Download citation
Download citation
link to html
The title compounds, C20H20FNO6 and C20H19Cl2NO6, respectively, may exhibit bioactivity. In these compounds, the pyrrolidine ring adopts a conformation intermediate between envelope and half-chair. Only one of the two ethoxy­carbonyl side chains is nearly planar. Centrosymmetric pairs are formed, and the crystal structure is stabilized by weak C—H...O hydrogen bonds and van der Waals interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103029111/na1631sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103029111/na1631Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103029111/na1631IIsup3.hkl
Contains datablock II

CCDC references: 235328; 235329

Comment top

Bioactivity of the lactam compounds depends on their ability to acylate several proteins to inhibit the cross-linking of bacterial cell walls (Baldwin et al., 1991), which in turn is dependent on the presense of a suitably substituted and activated lactam ring (Baldwin et al.,1984). It has been observed that N-phenyl-γ-lactam derivatives exhibit Gram-positive and Gram-negative antibacterial activities, and the replacement of the phenyl group by a 2-furyl moiety at the 4-position of the γ-lactam ring causes this compound to be moderately active (Ray et al.,1994). In the variation of N-aryl substituents, the replacement of the N-phenyl by the N-4-chlorophenyl group increased the antibacterial activity significantly (Kar et al.,1998). It has also been found that the introduction of fluorine in the aryl moiety alters the activity of many organic compounds abnormally, by affecting the half life of the drug. The title compounds, (I) and (II), were synthesized in order to obtain novel γ-lactam analogues with potential bioactivity. The crystal structure determinations of (I) and (II) were carried out in order to elucidate their molecular conformation.

Both compounds contain one phenyl ring (C5–C10), one furan ring (C11–C14/O2) and one pyrrolidine ring (C1–C4/N1; Figs. 1 and 2). The pyrrolidine ring is intermediate between envelope and half-chair conformations, with a local pesudo-mirror running through atom C3 and the midpoint of the C1—N1 bond, and a local pseudo-twofold axis running through atom C1 and the midpoint of the C3—C4 bond (Duax et al., 1976). Atom C3 deviates from the mean plane passing through the remaining atoms in the ring by 0.476 Å in (I) and 0.492 Å in (II). The conformation of the pyrrolidin ring is dictated by the existence of intramolecular contacts [C11···O4 = 2.878 (2) Å in (I) and 2.876 (3) Å in (II)]. The distortion of the pyrrolidine ring also affects the N1—C4—C3 ring angle [101.46 (12)° in (I) and 100.97 (16)° in (II)]. The plane of the phenyl group is twisted from the plane of the furan ring by 74.01 (7) and 84.46 (9)° in (I) and (II), respectively. The dihedral angle between the phenyl ring and the pyrrolidine ring is 69.79 (8)° in (I) and 64.05 (8)° in (II), and the angle between the pyrrolidine and furan rings is 56.42 (10)° in (I) and 46.38 (12)° in (II).

In both compounds, one of the ethyl acetate chains is completely extended, with all of the non-H atoms coplanar [the mean deviation from the C4/C15/O3/O4/C16/C17 plane is 0.060 Å for (I) and 0.050 Å for (II)]. The other ethyl acetate chain is twisted, the C18—O6—C19—C20 torsion angle being 96.1 (2)° for (I) and −116.5 (5)° for (II). In this chain in (II), a weak attractive intramolecular contact (O6···H3A =2.35 Å) is found. Also in the twisted ethyl acetate chain, a bit more marked for compound II, Slight disorder, which is more marked in (II), is also apparent at the end of the twisted ethyl acetate chain (C19/C20), as evidenced by the Ueq values and the short C19—C20 distance [1.390 (6) Å for (II); Table 2].

The C11—C12 and C13—C14 distances (Tables 1 and 2) confirm the double-bond character of these linkages. These distances are shorter than those found in the corresponding compounds when the tiophen ring replaces the furan ring. [(I): Usman et al., 2001; (II): Ray et al. 1998] In both compounds, the intermolecular interaction between atoms H14A and O1 shortens the nearest CC double bond in the furan ring [C13C14 = 1.309 (4) Å in (I) and 1.316 (5) Å in (II)]. The presence of the F atom in (I) provokes a shortening of the nearest C—C bonds [C7—C8 = 1.351 (3) Å and C8—C9 = 1.361 (3) Å]. On the other hand, a short intermolecular contact between atoms Cl1 and O5 [Cl1···O5 = 3.164 (2) Å] is found in (II). In both compounds centrosymetric pairs are formed. As has been found in related compounds, weak hydrogen bonds (Tables 3 and 4) and van der Waals interactions stabilize the crystal structures (Figs. 3 and 4)

Experimental top

The title compounds were synthesized via intermolecular Michael addition, followed by an intramolecular amidification reaction, between diethyl-4-fluoro/3,4-dichloroanilinomalonate (synthesized by the condensation reaction between substituted aniline and bromodiethylmalonate) and 3-(2-furyl)acryloyl chloride in the presence of triethylamine, using dry benzene as solvent. Single crystals were grown by slow evaporation, at room temperature, of a solution of the resulting compound in 2-propanol. Compound (I): colourless solid; m.p. 355–357 K (2-propanol). 1H NMR (200 MHz, CDCl3): δ 0.92–1.24 (m, 6H), 2.80–3.13 (dd, 2H,J = 8.8, 16.7 Hz), 3.74–3.86 (m, 1H), 3.91–4.17 (m, 3H), 4.61–4.71 (dd, 1H, J = 8.7, 11.3 Hz), 6.28–6.35 (m, 2H), 7.01–7.09 (m, 1H), 7.21–7.28 (m, 3H), 7.37–7.38 (d, 1H, J = 1.31 Hz). Compound (II): colourless solid; m.p. 353–355 K (2-propanol). 1H NMR (200 MHz, CDCl3): δ 0.99–1.06 (t, 6H, J = 7.1 Hz), 2.82–3.12 (dd, 2H, J = 8.8, 16.7 Hz), 3.73–3.85 (m, 1H), 3.98–4.20 (m, 3H), 4.57–4.67 (dd, 1H, J = 8.8, 10.8 Hz), 6.28–6.36 (m, 2H), 7.12–7.17 (dd, 1H, J = 2.4, 8.6 Hz), 7.38–7.46 (m, 3H).

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with aromatic C—H distances of 0.93 Å, methylene C—H distances of 0.97 Å, and methyl C—H distances of 0.96 Å. The Uiso(H) values were set to 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for other C-bound H atoms.

Computing details top

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL (Sheldrick, 1997) for (I); SHELXTL (Sheldrick, 1997a) for (II). For both compounds, software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atomic numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of (II), showing the atomic numbering scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. A packing diagram of (I), viewed along the c axis. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. A packing diagram of (II), viewed along the c axis. H atoms have been omitted for clarity.
(I) Diethyl 1-(4-fluorophenyl)-3-(2-furyl)-5-oxopyrrolidine −2,2-dicarboxylate top
Crystal data top
C20H20FNO6Z = 2
Mr = 389.37F(000) = 408
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Melting point = 355–357 K
a = 9.582 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.157 (3) ÅCell parameters from 2470 reflections
c = 11.384 (4) Åθ = 2.0–28.0°
α = 90.305 (6)°µ = 0.10 mm1
β = 105.358 (6)°T = 293 K
γ = 112.405 (5)°Block, colourless
V = 980.6 (5) Å30.39 × 0.36 × 0.22 mm
Data collection top
Bruker CCD area-detector
diffractometer
4167 independent reflections
Radiation source: fine-focus sealed tube2936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.885, Tmax = 0.978k = 1212
6019 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.1569P]
where P = (Fo2 + 2Fc2)/3
4167 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H20FNO6γ = 112.405 (5)°
Mr = 389.37V = 980.6 (5) Å3
Triclinic, P1Z = 2
a = 9.582 (3) ÅMo Kα radiation
b = 10.157 (3) ŵ = 0.10 mm1
c = 11.384 (4) ÅT = 293 K
α = 90.305 (6)°0.39 × 0.36 × 0.22 mm
β = 105.358 (6)°
Data collection top
Bruker CCD area-detector
diffractometer
4167 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2936 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.978Rint = 0.015
6019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
4167 reflectionsΔρmin = 0.25 e Å3
255 parameters
Special details top

Experimental. Data was collected using a Siemens SMART CCD based diffractometer operating at room temperature. Data was measured using omega scans of 0.3 degrees per frame for 60 s. A total of 1271 frames were collected. The first 50 frames were recollected at the end of each set of frames. As usual in organic compounds high theta reflections are too weak to be measured.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.4839 (2)1.69158 (16)0.20331 (17)0.1212 (7)
O10.12609 (16)1.21079 (14)0.23505 (15)0.0643 (4)
O20.03167 (19)0.66550 (14)0.19518 (14)0.0675 (4)
O30.19164 (17)1.07698 (14)0.46584 (11)0.0557 (4)
O40.25249 (14)0.90995 (13)0.38829 (10)0.0454 (3)
O50.15804 (16)0.95687 (17)0.05851 (12)0.0655 (4)
O60.36412 (14)1.08679 (15)0.21550 (11)0.0539 (3)
N10.07687 (15)1.14449 (13)0.23426 (12)0.0355 (3)
C10.0740 (2)1.11918 (18)0.23530 (16)0.0420 (4)
C20.1583 (2)0.96201 (17)0.24003 (17)0.0436 (4)
H2A0.26320.92520.18250.052*
H2B0.16710.94360.32190.052*
C30.05662 (18)0.89350 (16)0.20475 (15)0.0360 (4)
H3A0.08860.87510.11500.043*
C40.11306 (17)1.01679 (16)0.24659 (13)0.0324 (3)
C50.18628 (19)1.28553 (16)0.22720 (15)0.0382 (4)
C60.3174 (2)1.35984 (19)0.32375 (18)0.0533 (5)
H6A0.33741.31820.39550.064*
C70.4195 (3)1.4963 (2)0.3143 (2)0.0683 (6)
H7A0.50991.54630.37830.082*
C80.3852 (3)1.5555 (2)0.2103 (2)0.0751 (7)
C90.2567 (3)1.4849 (2)0.1131 (2)0.0812 (7)
H9A0.23671.52840.04250.097*
C100.1561 (2)1.3470 (2)0.12134 (18)0.0572 (5)
H10A0.06861.29620.05550.069*
C110.0740 (2)0.75493 (17)0.25436 (17)0.0436 (4)
C120.1202 (3)0.6984 (2)0.3499 (2)0.0684 (6)
H12A0.15330.73870.40520.082*
C130.1077 (3)0.5610 (3)0.3490 (3)0.0880 (9)
H13A0.13250.49430.40390.106*
C140.0549 (3)0.5479 (2)0.2565 (3)0.0841 (8)
H14A0.03590.46900.23560.101*
C150.19318 (18)1.00859 (17)0.38058 (14)0.0367 (4)
C160.3037 (2)0.8702 (2)0.51026 (17)0.0565 (5)
H16A0.21710.83670.54640.068*
H16B0.38910.95200.56350.068*
C170.3578 (3)0.7535 (2)0.4944 (2)0.0700 (6)
H17A0.38970.72190.57250.105*
H17B0.44550.78890.46080.105*
H17C0.27320.67450.43950.105*
C180.21248 (19)1.01333 (18)0.16132 (15)0.0382 (4)
C190.4739 (3)1.1002 (3)0.1436 (2)0.0738 (7)
H19A0.57001.09640.19590.089*
H19B0.42711.02080.07860.089*
C200.5115 (3)1.2358 (3)0.0902 (3)0.0996 (9)
H20A0.58341.24310.04330.149*
H20B0.55921.31430.15470.149*
H20C0.41651.23900.03770.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1137 (13)0.0608 (9)0.1225 (13)0.0275 (9)0.0205 (10)0.0290 (8)
O10.0553 (8)0.0426 (7)0.1133 (12)0.0296 (7)0.0382 (8)0.0200 (7)
O20.0892 (11)0.0470 (8)0.0707 (9)0.0375 (8)0.0142 (8)0.0005 (7)
O30.0799 (9)0.0605 (8)0.0369 (7)0.0364 (7)0.0205 (6)0.0065 (6)
O40.0527 (7)0.0531 (7)0.0397 (6)0.0320 (6)0.0116 (5)0.0128 (5)
O50.0571 (8)0.0914 (11)0.0423 (8)0.0225 (8)0.0162 (6)0.0084 (7)
O60.0384 (7)0.0739 (9)0.0492 (7)0.0172 (6)0.0200 (5)0.0032 (6)
N10.0339 (7)0.0296 (7)0.0453 (8)0.0136 (6)0.0133 (6)0.0078 (5)
C10.0396 (9)0.0384 (9)0.0542 (10)0.0185 (8)0.0187 (7)0.0103 (7)
C20.0368 (9)0.0368 (9)0.0611 (11)0.0148 (7)0.0199 (8)0.0113 (8)
C30.0364 (8)0.0327 (8)0.0385 (8)0.0134 (7)0.0103 (7)0.0058 (6)
C40.0345 (8)0.0315 (8)0.0341 (8)0.0154 (6)0.0112 (6)0.0058 (6)
C50.0387 (9)0.0303 (8)0.0457 (9)0.0121 (7)0.0150 (7)0.0050 (7)
C60.0512 (11)0.0429 (10)0.0529 (11)0.0109 (9)0.0058 (9)0.0057 (8)
C70.0570 (12)0.0464 (12)0.0711 (14)0.0014 (10)0.0030 (10)0.0000 (10)
C80.0718 (15)0.0437 (12)0.0807 (16)0.0078 (11)0.0211 (12)0.0152 (11)
C90.0887 (17)0.0573 (13)0.0648 (14)0.0008 (12)0.0140 (12)0.0280 (11)
C100.0578 (12)0.0465 (11)0.0487 (11)0.0049 (9)0.0093 (9)0.0117 (8)
C110.0420 (9)0.0316 (8)0.0552 (10)0.0143 (7)0.0112 (8)0.0047 (7)
C120.0696 (14)0.0619 (13)0.0930 (16)0.0321 (11)0.0449 (12)0.0403 (12)
C130.0740 (16)0.0572 (14)0.132 (2)0.0217 (13)0.0348 (16)0.0571 (16)
C140.0899 (19)0.0357 (11)0.116 (2)0.0276 (12)0.0084 (16)0.0114 (13)
C150.0372 (8)0.0375 (8)0.0370 (8)0.0146 (7)0.0133 (7)0.0072 (7)
C160.0600 (12)0.0640 (12)0.0456 (10)0.0289 (10)0.0087 (9)0.0230 (9)
C170.0666 (14)0.0617 (13)0.0828 (15)0.0338 (11)0.0103 (11)0.0288 (11)
C180.0416 (9)0.0430 (9)0.0366 (9)0.0221 (8)0.0138 (7)0.0090 (7)
C190.0488 (12)0.113 (2)0.0690 (14)0.0309 (13)0.0345 (11)0.0125 (13)
C200.0822 (18)0.120 (2)0.093 (2)0.0182 (17)0.0523 (16)0.0333 (17)
Geometric parameters (Å, º) top
F1—C81.362 (2)C6—H6A0.9300
O1—C11.2120 (19)C7—C81.351 (3)
O2—C141.361 (3)C7—H7A0.9300
O2—C111.365 (2)C8—C91.361 (3)
O3—C151.1970 (19)C9—C101.386 (3)
O4—C151.3203 (19)C9—H9A0.9300
O4—C161.459 (2)C10—H10A0.9300
O5—C181.188 (2)C11—C121.333 (3)
O6—C181.320 (2)C12—C131.446 (3)
O6—C191.464 (2)C12—H12A0.9300
N1—C11.371 (2)C13—C141.309 (4)
N1—C51.435 (2)C13—H13A0.9300
N1—C41.4635 (19)C14—H14A0.9300
C1—C21.498 (2)C16—C171.491 (3)
C2—C31.522 (2)C16—H16A0.9700
C2—H2A0.9700C16—H16B0.9700
C2—H2B0.9700C17—H17A0.9600
C3—C111.486 (2)C17—H17B0.9600
C3—C41.572 (2)C17—H17C0.9600
C3—H3A0.9800C19—C201.463 (4)
C4—C151.534 (2)C19—H19A0.9700
C4—C181.538 (2)C19—H19B0.9700
C5—C101.373 (2)C20—H20A0.9600
C5—C61.376 (2)C20—H20B0.9600
C6—C71.383 (3)C20—H20C0.9600
C14—O2—C11106.14 (19)C9—C10—H10A120.1
C15—O4—C16116.77 (13)C12—C11—O2110.88 (17)
C18—O6—C19117.65 (15)C12—C11—C3132.82 (17)
C1—N1—C5121.46 (13)O2—C11—C3116.28 (15)
C1—N1—C4113.29 (12)C11—C12—C13105.0 (2)
C5—N1—C4125.19 (12)C11—C12—H12A127.5
O1—C1—N1124.72 (15)C13—C12—H12A127.5
O1—C1—C2127.00 (15)C14—C13—C12107.2 (2)
N1—C1—C2108.26 (13)C14—C13—H13A126.4
C1—C2—C3104.66 (13)C12—C13—H13A126.4
C1—C2—H2A110.8C13—C14—O2110.8 (2)
C3—C2—H2A110.8C13—C14—H14A124.6
C1—C2—H2B110.8O2—C14—H14A124.6
C3—C2—H2B110.8O3—C15—O4125.43 (15)
H2A—C2—H2B108.9O3—C15—C4123.41 (15)
C11—C3—C2113.57 (13)O4—C15—C4110.99 (13)
C11—C3—C4116.31 (13)O4—C16—C17106.70 (16)
C2—C3—C4103.10 (12)O4—C16—H16A110.4
C11—C3—H3A107.8C17—C16—H16A110.4
C2—C3—H3A107.8O4—C16—H16B110.4
C4—C3—H3A107.8C17—C16—H16B110.4
N1—C4—C15111.45 (12)H16A—C16—H16B108.6
N1—C4—C18109.80 (12)C16—C17—H17A109.5
C15—C4—C18112.26 (13)C16—C17—H17B109.5
N1—C4—C3101.46 (12)H17A—C17—H17B109.5
C15—C4—C3109.18 (12)C16—C17—H17C109.5
C18—C4—C3112.22 (13)H17A—C17—H17C109.5
C10—C5—C6120.04 (16)H17B—C17—H17C109.5
C10—C5—N1118.30 (15)O5—C18—O6125.00 (15)
C6—C5—N1121.65 (15)O5—C18—C4123.86 (15)
C5—C6—C7120.14 (18)O6—C18—C4111.06 (14)
C5—C6—H6A119.9C20—C19—O6110.4 (2)
C7—C6—H6A119.9C20—C19—H19A109.6
C8—C7—C6118.61 (19)O6—C19—H19A109.6
C8—C7—H7A120.7C20—C19—H19B109.6
C6—C7—H7A120.7O6—C19—H19B109.6
C7—C8—C9122.71 (19)H19A—C19—H19B108.1
C7—C8—F1118.2 (2)C19—C20—H20A109.5
C9—C8—F1119.1 (2)C19—C20—H20B109.5
C8—C9—C10118.7 (2)H20A—C20—H20B109.5
C8—C9—H9A120.6C19—C20—H20C109.5
C10—C9—H9A120.6H20A—C20—H20C109.5
C5—C10—C9119.75 (18)H20B—C20—H20C109.5
C5—C10—H10A120.1
C5—N1—C1—O12.8 (3)N1—C5—C10—C9177.9 (2)
C4—N1—C1—O1174.55 (17)C8—C9—C10—C51.1 (4)
C5—N1—C1—C2178.61 (14)C14—O2—C11—C120.8 (2)
C4—N1—C1—C24.03 (19)C14—O2—C11—C3179.16 (17)
O1—C1—C2—C3165.64 (18)C2—C3—C11—C1223.6 (3)
N1—C1—C2—C315.83 (19)C4—C3—C11—C1295.8 (2)
C1—C2—C3—C11154.40 (15)C2—C3—C11—O2158.45 (15)
C1—C2—C3—C427.67 (16)C4—C3—C11—O282.10 (19)
C1—N1—C4—C1594.87 (16)O2—C11—C12—C130.9 (2)
C5—N1—C4—C1582.38 (17)C3—C11—C12—C13178.9 (2)
C1—N1—C4—C18140.10 (14)C11—C12—C13—C140.7 (3)
C5—N1—C4—C1842.65 (19)C12—C13—C14—O20.2 (3)
C1—N1—C4—C321.22 (16)C11—O2—C14—C130.3 (3)
C5—N1—C4—C3161.53 (14)C16—O4—C15—O37.4 (2)
C11—C3—C4—N1154.13 (13)C16—O4—C15—C4167.98 (14)
C2—C3—C4—N129.15 (14)N1—C4—C15—O316.6 (2)
C11—C3—C4—C1536.38 (17)C18—C4—C15—O3140.26 (16)
C2—C3—C4—C1588.60 (14)C3—C4—C15—O394.65 (18)
C11—C3—C4—C1888.74 (16)N1—C4—C15—O4167.88 (12)
C2—C3—C4—C18146.29 (13)C18—C4—C15—O444.24 (17)
C1—N1—C5—C1066.6 (2)C3—C4—C15—O480.85 (15)
C4—N1—C5—C10116.36 (18)C15—O4—C16—C17177.24 (15)
C1—N1—C5—C6112.42 (19)C19—O6—C18—O50.2 (3)
C4—N1—C5—C664.6 (2)C19—O6—C18—C4176.75 (16)
C10—C5—C6—C70.3 (3)N1—C4—C18—O590.32 (19)
N1—C5—C6—C7179.27 (18)C15—C4—C18—O5145.12 (17)
C5—C6—C7—C81.7 (3)C3—C4—C18—O521.7 (2)
C6—C7—C8—C91.8 (4)N1—C4—C18—O686.63 (16)
C6—C7—C8—F1178.0 (2)C15—C4—C18—O637.93 (18)
C7—C8—C9—C100.4 (4)C3—C4—C18—O6161.33 (13)
F1—C8—C9—C10179.4 (2)C18—O6—C19—C2096.1 (2)
C6—C5—C10—C91.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3i0.972.493.457 (2)174
C14—H14A···O1ii0.932.433.220 (3)143
C19—H19A···O1iii0.972.603.410 (3)141
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z; (iii) x+1, y, z.
(II) Diethyl 1-(3,4-dchlorophenyl)-3-(2-furyl)-5-oxopyrrolidine-2,2-dicarboxylate top
Crystal data top
C20H19Cl2NO6Z = 2
Mr = 440.26F(000) = 456
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Melting point = 353–355 K
a = 9.5478 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2319 (9) ÅCell parameters from 2877 reflections
c = 12.5088 (11) Åθ = 2.0–28.0°
α = 72.749 (2)°µ = 0.35 mm1
β = 86.206 (2)°T = 298 K
γ = 64.310 (2)°Block, colourless
V = 1048.91 (16) Å30.23 × 0.19 × 0.15 mm
Data collection top
Bruker CCD area detector
diffractometer
4450 independent reflections
Radiation source: fine-focus sealed tube3184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.875, Tmax = 0.950k = 137
6438 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.4142P]
where P = (Fo2 + 2Fc2)/3
4450 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C20H19Cl2NO6γ = 64.310 (2)°
Mr = 440.26V = 1048.91 (16) Å3
Triclinic, P1Z = 2
a = 9.5478 (9) ÅMo Kα radiation
b = 10.2319 (9) ŵ = 0.35 mm1
c = 12.5088 (11) ÅT = 298 K
α = 72.749 (2)°0.23 × 0.19 × 0.15 mm
β = 86.206 (2)°
Data collection top
Bruker CCD area detector
diffractometer
4450 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3184 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.950Rint = 0.018
6438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4450 reflectionsΔρmin = 0.41 e Å3
264 parameters
Special details top

Experimental. Data was collected using a Siemens SMART CCD based diffractometer operating at room temperature. Data was measured using omega scans of 0.3 degrees per frame for 60 s. A total of 1271 frames were collected. The first 50 frames were recollected at the end of each set of frames.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48018 (8)0.71104 (8)0.48180 (6)0.0648 (2)
Cl20.19057 (11)1.02484 (10)0.46814 (8)0.0985 (4)
O10.1938 (2)0.87834 (19)0.00114 (14)0.0600 (5)
O20.1639 (2)0.2812 (2)0.10045 (16)0.0604 (5)
O30.50154 (19)0.4559 (2)0.17934 (16)0.0586 (5)
O40.41958 (18)0.27495 (18)0.24500 (14)0.0527 (4)
O50.1940 (2)0.4423 (3)0.37959 (15)0.0745 (6)
O60.0102 (2)0.5385 (3)0.25919 (17)0.0870 (7)
N10.2024 (2)0.6852 (2)0.15596 (14)0.0417 (4)
C10.1971 (3)0.7538 (3)0.04250 (18)0.0452 (5)
C20.1988 (3)0.6467 (3)0.01788 (18)0.0473 (5)
H2A0.30020.59950.04560.057*
H2B0.12070.69960.08070.057*
C30.1620 (3)0.5280 (3)0.06979 (18)0.0424 (5)
H3A0.04840.56750.07030.051*
C40.2253 (2)0.5273 (2)0.18339 (17)0.0391 (5)
C50.2003 (3)0.7609 (2)0.23584 (18)0.0420 (5)
C60.3258 (3)0.7050 (3)0.31264 (19)0.0455 (5)
H6A0.41230.61460.31470.055*
C70.3223 (3)0.7839 (3)0.38608 (19)0.0477 (5)
C80.1948 (3)0.9202 (3)0.3808 (2)0.0581 (6)
C90.0694 (3)0.9747 (3)0.3046 (2)0.0654 (7)
H9A0.01651.06590.30170.078*
C100.0710 (3)0.8947 (3)0.2329 (2)0.0546 (6)
H10A0.01450.93060.18280.066*
C110.2222 (3)0.3815 (3)0.04416 (19)0.0455 (5)
C120.3202 (3)0.3247 (3)0.0289 (2)0.0639 (7)
H12A0.37570.37030.07690.077*
C130.3237 (4)0.1821 (3)0.0198 (3)0.0783 (9)
H13A0.38140.11630.06090.094*
C140.2296 (4)0.1605 (3)0.0579 (3)0.0748 (9)
H14A0.21030.07510.08090.090*
C150.3991 (3)0.4169 (3)0.20421 (18)0.0424 (5)
C160.5786 (3)0.1584 (3)0.2504 (3)0.0682 (7)
H16A0.64630.16790.29910.082*
H16B0.61750.16960.17620.082*
C170.5761 (4)0.0088 (4)0.2949 (4)0.0978 (12)
H17A0.67970.07010.29920.147*
H17B0.50910.00040.24590.147*
H17C0.53780.00130.36840.147*
C180.1366 (3)0.4932 (3)0.28685 (19)0.0456 (5)
C190.1125 (5)0.5277 (7)0.3508 (4)0.131 (2)
H19A0.05380.49390.42200.158*
H19B0.19690.62750.34340.158*
C200.1741 (6)0.4272 (6)0.3504 (5)0.142 (2)
H20A0.25650.43870.40040.213*
H20B0.09380.32500.37480.213*
H20C0.21450.44850.27580.213*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0686 (4)0.0664 (4)0.0601 (4)0.0267 (3)0.0157 (3)0.0195 (3)
Cl20.1109 (7)0.0846 (6)0.0944 (6)0.0125 (5)0.0190 (5)0.0597 (5)
O10.0856 (13)0.0478 (10)0.0493 (10)0.0353 (9)0.0058 (9)0.0084 (8)
O20.0650 (11)0.0591 (11)0.0696 (12)0.0392 (9)0.0051 (9)0.0175 (9)
O30.0453 (9)0.0632 (11)0.0779 (12)0.0306 (8)0.0167 (8)0.0274 (9)
O40.0488 (9)0.0462 (9)0.0588 (10)0.0202 (7)0.0017 (7)0.0092 (8)
O50.0713 (12)0.1050 (16)0.0385 (10)0.0395 (11)0.0077 (9)0.0084 (10)
O60.0581 (12)0.170 (2)0.0598 (12)0.0676 (14)0.0266 (9)0.0485 (14)
N10.0486 (10)0.0433 (10)0.0365 (9)0.0233 (8)0.0015 (8)0.0110 (8)
C10.0480 (12)0.0472 (13)0.0402 (12)0.0224 (10)0.0039 (9)0.0101 (10)
C20.0562 (13)0.0536 (13)0.0376 (12)0.0293 (11)0.0048 (10)0.0133 (10)
C30.0418 (11)0.0517 (13)0.0395 (11)0.0249 (10)0.0020 (9)0.0143 (10)
C40.0410 (11)0.0448 (12)0.0372 (11)0.0240 (9)0.0039 (8)0.0120 (9)
C50.0457 (12)0.0442 (12)0.0380 (11)0.0215 (10)0.0044 (9)0.0121 (9)
C60.0474 (12)0.0422 (12)0.0458 (12)0.0177 (10)0.0001 (10)0.0135 (10)
C70.0531 (13)0.0482 (13)0.0428 (12)0.0238 (11)0.0034 (10)0.0105 (10)
C80.0696 (16)0.0563 (15)0.0513 (14)0.0228 (13)0.0007 (12)0.0262 (12)
C90.0614 (16)0.0567 (15)0.0630 (17)0.0042 (12)0.0040 (13)0.0286 (13)
C100.0484 (13)0.0576 (15)0.0505 (14)0.0146 (11)0.0028 (10)0.0176 (11)
C110.0506 (13)0.0511 (13)0.0427 (12)0.0290 (11)0.0011 (10)0.0134 (10)
C120.0799 (19)0.0614 (16)0.0566 (16)0.0338 (14)0.0147 (14)0.0234 (13)
C130.103 (2)0.0608 (18)0.071 (2)0.0278 (17)0.0056 (18)0.0316 (15)
C140.095 (2)0.0506 (16)0.087 (2)0.0379 (16)0.0075 (18)0.0202 (15)
C150.0461 (12)0.0487 (13)0.0378 (11)0.0239 (10)0.0038 (9)0.0154 (9)
C160.0575 (16)0.0576 (16)0.0765 (19)0.0138 (13)0.0015 (14)0.0181 (14)
C170.094 (2)0.0527 (18)0.133 (3)0.0200 (17)0.013 (2)0.0218 (19)
C180.0499 (13)0.0536 (13)0.0423 (13)0.0306 (11)0.0106 (10)0.0157 (10)
C190.111 (3)0.269 (6)0.102 (3)0.136 (4)0.074 (3)0.107 (4)
C200.167 (5)0.142 (4)0.153 (4)0.104 (4)0.095 (4)0.053 (3)
Geometric parameters (Å, º) top
Cl1—C71.731 (2)C6—C71.381 (3)
Cl2—C81.729 (2)C6—H6A0.9300
O1—C11.212 (3)C7—C81.384 (3)
O2—C111.368 (3)C8—C91.382 (4)
O2—C141.370 (3)C9—C101.377 (3)
O3—C151.199 (3)C9—H9A0.9300
O4—C151.317 (3)C10—H10A0.9300
O4—C161.459 (3)C11—C121.334 (4)
O5—C181.181 (3)C12—C131.416 (4)
O6—C181.306 (3)C12—H12A0.9300
O6—C191.466 (4)C13—C141.316 (5)
N1—C11.378 (3)C13—H13A0.9300
N1—C51.429 (3)C14—H14A0.9300
N1—C41.466 (3)C16—C171.476 (4)
C1—C21.499 (3)C16—H16A0.9700
C2—C31.526 (3)C16—H16B0.9700
C2—H2A0.9700C17—H17A0.9600
C2—H2B0.9700C17—H17B0.9600
C3—C111.481 (3)C17—H17C0.9600
C3—C41.577 (3)C19—C201.390 (6)
C3—H3A0.9800C19—H19A0.9700
C4—C151.535 (3)C19—H19B0.9700
C4—C181.535 (3)C20—H20A0.9600
C5—C101.383 (3)C20—H20B0.9600
C5—C61.385 (3)C20—H20C0.9600
C11—O2—C14105.9 (2)C5—C10—H10A120.2
C15—O4—C16116.20 (19)C12—C11—O2109.5 (2)
C18—O6—C19117.2 (3)C12—C11—C3133.4 (2)
C1—N1—C5121.07 (18)O2—C11—C3117.0 (2)
C1—N1—C4113.36 (17)C11—C12—C13107.1 (3)
C5—N1—C4125.31 (17)C11—C12—H12A126.4
O1—C1—N1124.8 (2)C13—C12—H12A126.4
O1—C1—C2127.2 (2)C14—C13—C12106.7 (3)
N1—C1—C2107.91 (19)C14—C13—H13A126.7
C1—C2—C3104.95 (18)C12—C13—H13A126.7
C1—C2—H2A110.8C13—C14—O2110.7 (3)
C3—C2—H2A110.8C13—C14—H14A124.6
C1—C2—H2B110.8O2—C14—H14A124.6
C3—C2—H2B110.8O3—C15—O4125.0 (2)
H2A—C2—H2B108.8O3—C15—C4123.5 (2)
C11—C3—C2112.61 (19)O4—C15—C4111.28 (18)
C11—C3—C4117.58 (18)O4—C16—C17107.8 (3)
C2—C3—C4102.83 (16)O4—C16—H16A110.1
C11—C3—H3A107.8C17—C16—H16A110.1
C2—C3—H3A107.8O4—C16—H16B110.1
C4—C3—H3A107.8C17—C16—H16B110.1
N1—C4—C15111.08 (17)H16A—C16—H16B108.5
N1—C4—C18108.84 (17)C16—C17—H17A109.5
C15—C4—C18110.97 (18)C16—C17—H17B109.5
N1—C4—C3100.97 (16)H17A—C17—H17B109.5
C15—C4—C3108.53 (17)C16—C17—H17C109.5
C18—C4—C3116.04 (17)H17A—C17—H17C109.5
C10—C5—C6120.2 (2)H17B—C17—H17C109.5
C10—C5—N1118.38 (19)O5—C18—O6125.3 (2)
C6—C5—N1121.35 (19)O5—C18—C4123.1 (2)
C7—C6—C5119.9 (2)O6—C18—C4111.4 (2)
C7—C6—H6A120.1C20—C19—O6111.6 (4)
C5—C6—H6A120.1C20—C19—H19A109.3
C6—C7—C8119.8 (2)O6—C19—H19A109.3
C6—C7—Cl1118.98 (18)C20—C19—H19B109.3
C8—C7—Cl1121.20 (18)O6—C19—H19B109.3
C9—C8—C7120.0 (2)H19A—C19—H19B108.0
C9—C8—Cl2119.2 (2)C19—C20—H20A109.5
C7—C8—Cl2120.77 (19)C19—C20—H20B109.5
C10—C9—C8120.4 (2)H20A—C20—H20B109.5
C10—C9—H9A119.8C19—C20—H20C109.5
C8—C9—H9A119.8H20A—C20—H20C109.5
C9—C10—C5119.6 (2)H20B—C20—H20C109.5
C9—C10—H10A120.2
C5—N1—C1—O11.7 (3)Cl2—C8—C9—C10179.0 (2)
C4—N1—C1—O1172.8 (2)C8—C9—C10—C51.4 (4)
C5—N1—C1—C2179.18 (18)C6—C5—C10—C91.9 (4)
C4—N1—C1—C26.4 (2)N1—C5—C10—C9176.3 (2)
O1—C1—C2—C3166.2 (2)C14—O2—C11—C120.5 (3)
N1—C1—C2—C314.7 (2)C14—O2—C11—C3176.5 (2)
C1—C2—C3—C11155.48 (18)C2—C3—C11—C1211.8 (4)
C1—C2—C3—C427.9 (2)C4—C3—C11—C12107.5 (3)
C1—N1—C4—C1591.3 (2)C2—C3—C11—O2164.31 (19)
C5—N1—C4—C1582.8 (2)C4—C3—C11—O276.4 (2)
C1—N1—C4—C18146.20 (18)O2—C11—C12—C130.6 (3)
C5—N1—C4—C1839.6 (3)C3—C11—C12—C13175.7 (3)
C1—N1—C4—C323.6 (2)C11—C12—C13—C140.4 (4)
C5—N1—C4—C3162.24 (18)C12—C13—C14—O20.1 (4)
C11—C3—C4—N1154.83 (18)C11—O2—C14—C130.2 (3)
C2—C3—C4—N130.5 (2)C16—O4—C15—O35.5 (3)
C11—C3—C4—C1538.0 (2)C16—O4—C15—C4169.97 (19)
C2—C3—C4—C1586.3 (2)N1—C4—C15—O313.9 (3)
C11—C3—C4—C1887.7 (2)C18—C4—C15—O3135.1 (2)
C2—C3—C4—C18147.96 (19)C3—C4—C15—O396.3 (2)
C1—N1—C5—C1062.2 (3)N1—C4—C15—O4170.59 (17)
C4—N1—C5—C10124.0 (2)C18—C4—C15—O449.4 (2)
C1—N1—C5—C6115.9 (2)C3—C4—C15—O479.3 (2)
C4—N1—C5—C657.8 (3)C15—O4—C16—C17178.4 (2)
C10—C5—C6—C70.5 (4)C19—O6—C18—O51.1 (5)
N1—C5—C6—C7177.7 (2)C19—O6—C18—C4173.7 (3)
C5—C6—C7—C81.5 (4)N1—C4—C18—O591.7 (3)
C5—C6—C7—Cl1179.61 (18)C15—C4—C18—O530.8 (3)
C6—C7—C8—C92.0 (4)C3—C4—C18—O5155.3 (2)
Cl1—C7—C8—C9179.1 (2)N1—C4—C18—O683.3 (2)
C6—C7—C8—Cl2177.5 (2)C15—C4—C18—O6154.2 (2)
Cl1—C7—C8—Cl21.4 (3)C3—C4—C18—O629.7 (3)
C7—C8—C9—C100.6 (4)C18—O6—C19—C20116.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.433.355 (3)159
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H20FNO6C20H19Cl2NO6
Mr389.37440.26
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293298
a, b, c (Å)9.582 (3), 10.157 (3), 11.384 (4)9.5478 (9), 10.2319 (9), 12.5088 (11)
α, β, γ (°)90.305 (6), 105.358 (6), 112.405 (5)72.749 (2), 86.206 (2), 64.310 (2)
V3)980.6 (5)1048.91 (16)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.100.35
Crystal size (mm)0.39 × 0.36 × 0.220.23 × 0.19 × 0.15
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Bruker CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.9780.875, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
6019, 4167, 2936 6438, 4450, 3184
Rint0.0150.018
(sin θ/λ)max1)0.6390.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.03 0.048, 0.140, 1.05
No. of reflections41674450
No. of parameters255264
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.250.37, 0.41

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1997), SHELXTL (Sheldrick, 1997a), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
C7—C81.351 (3)C13—C141.309 (4)
C8—C91.361 (3)C19—C201.463 (4)
C11—C121.333 (3)
N1—C4—C3101.46 (12)
C1—N1—C5—C1066.6 (2)C19—O6—C18—C4176.75 (16)
C16—O4—C15—C4167.98 (14)C18—O6—C19—C2096.1 (2)
C15—O4—C16—C17177.24 (15)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3i0.972.493.457 (2)174
C14—H14A···O1ii0.932.433.220 (3)143
C19—H19A···O1iii0.972.603.410 (3)141
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z; (iii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
C7—C81.384 (3)C13—C141.316 (5)
C8—C91.382 (4)C19—C201.390 (6)
C11—C121.334 (4)
N1—C4—C3100.97 (16)
C1—N1—C5—C1062.2 (3)C19—O6—C18—C4173.7 (3)
C16—O4—C15—C4169.97 (19)C18—O6—C19—C20116.5 (5)
C15—O4—C16—C17178.4 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.433.355 (3)159
Symmetry code: (i) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds