0.03835 (19)
P30.92797 (9)0.12615 (3)0.79513 (6)0.03654 (18)
Cl11.35067 (12)0.05820 (4)0.63470 (8)0.0651 (3)
Cl21.41572 (11)0.04741 (5)0.87429 (8)0.0705 (3)
Cl30.78221 (12)0.04062 (4)0.65661 (9)0.0746 (3)
Cl40.84543 (12)0.04991 (4)0.89612 (9)0.0760 (3)
N11.1070 (3)0.00186 (10)0.7639 (2)0.0472 (6)
N20.8198 (3)0.06498 (10)0.7892 (2)0.0392 (5)
N31.1315 (3)0.11874 (10)0.7792 (2)0.0462 (6)
N40.8343 (3)0.17250 (11)0.7095 (2)0.0446 (6)
C50.7644 (4)0.15883 (12)0.6073 (2)0.0421 (7)
C60.8301 (5)0.11318 (14)0.5468 (3)0.0517 (8)
C70.7545 (6)0.10102 (18)0.4484 (3)0.0651 (10)
C80.6165 (6)0.1342 (2)0.4074 (3)0.0720 (11)
C90.5538 (5)0.18070 (19)0.4651 (3)0.0637 (10)
C100.6270 (4)0.19272 (13)0.5640 (3)0.0469 (7)
O110.5681 (3)0.24012 (9)0.62163 (18)0.0545 (6)
C120.4333 (4)0.22285 (19)0.6886 (3)0.0609 (9)
C130.3995 (6)0.2723 (2)0.7626 (4)0.0768 (12)
C140.5588 (6)0.29562 (17)0.8240 (4)0.0699 (11)
O150.6811 (3)0.24993 (9)0.86013 (18)0.0541 (6)
C160.6387 (4)0.21161 (13)0.9391 (3)0.0468 (7)
C170.4926 (5)0.21737 (17)0.9961 (3)0.0612 (9)
C180.4619 (5)0.17661 (18)1.0734 (3)0.0654 (10)
C190.5723 (5)0.12967 (18)1.0948 (3)0.0580 (9)
C200.7198 (4)0.12407 (14)1.0389 (2)0.0494 (7)
C210.7550 (3)0.16484 (13)0.9620 (2)0.0413 (7)
N220.9128 (3)0.16033 (11)0.9079 (2)0.0443 (6)
H40.802 (4)0.2011 (14)0.738 (3)0.050 (10)*
H200.79570.09241.05340.059*
H221.007 (3)0.1691 (17)0.945 (3)0.090 (14)*
H610.928 (4)0.0898 (12)0.576 (2)0.037 (7)*
H710.795 (5)0.0725 (16)0.411 (3)0.065 (11)*
H810.572 (5)0.1277 (17)0.336 (3)0.085 (13)*
H910.457 (5)0.2029 (17)0.442 (3)0.085 (13)*
H1210.472 (4)0.1869 (14)0.726 (3)0.053 (9)*
H1220.331 (5)0.2115 (14)0.648 (3)0.060 (10)*
H1310.362 (5)0.3072 (18)0.727 (3)0.081 (12)*
H1320.318 (5)0.2572 (18)0.808 (3)0.086 (14)*
H1410.626 (6)0.3185 (19)0.787 (4)0.094 (16)*
H1420.529 (4)0.3181 (16)0.879 (3)0.062 (10)*
H1710.416 (5)0.2469 (16)0.981 (3)0.068 (11)*
H1810.368 (5)0.1812 (15)1.109 (3)0.064 (11)*
H1910.558 (4)0.1007 (14)1.142 (3)0.051 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0225 (3)0.0401 (4)0.0525 (4)0.0013 (3)0.0066 (3)0.0053 (3)
P20.0253 (3)0.0323 (4)0.0573 (5)0.0025 (3)0.0018 (3)0.0008 (3)
P30.0267 (3)0.0317 (4)0.0515 (4)0.0013 (3)0.0049 (3)0.0046 (3)
Cl10.0646 (5)0.0675 (6)0.0667 (6)0.0075 (4)0.0310 (4)0.0106 (4)
Cl20.0361 (4)0.0971 (7)0.0763 (6)0.0036 (4)0.0117 (4)0.0065 (5)
Cl30.0650 (6)0.0542 (5)0.1010 (8)0.0042 (4)0.0226 (5)0.0271 (5)
Cl40.0539 (5)0.0719 (6)0.1039 (8)0.0001 (4)0.0179 (5)0.0415 (5)
N10.0294 (12)0.0340 (12)0.0790 (19)0.0023 (10)0.0104 (12)0.0027 (12)
N20.0235 (11)0.0357 (12)0.0587 (15)0.0005 (9)0.0051 (10)0.0038 (11)
N30.0268 (12)0.0377 (13)0.0748 (17)0.0044 (10)0.0096 (11)0.0084 (12)
N40.0491 (15)0.0342 (13)0.0509 (16)0.0080 (11)0.0064 (12)0.0063 (12)
C50.0465 (16)0.0327 (14)0.0481 (17)0.0061 (12)0.0094 (13)0.0027 (13)
C60.065 (2)0.0429 (17)0.0489 (19)0.0010 (15)0.0138 (16)0.0020 (14)
C70.088 (3)0.054 (2)0.054 (2)0.016 (2)0.020 (2)0.0082 (18)
C80.083 (3)0.086 (3)0.047 (2)0.028 (2)0.002 (2)0.002 (2)
C90.055 (2)0.076 (3)0.059 (2)0.0085 (19)0.0014 (18)0.015 (2)
C100.0443 (17)0.0429 (16)0.0540 (19)0.0066 (13)0.0074 (14)0.0110 (14)
O110.0509 (13)0.0450 (12)0.0687 (15)0.0074 (10)0.0126 (11)0.0114 (11)
C120.0382 (18)0.075 (3)0.070 (2)0.0063 (17)0.0065 (17)0.013 (2)
C130.067 (3)0.078 (3)0.086 (3)0.041 (2)0.013 (2)0.017 (2)
C140.083 (3)0.0396 (19)0.089 (3)0.0228 (19)0.023 (2)0.002 (2)
O150.0527 (13)0.0392 (11)0.0710 (15)0.0105 (10)0.0093 (11)0.0046 (11)
C160.0448 (17)0.0438 (16)0.0518 (18)0.0013 (13)0.0028 (14)0.0157 (14)
C170.052 (2)0.062 (2)0.071 (2)0.0158 (18)0.0131 (17)0.0132 (19)
C180.056 (2)0.082 (3)0.061 (2)0.001 (2)0.0200 (18)0.022 (2)
C190.062 (2)0.071 (2)0.0417 (18)0.0061 (19)0.0061 (16)0.0050 (18)
C200.0486 (18)0.0562 (19)0.0423 (17)0.0031 (14)0.0051 (14)0.0092 (14)
C210.0342 (14)0.0456 (16)0.0437 (16)0.0008 (12)0.0007 (12)0.0166 (13)
N220.0320 (12)0.0494 (14)0.0508 (15)0.0015 (11)0.0018 (11)0.0110 (12)
Geometric parameters (Å, º) top
P3—N21.603 (2)C21—C161.398 (4)
P3—N31.604 (2)C10—C91.370 (5)
P3—N221.635 (3)C16—C171.384 (5)
P3—N41.636 (3)C18—C191.369 (5)
P1—N31.559 (2)C18—C171.373 (6)
P1—N11.583 (2)C18—H1810.88 (4)
P1—Cl21.9853 (11)C19—H1910.90 (3)
P1—Cl11.9961 (11)C6—C71.372 (5)
P2—N21.552 (2)C6—H610.97 (3)
P2—N11.579 (2)C12—C131.486 (6)
P2—Cl31.9957 (11)C12—H1210.97 (3)
P2—Cl41.9993 (12)C12—H1220.95 (3)
O15—C161.375 (4)C9—C81.379 (6)
O15—C141.446 (4)C9—H910.93 (4)
O11—C101.383 (4)C17—H1710.90 (4)
O11—C121.438 (4)C8—C71.372 (6)
N22—C211.439 (4)C8—H810.95 (4)
N22—H220.863 (19)C7—H710.87 (4)
C5—C101.387 (4)C13—C141.504 (6)
C5—C61.393 (4)C13—H1310.94 (4)
C5—N41.407 (4)C13—H1320.95 (4)
C20—C211.377 (4)C14—H1420.90 (4)
C20—C191.385 (5)C14—H1410.88 (5)
C20—H200.9300N4—H40.79 (3)
N2—P3—N3114.57 (12)C19—C18—H181121 (2)
N2—P3—N22112.02 (13)C17—C18—H181118 (2)
N3—P3—N22106.58 (13)C18—C19—C20119.2 (4)
N2—P3—N4107.80 (13)C18—C19—H191126 (2)
N3—P3—N4112.01 (14)C20—C19—H191115 (2)
N22—P3—N4103.33 (13)C7—C6—C5120.0 (4)
N3—P1—N1119.53 (12)C7—C6—H61120.7 (17)
N3—P1—Cl2109.77 (11)C5—C6—H61119.4 (17)
N1—P1—Cl2108.21 (10)O11—C12—C13109.7 (3)
N3—P1—Cl1109.27 (11)O11—C12—H121107.4 (18)
N1—P1—Cl1107.91 (10)C13—C12—H121111.8 (19)
Cl2—P1—Cl1100.45 (5)O11—C12—H122111 (2)
N2—P2—N1119.83 (12)C13—C12—H122112 (2)
N2—P2—Cl3109.43 (10)H121—C12—H122105 (3)
N1—P2—Cl3108.06 (11)C10—C9—C8119.8 (4)
N2—P2—Cl4109.47 (10)C10—C9—H91117 (3)
N1—P2—Cl4108.40 (10)C8—C9—H91123 (3)
Cl3—P2—Cl499.77 (6)C18—C17—C16119.8 (3)
P2—N2—P3123.30 (13)C18—C17—H171120 (2)
C16—O15—C14119.5 (3)C16—C17—H171120 (2)
C10—O11—C12112.4 (2)C7—C8—C9119.9 (4)
C21—N22—P3124.20 (19)C7—C8—H81120 (2)
C21—N22—H22116 (3)C9—C8—H81120 (2)
P3—N22—H22118 (3)C6—C7—C8120.7 (4)
C10—C5—C6118.7 (3)C6—C7—H71120 (3)
C10—C5—N4118.9 (3)C8—C7—H71119 (3)
C6—C5—N4122.5 (3)C12—C13—C14114.6 (3)
P1—N3—P3123.22 (14)C12—C13—H131112 (2)
P2—N1—P1119.43 (14)C14—C13—H131100 (2)
C21—C20—C19120.7 (3)C12—C13—H132106 (3)
C21—C20—H20119.7C14—C13—H132111 (3)
C19—C20—H20119.7H131—C13—H132113 (3)
C20—C21—C16119.4 (3)O15—C14—C13114.3 (3)
C20—C21—N22120.3 (3)O15—C14—H142110 (2)
C16—C21—N22120.3 (3)C13—C14—H142111 (2)
C9—C10—O11120.4 (3)O15—C14—H141100 (3)
C9—C10—C5120.9 (3)C13—C14—H141115 (3)
O11—C10—C5118.7 (3)H142—C14—H141106 (3)
O15—C16—C17124.3 (3)C5—N4—P3126.9 (2)
O15—C16—C21116.1 (3)C5—N4—H4119 (2)
C17—C16—C21119.6 (3)P3—N4—H4111 (2)
C19—C18—C17121.3 (3)
N1—P2—N2—P32.9 (3)C6—C5—C10—O11176.4 (3)
Cl3—P2—N2—P3128.42 (16)N4—C5—C10—O112.4 (4)
Cl4—P2—N2—P3123.19 (16)C14—O15—C16—C177.5 (5)
N3—P3—N2—P24.0 (3)C14—O15—C16—C21173.5 (3)
N22—P3—N2—P2117.57 (18)C20—C21—C16—O15178.9 (3)
N4—P3—N2—P2129.41 (18)N22—C21—C16—O152.9 (4)
N2—P3—N22—C2140.7 (3)C20—C21—C16—C172.0 (4)
N3—P3—N22—C21166.7 (2)N22—C21—C16—C17176.2 (3)
N4—P3—N22—C2175.1 (3)C17—C18—C19—C201.5 (6)
N1—P1—N3—P31.7 (3)C21—C20—C19—C180.5 (5)
Cl2—P1—N3—P3124.09 (18)C10—C5—C6—C72.5 (5)
Cl1—P1—N3—P3126.65 (17)N4—C5—C6—C7178.7 (3)
N2—P3—N3—P13.4 (3)C10—O11—C12—C13169.3 (3)
N22—P3—N3—P1121.1 (2)O11—C10—C9—C8178.4 (3)
N4—P3—N3—P1126.6 (2)C5—C10—C9—C80.3 (5)
N2—P2—N1—P10.9 (3)C19—C18—C17—C160.7 (6)
Cl3—P2—N1—P1127.07 (16)O15—C16—C17—C18180.0 (3)
Cl4—P2—N1—P1125.68 (16)C21—C16—C17—C181.1 (5)
N3—P1—N1—P20.3 (3)C10—C9—C8—C71.5 (6)
Cl2—P1—N1—P2126.22 (16)C5—C6—C7—C81.3 (5)
Cl1—P1—N1—P2125.91 (16)C9—C8—C7—C60.7 (6)
C19—C20—C21—C161.3 (4)O11—C12—C13—C1452.3 (5)
C19—C20—C21—N22177.0 (3)C16—O15—C14—C1370.4 (5)
P3—N22—C21—C2094.5 (3)C12—C13—C14—O1539.9 (6)
P3—N22—C21—C1687.3 (3)C10—C5—N4—P3151.0 (2)
C12—O11—C10—C991.9 (4)C6—C5—N4—P330.2 (4)
C12—O11—C10—C589.9 (3)N2—P3—N4—C540.4 (3)
C6—C5—C10—C91.8 (4)N3—P3—N4—C586.5 (3)
N4—C5—C10—C9179.4 (3)N22—P3—N4—C5159.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O150.78 (3)2.16 (3)2.891 (3)156 (3)
N4—H4···O110.78 (3)2.42 (3)2.730 (3)105 (3)
N4—H4···N220.78 (3)2.44 (4)2.566 (4)90 (4)

Experimental details

Crystal data
Chemical formulaC15H16Cl4N5O2P3
Mr533.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7094 (6), 22.404 (2), 12.6960 (14)
β (°) 93.751 (7)
V3)2188.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4703, 4385, 3132
Rint0.022
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.02
No. of reflections4385
No. of parameters322
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
P3—N21.603 (2)P1—N31.559 (2)
P3—N31.604 (2)P1—N11.583 (2)
P3—N221.635 (3)P2—N21.552 (2)
P3—N41.636 (3)P2—N11.579 (2)
N2—P3—N3114.57 (12)N3—P1—N1119.53 (12)
N2—P3—N22112.02 (13)N2—P2—N1119.83 (12)
N3—P3—N22106.58 (13)P2—N2—P3123.30 (13)
N2—P3—N4107.80 (13)P1—N3—P3123.22 (14)
N3—P3—N4112.01 (14)P2—N1—P1119.43 (14)
N22—P3—N4103.33 (13)
N4—P3—N22—C2175.1 (3)C10—O11—C12—C13169.3 (3)
P3—N22—C21—C1687.3 (3)O11—C12—C13—C1452.3 (5)
C12—O11—C10—C589.9 (3)C16—O15—C14—C1370.4 (5)
N4—C5—C10—O112.4 (4)C12—C13—C14—O1539.9 (6)
C14—O15—C16—C21173.5 (3)C10—C5—N4—P3151.0 (2)
N22—C21—C16—O152.9 (4)N22—P3—N4—C5159.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O150.78 (3)2.16 (3)2.891 (3)156 (3)
N4—H4···O110.78 (3)2.42 (3)2.730 (3)105 (3)
N4—H4···N220.78 (3)2.44 (4)2.566 (4)90 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds