Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecules of the title compounds, C13H21NO4, (I), and C15H26NO7P, (II), are linked into chains along the c direction in (I) and along the b axis in (II) through O—H...O hydrogen bonds. The heteroatomic ring in (I) adopts a twist-boat conformation, while that in (II) has a conformation intermediate between boat and twist-boat. The P atom has a distorted tetrahedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008564/na1611sup1.cif
Contains datablocks X, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008564/na1611Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008564/na1611IIsup3.hkl
Contains datablock II

CCDC references: 214402; 214403

Comment top

Aminophosphonic acids are the analogues of natural amino acids in which the carboxylic acid group is replaced by the phosphonic group. Aminophosphonic acids and their esters and salts have attracted attention because of their broad applications, viz. in analytical chemistry (ligands for transitions metal cations), in agriculture (herbicides, pesticides and growth regulator in plants) and in medicine (antibiotics, antivirals and enzyme inhibitors) (Kalir et al., 1996; Hudson & Pianka, 1996; Kukhar & Hudson, 1999). In recent years, unnatural λ-amino acids have played an important role in the field of peptide chemistry. In this context, excitatory amino acids (EAAs) are of special interest because of their neurotransmission propetries in the central nervous system. The discovery that phosphono-substituted analogues of λ-amino acids increased potency and selectivity led to a major advance in the design of the N-methyl-D-aspartate (NMDA) receptor antagonists (Davies et al., 1981; Evans et al., 1982).

The importance of EAAs, in particular L-glutamic acid, (1), is becoming increasingly apparent. Specific and selective EAA agonists and antagonists have been developed (Hansen & Krogsgaard, 1990; Jonhson & Korner, 1988) There were postulated to be five defined EAA receptor subtypes (Monaghan et al., 1989). One of these, the L-amino-4-phosphonobutanoic acid [L—AP4; (2)] EAA receptor subtype, is delineated by a unique responsiveness to L—AP4 (Scheme 1). Compounds with the structure of (3) mimic L—AP4 more closely than do the cyclopentyl analogues (Kroona et al., 1991).

In this paper, we present the crystal structure of two compounds as the precursor to the synthesis of the cyclic analog of L—AP4, employing a chiral 6-tert-butyl-5-methoxy-6-methyl-3,6- dihydro-2H-1,4-oxazin-2-one (4).

A single-crystal X-ray diffraction study of these compounds was undertaken for a final examination of the absolute structure, establishing the configuration of the chiral atoms. The determination of the crystal structure revealed the reaction sequence, in which the attack of the deprotonated form of the oxazinone ring commenced with the terminal C atom in epichlorohydrin (Koch et al., 2003). Moreover, the structure of (II) was solved in order to elucidate the geometry around the P atom.

The substituents at C6 and C3 are in a cis conformation with respect to the heterocyclic ring, which confirms the proposed mechanism of the chemical process (Koch et al., 2003).

The heteroatomic ring in (I) has a twist-boat conformation, while in (II) the ring adopts a conformation between boat and twist-boat. The puckering parameters (Cremer & Pople, 1975) are as follows: QT= 0.232 (3) Å, ϕ2= −144.6 (8)° and θ2= 104.5 (8)° in (I), and QT= 0.194 (3) Å, ϕ2= −133.3 (8)° and θ2= 101.5 (8)° in (II), corresponding to the O1—C6—C5—N4—C3—C2 atom sequence, with a twofold pseudo-axis passing through the midpoint of the O1—C6 bond and atom C2 [asymmetry parameters Δ2= 0.01 (1) and Δ2= 0.03 (1) for (I)]. Four low values of the asymmetry parameters for (II) confirm that the conformation of the ring is between boat and twist-boat. A pseudo-twofold axis passes through the midpoint of the O1—C6 bond and atom C2 [Δ2= 0.03 (1) and Δ2= 0.03 (1)] and a mirror plane through the midpoint of the N4—C5 bond and atom C3 [Δs= 0.03 (1) and Δs= 0.03 (1); atom sequence as mentioned above].

An intermolecular O—H···O hydrogen bond exists in both structures. In (I), an O90—H90···O21i hydrogen bond is formed, but in (II), atom O21 does not act as an acceptor for hydrogen bonds. Here, the presence of the phosphonate group has the effect of changing the acceptor atom (O30 instead of O21), and thus an O90—H91—O30ii hydrogen bond is observed. These interactions create the chain graph-set motifs C(7) and C(5) in (I) and (II) (Bernstein et al., 1995), running along the c and b axis, respectively.

The P atom displays a distorted tetrahedral coordination geometry, with the largest deviations from the ideal values being for the O20—P1—C9 and O30—P1—C9 angles (the smallest and largest angles).

Bond distances and angles are in a good agreement with the expected values (Allen et al., 1987).

Experimental top

Compound (I) was prepared? from (S)-6-tert-5-methoxy-6-methyl-3,6-dihydro-2H- 1,4-oxazin-2-one (65 mg, 0.33 mmol) in THF (3.5 ml), NaN(SiCH3)2 (685µl, 0.685 mmol, 2.1 equiv.) and (R)-(-)-epichlorohydrin (92 mg, 78 µl, 0.99 mmol, 3.0 mmol), with a reaction time of 24 h. CC (petrol ether/acetate, 70:30) yielded (I) as colorless crystals (40 mg, 47%, from diisopropyl ether by slow evaporation; m.p. 434.5–436 K). [α]D20= − 4.0 (c=0.55, CHCl3).

For the preparation of (II), to (1R,3S,6S)-6-tert-butyl-5-methoxy-6-methyl −4-aza-7-oxaspiro[2.5]oct-4-en-8-one-1-carbaldehyde) (64.0 mg, 0.253 mmol) in THF (3.0 ml) were added HP(O)(OMe)2 (20.88 µl, 0.228 mmol, 0.9 equiv.) and triethylamine (2.55 mg, 0.0253 mmol, 3.5 µl). The reaction mixture was stirred for 1 h at room temperature. The crude product was filtered off, dried and crystallized from diisopropyl ether (yield 86.6 mg, 97%; m.p. 434–436 K) by slow evaporation. [α]D20= + 19.2 (c=0.25, CHCl3).

Refinement top

All H atoms were positioned geometrically and refined as riding, with O—H distaces of 0.82 Å and C—H distances in the range 0.96–0.98 Å. Uiso values were constrained to be 1.5Ueq for H atoms from methyl groups and 1.2Ueq for other H atoms. The absolute configuration has been assigned on the basis of the known configuration of the reagents for both compounds. The Flack (1983) parameter for (I) could not be defined because the number of Friedel pairs was insufficient. In the case of (II), the Flack parameter is in agreement with the expected configuration.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989b); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
Scheme 1. Ligands for NMDA receptor.

Fig. 1. A view of (I), with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level

Fig. 2. A view of (II), with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level

Fig. 3. The chain along the c axis of molecules of (I) linked by hydrogen bonds in the unit cell.

Fig. 4. The chain along the b axis of molecules of (II) linked by hydrogen bonds in the unit cell.
(I) (1R,3S,6S)-[6-tert-butyl-1-hydroxymethyl-5-methyoxy-6-methyl-7-oxa-8-oxo-4-aza-spiro[2.5]oct-4-en-8-one top
Crystal data top
C13H21NO4Dx = 1.181 Mg m3
Mr = 255.31Melting point: C13 H21 N O4 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
a = 8.134 (3) ÅCell parameters from 25 reflections
b = 22.802 (2) Åθ = 23.5–29.4°
c = 7.744 (2) ŵ = 0.72 mm1
V = 1436.3 (7) Å3T = 293 K
Z = 4Plate, colorless
F(000) = 5520.5 × 0.2 × 0.1 mm
Data collection top
AFC5S Rigaku
diffractometer
1195 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 67.5°, θmin = 3.9°
ω scanh = 99
Absorption correction: analytical
(De Meulenaer & Tompa, 1965)
k = 2127
Tmin = 0.82, Tmax = 0.92l = 49
1480 measured reflections3 standard reflections every 150 reflections
1480 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.1207P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.40 e Å3
1480 reflectionsΔρmin = 0.16 e Å3
170 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H21NO4V = 1436.3 (7) Å3
Mr = 255.31Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.134 (3) ŵ = 0.72 mm1
b = 22.802 (2) ÅT = 293 K
c = 7.744 (2) Å0.5 × 0.2 × 0.1 mm
Data collection top
AFC5S Rigaku
diffractometer
1195 reflections with I > 2σ(I)
Absorption correction: analytical
(De Meulenaer & Tompa, 1965)
Rint = 0.000
Tmin = 0.82, Tmax = 0.923 standard reflections every 150 reflections
1480 measured reflections intensity decay: <2%
1480 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
1480 reflectionsΔρmin = 0.16 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8882 (3)0.61951 (11)0.9203 (3)0.0650 (7)
C21.0281 (4)0.60630 (17)0.8383 (4)0.0611 (8)
O211.1576 (3)0.61483 (15)0.9133 (3)0.0822 (9)
C31.0161 (4)0.58000 (14)0.6645 (4)0.0560 (8)
N40.8584 (3)0.56568 (12)0.5973 (4)0.0579 (7)
C50.7336 (4)0.58646 (13)0.6730 (5)0.0562 (8)
O500.5803 (3)0.57494 (12)0.6146 (4)0.0729 (8)
C500.5710 (6)0.5411 (2)0.4581 (7)0.0978 (16)
H50A0.45830.53780.42270.147*
H50B0.61540.50270.47810.147*
H50C0.63320.56030.36910.147*
C60.7279 (4)0.62403 (14)0.8336 (4)0.0566 (8)
C610.6079 (5)0.59904 (19)0.9619 (5)0.0768 (11)
H61A0.49780.60480.92070.115*
H61B0.62100.61851.07100.115*
H61C0.62830.55780.97610.115*
C620.7006 (5)0.69059 (13)0.7918 (5)0.0693 (10)
C650.5314 (6)0.70043 (17)0.7102 (7)0.0913 (14)
H65A0.53120.68520.59460.137*
H65B0.50760.74170.70760.137*
H65C0.44920.68060.77730.137*
C630.7082 (7)0.7260 (2)0.9596 (7)0.0999 (15)
H63A0.70130.76710.93350.150*
H63B0.81000.71811.01780.150*
H63C0.61790.71511.03280.150*
C640.8325 (7)0.71294 (18)0.6685 (8)0.0990 (16)
H64A0.93860.70920.72190.149*
H64B0.81200.75340.64190.149*
H64C0.83020.69030.56410.149*
C71.1581 (5)0.53997 (17)0.6155 (5)0.0675 (9)
H7A1.24350.53360.70090.081*
H7B1.13380.50630.54340.081*
C81.1472 (4)0.59819 (18)0.5363 (4)0.0636 (9)
H81.22660.62680.58050.076*
C91.1008 (5)0.6063 (3)0.3483 (5)0.0844 (13)
H9A1.04190.57220.30630.101*
H9B1.03080.64040.33490.101*
O901.2456 (4)0.6137 (3)0.2571 (4)0.1191 (13)
H901.22550.61470.15340.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0625 (14)0.0829 (15)0.0497 (11)0.0006 (12)0.0023 (11)0.0036 (12)
C20.0570 (18)0.080 (2)0.0459 (15)0.0039 (17)0.0018 (16)0.0067 (17)
O210.0645 (16)0.127 (2)0.0548 (13)0.0073 (16)0.0135 (14)0.0034 (16)
C30.0510 (17)0.0649 (18)0.0522 (16)0.0000 (14)0.0056 (16)0.0032 (15)
N40.0519 (15)0.0601 (14)0.0618 (16)0.0018 (12)0.0017 (14)0.0086 (13)
C50.0507 (17)0.0564 (15)0.0616 (18)0.0041 (14)0.0035 (16)0.0056 (16)
O500.0527 (14)0.0784 (15)0.088 (2)0.0015 (11)0.0058 (14)0.0300 (14)
C500.069 (3)0.116 (3)0.109 (3)0.000 (2)0.012 (3)0.060 (3)
C60.0550 (17)0.0615 (16)0.0532 (16)0.0003 (14)0.0018 (16)0.0031 (15)
C610.071 (2)0.084 (2)0.075 (2)0.006 (2)0.020 (2)0.001 (2)
C620.076 (2)0.0545 (17)0.077 (2)0.0009 (16)0.001 (2)0.0087 (18)
C650.101 (3)0.067 (2)0.107 (3)0.015 (2)0.020 (3)0.008 (2)
C630.107 (3)0.086 (3)0.107 (4)0.004 (3)0.004 (3)0.040 (3)
C640.114 (4)0.061 (2)0.122 (4)0.002 (2)0.026 (4)0.017 (3)
C70.0554 (18)0.079 (2)0.068 (2)0.0078 (16)0.0004 (19)0.0019 (19)
C80.0579 (19)0.084 (2)0.0493 (16)0.0108 (18)0.0038 (17)0.0032 (17)
C90.065 (2)0.140 (4)0.0489 (17)0.007 (3)0.0116 (18)0.003 (2)
O900.094 (2)0.201 (3)0.0621 (16)0.007 (3)0.0051 (17)0.012 (2)
Geometric parameters (Å, º) top
O1—C21.338 (4)C62—C631.531 (6)
O1—C61.470 (4)C62—C651.531 (7)
C2—O211.218 (4)C65—H65A0.9600
C2—C31.477 (5)C65—H65B0.9600
C3—N41.422 (4)C65—H65C0.9600
C3—C81.514 (5)C63—H63A0.9600
C3—C71.520 (5)C63—H63B0.9600
N4—C51.264 (4)C63—H63C0.9600
C5—O501.352 (4)C64—H64A0.9600
C5—C61.510 (5)C64—H64B0.9600
O50—C501.438 (5)C64—H64C0.9600
C50—H50A0.9600C7—C81.465 (5)
C50—H50B0.9600C7—H7A0.9700
C50—H50C0.9600C7—H7B0.9700
C6—C611.505 (5)C8—C91.516 (5)
C6—C621.567 (4)C8—H80.9800
C61—H61A0.9600C9—O901.384 (5)
C61—H61B0.9600C9—H9A0.9700
C61—H61C0.9600C9—H9B0.9700
C62—C641.524 (7)O90—H900.8200
C2—O1—C6123.6 (2)C65—C62—C6110.7 (3)
O21—C2—O1118.2 (3)C62—C65—H65A109.5
O21—C2—C3123.8 (3)C62—C65—H65B109.5
O1—C2—C3117.9 (3)H65A—C65—H65B109.5
N4—C3—C2119.1 (3)C62—C65—H65C109.5
N4—C3—C8117.3 (3)H65A—C65—H65C109.5
C2—C3—C8116.1 (3)H65B—C65—H65C109.5
N4—C3—C7117.1 (3)C62—C63—H63A109.5
C2—C3—C7114.9 (3)C62—C63—H63B109.5
C8—C3—C757.7 (2)H63A—C63—H63B109.5
C5—N4—C3117.9 (3)C62—C63—H63C109.5
N4—C5—O50120.8 (3)H63A—C63—H63C109.5
N4—C5—C6128.2 (3)H63B—C63—H63C109.5
O50—C5—C6110.9 (3)C62—C64—H64A109.5
C5—O50—C50115.8 (3)C62—C64—H64B109.5
O50—C50—H50A109.5H64A—C64—H64B109.5
O50—C50—H50B109.5C62—C64—H64C109.5
H50A—C50—H50B109.5H64A—C64—H64C109.5
O50—C50—H50C109.5H64B—C64—H64C109.5
H50A—C50—H50C109.5C8—C7—C360.9 (2)
H50B—C50—H50C109.5C8—C7—H7A117.7
O1—C6—C61104.3 (3)C3—C7—H7A117.7
O1—C6—C5108.0 (3)C8—C7—H7B117.7
C61—C6—C5110.4 (3)C3—C7—H7B117.7
O1—C6—C62106.7 (3)H7A—C7—H7B114.8
C61—C6—C62114.3 (3)C7—C8—C361.3 (2)
C5—C6—C62112.6 (3)C7—C8—C9121.8 (4)
C6—C61—H61A109.5C3—C8—C9119.2 (3)
C6—C61—H61B109.5C7—C8—H8114.7
H61A—C61—H61B109.5C3—C8—H8114.7
C6—C61—H61C109.5C9—C8—H8114.7
H61A—C61—H61C109.5O90—C9—C8107.0 (3)
H61B—C61—H61C109.5O90—C9—H9A110.3
C64—C62—C63109.1 (4)C8—C9—H9A110.3
C64—C62—C65109.0 (4)O90—C9—H9B110.3
C63—C62—C65108.0 (4)C8—C9—H9B110.3
C64—C62—C6110.7 (3)H9A—C9—H9B108.6
C63—C62—C6109.3 (4)C9—O90—H90109.5
C6—O1—C2—O21165.8 (3)N4—C5—C6—C62101.4 (4)
C6—O1—C2—C316.6 (5)O50—C5—C6—C6280.1 (4)
O21—C2—C3—N4172.7 (3)O1—C6—C62—C6462.3 (4)
O1—C2—C3—N44.8 (5)C61—C6—C62—C64177.0 (4)
O21—C2—C3—C838.5 (5)C5—C6—C62—C6456.0 (5)
O1—C2—C3—C8144.1 (3)O1—C6—C62—C6357.9 (4)
O21—C2—C3—C726.2 (5)C61—C6—C62—C6356.9 (5)
O1—C2—C3—C7151.3 (3)C5—C6—C62—C63176.1 (4)
C2—C3—N4—C513.9 (4)O1—C6—C62—C65176.7 (3)
C8—C3—N4—C5134.6 (3)C61—C6—C62—C6562.0 (4)
C7—C3—N4—C5159.6 (3)C5—C6—C62—C6565.0 (4)
C3—N4—C5—O50179.4 (3)N4—C3—C7—C8106.6 (4)
C3—N4—C5—C62.3 (5)C2—C3—C7—C8106.3 (3)
N4—C5—O50—C503.5 (5)C3—C7—C8—C9108.3 (4)
C6—C5—O50—C50177.8 (3)N4—C3—C8—C7106.3 (3)
C2—O1—C6—C61142.9 (3)C2—C3—C8—C7104.2 (3)
C2—O1—C6—C525.4 (4)N4—C3—C8—C96.2 (5)
C2—O1—C6—C6295.9 (4)C2—C3—C8—C9143.2 (4)
N4—C5—C6—O116.1 (5)C7—C3—C8—C9112.6 (4)
O50—C5—C6—O1162.4 (3)C7—C8—C9—O9098.3 (5)
N4—C5—C6—C61129.6 (4)C3—C8—C9—O90170.9 (4)
O50—C5—C6—C6148.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H90···O21i0.821.942.757 (4)174
Symmetry code: (i) x, y, z1.
(II) dimethyl (1R,1'R,3'S,6'S)-[6'-tert-butyl-5'-methyoxy-6'-methyl-7'-oxa-8'-oxo- 4'-aza-spiro[2.5] oct-4'-en-1'-yl)hydroxymethylphosphonate top
Crystal data top
C15H26NO7PF(000) = 388
Mr = 363.34Dx = 1.290 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 6.894 (1) ÅCell parameters from 25 reflections
b = 9.423 (1) Åθ = 22.9–27.1°
c = 14.428 (2) ŵ = 1.61 mm1
β = 93.266 (10)°T = 293 K
V = 935.8 (2) Å3Block, white
Z = 20.4 × 0.3 × 0.3 mm
Data collection top
AFC5S Rigaku
diffractometer
1578 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 67.5°, θmin = 5.6°
ω scanh = 68
Absorption correction: analytical
(De Meulenaer & Tompa, 1965)
k = 1110
Tmin = 0.555, Tmax = 0.650l = 1717
1887 measured reflections3 standard reflections every 150 reflections
1741 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.0119P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.22 e Å3
1741 reflectionsΔρmin = 0.26 e Å3
226 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0119 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (3)
Crystal data top
C15H26NO7PV = 935.8 (2) Å3
Mr = 363.34Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.894 (1) ŵ = 1.61 mm1
b = 9.423 (1) ÅT = 293 K
c = 14.428 (2) Å0.4 × 0.3 × 0.3 mm
β = 93.266 (10)°
Data collection top
AFC5S Rigaku
diffractometer
1578 reflections with I > 2σ(I)
Absorption correction: analytical
(De Meulenaer & Tompa, 1965)
Rint = 0.018
Tmin = 0.555, Tmax = 0.6503 standard reflections every 150 reflections
1887 measured reflections intensity decay: <2%
1741 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.26 e Å3
1741 reflectionsAbsolute structure: Flack (1983)
226 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.79564 (12)0.24272 (10)0.05426 (5)0.0544 (2)
O300.8771 (5)0.1094 (3)0.0854 (2)0.0733 (8)
O100.5687 (3)0.2403 (4)0.04970 (17)0.0657 (6)
C1000.4611 (7)0.1103 (6)0.0421 (3)0.0809 (13)
H10A0.44570.06590.10200.121*
H10B0.33550.13080.01990.121*
H10C0.53020.04760.00050.121*
O200.8287 (4)0.3741 (3)0.11823 (17)0.0699 (7)
C2000.7555 (7)0.3735 (6)0.2125 (3)0.0881 (14)
H20A0.79970.28980.24280.132*
H20B0.80140.45610.24350.132*
H20C0.61610.37430.21490.132*
C90.8899 (5)0.3057 (4)0.0578 (2)0.0525 (7)
H90.82960.39700.07150.063*
O901.0937 (4)0.3236 (3)0.0550 (2)0.0680 (7)
H911.12340.40430.07160.082*
C80.8447 (5)0.1990 (4)0.1319 (2)0.0526 (7)
H80.91250.10790.12880.063*
C70.6450 (5)0.1924 (4)0.1660 (2)0.0588 (9)
H7A0.59390.09960.18060.071*
H7B0.54930.25870.13960.071*
C30.8072 (4)0.2514 (4)0.22966 (19)0.0497 (7)
C20.8757 (5)0.1572 (4)0.3060 (2)0.0572 (9)
O210.8614 (6)0.0291 (3)0.3036 (2)0.0815 (10)
O10.9517 (4)0.2164 (3)0.38443 (16)0.0594 (6)
C60.9977 (5)0.3670 (4)0.3946 (2)0.0514 (7)
C610.9262 (5)0.4039 (5)0.4895 (2)0.0676 (10)
H61A0.78970.38410.49020.101*
H61B0.94850.50280.50190.101*
H61C0.99530.34810.53620.101*
C621.2223 (5)0.3823 (5)0.3880 (2)0.0609 (9)
C631.3266 (7)0.2729 (8)0.4514 (5)0.126 (3)
H63A1.28750.17910.43220.189*
H63B1.29320.28830.51430.189*
H63C1.46450.28260.44740.189*
C641.2768 (6)0.3579 (8)0.2897 (3)0.1012 (19)
H64A1.22670.43380.25100.152*
H64B1.22270.26950.26750.152*
H64C1.41570.35470.28790.152*
C651.2918 (7)0.5306 (6)0.4171 (4)0.0885 (14)
H65A1.42960.53740.41140.133*
H65B1.26260.54740.48050.133*
H65C1.22700.60010.37780.133*
C50.8858 (4)0.4474 (4)0.3192 (2)0.0490 (7)
N40.8008 (4)0.4017 (3)0.24524 (18)0.0485 (6)
O500.8819 (4)0.5886 (3)0.33880 (17)0.0619 (6)
C500.7817 (7)0.6787 (4)0.2709 (3)0.0732 (11)
H50A0.83980.66880.21230.110*
H50B0.79130.77570.29100.110*
H50C0.64750.65150.26420.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0614 (5)0.0517 (5)0.0502 (4)0.0004 (4)0.0052 (3)0.0026 (4)
O300.097 (2)0.0550 (17)0.0686 (15)0.0149 (14)0.0084 (14)0.0178 (13)
O100.0584 (13)0.0687 (15)0.0696 (13)0.0068 (14)0.0013 (10)0.0035 (15)
C1000.084 (3)0.087 (3)0.071 (2)0.032 (2)0.007 (2)0.004 (2)
O200.0893 (18)0.0656 (17)0.0549 (13)0.0126 (14)0.0043 (11)0.0096 (12)
C2000.099 (3)0.103 (4)0.061 (2)0.000 (3)0.003 (2)0.019 (2)
C90.0505 (16)0.0517 (18)0.0557 (16)0.0002 (15)0.0072 (13)0.0004 (15)
O900.0538 (13)0.0723 (19)0.0784 (17)0.0120 (12)0.0071 (11)0.0032 (14)
C80.0597 (18)0.0481 (18)0.0505 (16)0.0021 (14)0.0075 (13)0.0078 (13)
C70.0589 (18)0.066 (2)0.0516 (16)0.0149 (16)0.0027 (14)0.0109 (16)
C30.0542 (15)0.0486 (17)0.0462 (14)0.0026 (16)0.0025 (11)0.0057 (15)
C20.065 (2)0.056 (3)0.0505 (18)0.0027 (16)0.0056 (15)0.0034 (15)
O210.128 (3)0.0485 (18)0.0671 (16)0.0120 (16)0.0016 (17)0.0017 (13)
O10.0724 (14)0.0493 (15)0.0550 (12)0.0078 (11)0.0087 (10)0.0029 (10)
C60.0542 (17)0.0510 (19)0.0486 (15)0.0033 (15)0.0012 (12)0.0031 (14)
C610.070 (2)0.083 (3)0.0494 (17)0.012 (2)0.0033 (15)0.0061 (18)
C620.0449 (16)0.069 (2)0.0675 (19)0.0015 (16)0.0042 (14)0.0025 (18)
C630.068 (3)0.128 (6)0.178 (6)0.001 (3)0.030 (3)0.066 (5)
C640.053 (2)0.156 (6)0.096 (3)0.001 (3)0.019 (2)0.033 (4)
C650.064 (2)0.086 (3)0.114 (4)0.023 (2)0.002 (2)0.018 (3)
C50.0476 (17)0.0477 (19)0.0511 (16)0.0011 (14)0.0021 (13)0.0040 (14)
N40.0488 (14)0.0471 (15)0.0496 (13)0.0002 (11)0.0019 (10)0.0043 (11)
O500.0730 (16)0.0482 (13)0.0630 (14)0.0033 (12)0.0079 (12)0.0080 (12)
C500.090 (3)0.050 (2)0.077 (3)0.0064 (19)0.009 (2)0.0008 (19)
Geometric parameters (Å, º) top
P1—O301.458 (3)O1—C61.460 (4)
P1—O201.568 (3)C6—C51.502 (5)
P1—O101.570 (2)C6—C611.521 (5)
P1—C91.808 (3)C6—C621.564 (5)
O10—C1001.439 (5)C61—H61A0.9600
C100—H10A0.9600C61—H61B0.9600
C100—H10B0.9600C61—H61C0.9600
C100—H10C0.9600C62—C641.506 (6)
O20—C2001.424 (5)C62—C651.528 (6)
C200—H20A0.9600C62—C631.530 (6)
C200—H20B0.9600C63—H63A0.9600
C200—H20C0.9600C63—H63B0.9600
C9—O901.418 (4)C63—H63C0.9600
C9—C81.513 (4)C64—H64A0.9600
C9—H90.9800C64—H64B0.9600
O90—H910.8200C64—H64C0.9600
C8—C71.489 (5)C65—H65A0.9600
C8—C31.530 (4)C65—H65B0.9600
C8—H80.9800C65—H65C0.9600
C7—C31.513 (4)C5—N41.264 (4)
C7—H7A0.9700C5—O501.361 (4)
C7—H7B0.9700O50—C501.442 (5)
C3—N41.436 (5)C50—H50A0.9600
C3—C21.472 (5)C50—H50B0.9600
C2—O211.211 (4)C50—H50C0.9600
C2—O11.341 (4)
O30—P1—O20115.31 (16)C2—O1—C6124.2 (3)
O30—P1—O10113.75 (18)O1—C6—C5108.5 (2)
O20—P1—O10102.41 (16)O1—C6—C61103.5 (3)
O30—P1—C9115.68 (17)C5—C6—C61110.9 (3)
O20—P1—C9102.13 (15)O1—C6—C62107.1 (3)
O10—P1—C9105.99 (14)C5—C6—C62112.2 (3)
C100—O10—P1122.4 (3)C61—C6—C62114.0 (3)
O10—C100—H10A109.5C6—C61—H61A109.5
O10—C100—H10B109.5C6—C61—H61B109.5
H10A—C100—H10B109.5H61A—C61—H61B109.5
O10—C100—H10C109.5C6—C61—H61C109.5
H10A—C100—H10C109.5H61A—C61—H61C109.5
H10B—C100—H10C109.5H61B—C61—H61C109.5
C200—O20—P1120.3 (3)C64—C62—C65107.9 (4)
O20—C200—H20A109.5C64—C62—C63109.0 (5)
O20—C200—H20B109.5C65—C62—C63108.8 (4)
H20A—C200—H20B109.5C64—C62—C6110.2 (3)
O20—C200—H20C109.5C65—C62—C6111.3 (3)
H20A—C200—H20C109.5C63—C62—C6109.5 (3)
H20B—C200—H20C109.5C62—C63—H63A109.5
O90—C9—C8110.1 (3)C62—C63—H63B109.5
O90—C9—P1108.6 (2)H63A—C63—H63B109.5
C8—C9—P1109.6 (2)C62—C63—H63C109.5
O90—C9—H9109.5H63A—C63—H63C109.5
C8—C9—H9109.5H63B—C63—H63C109.5
P1—C9—H9109.5C62—C64—H64A109.5
C9—O90—H91109.5C62—C64—H64B109.5
C7—C8—C9119.5 (3)H64A—C64—H64B109.5
C7—C8—C360.1 (2)C62—C64—H64C109.5
C9—C8—C3119.3 (3)H64A—C64—H64C109.5
C7—C8—H8115.5H64B—C64—H64C109.5
C9—C8—H8115.5C62—C65—H65A109.5
C3—C8—H8115.5C62—C65—H65B109.5
C8—C7—C361.3 (2)H65A—C65—H65B109.5
C8—C7—H7A117.6C62—C65—H65C109.5
C3—C7—H7A117.6H65A—C65—H65C109.5
C8—C7—H7B117.6H65B—C65—H65C109.5
C3—C7—H7B117.6N4—C5—O50119.6 (3)
H7A—C7—H7B114.7N4—C5—C6129.4 (3)
N4—C3—C2119.3 (3)O50—C5—C6111.0 (3)
N4—C3—C7115.4 (3)C5—N4—C3116.8 (3)
C2—C3—C7115.3 (3)C5—O50—C50116.7 (3)
N4—C3—C8118.1 (3)O50—C50—H50A109.5
C2—C3—C8115.6 (3)O50—C50—H50B109.5
C7—C3—C858.6 (2)H50A—C50—H50B109.5
O21—C2—O1117.8 (3)O50—C50—H50C109.5
O21—C2—C3123.8 (3)H50A—C50—H50C109.5
O1—C2—C3118.3 (3)H50B—C50—H50C109.5
O30—P1—O10—C10022.2 (3)C8—C3—C2—O1142.4 (3)
O20—P1—O10—C100147.3 (3)O21—C2—O1—C6173.0 (4)
C9—P1—O10—C100106.1 (3)C3—C2—O1—C69.4 (5)
O30—P1—O20—C20059.9 (4)C2—O1—C6—C519.5 (4)
O10—P1—O20—C20064.1 (3)C2—O1—C6—C61137.4 (3)
C9—P1—O20—C200173.8 (3)C2—O1—C6—C62101.8 (3)
O30—P1—C9—O9058.6 (3)O1—C6—C62—C6471.8 (4)
O20—P1—C9—O9067.5 (3)C5—C6—C62—C6447.2 (5)
O10—P1—C9—O90174.3 (3)C61—C6—C62—C64174.4 (4)
O30—P1—C9—C861.7 (3)O1—C6—C62—C65168.5 (3)
O20—P1—C9—C8172.2 (2)C5—C6—C62—C6572.5 (4)
O10—P1—C9—C865.4 (3)C61—C6—C62—C6554.7 (4)
O90—C9—C8—C7163.0 (3)O1—C6—C62—C6348.1 (5)
P1—C9—C8—C777.6 (3)C5—C6—C62—C63167.1 (4)
O90—C9—C8—C392.8 (3)C61—C6—C62—C6365.7 (5)
P1—C9—C8—C3147.8 (2)O1—C6—C5—N415.8 (5)
C9—C8—C7—C3108.9 (3)C61—C6—C5—N4128.8 (4)
C8—C7—C3—N4108.7 (3)C62—C6—C5—N4102.4 (4)
C8—C7—C3—C2105.8 (3)O1—C6—C5—O50164.0 (3)
C7—C8—C3—N4104.2 (3)C61—C6—C5—O5050.9 (4)
C9—C8—C3—N45.1 (4)C62—C6—C5—O5077.8 (3)
C7—C8—C3—C2105.3 (4)O50—C5—N4—C3178.8 (3)
C9—C8—C3—C2145.5 (3)C6—C5—N4—C30.9 (5)
C9—C8—C3—C7109.2 (4)C2—C3—N4—C511.9 (4)
N4—C3—C2—O21169.5 (4)C7—C3—N4—C5156.0 (3)
C7—C3—C2—O2125.4 (5)C8—C3—N4—C5137.6 (3)
C8—C3—C2—O2140.3 (5)N4—C5—O50—C501.3 (5)
N4—C3—C2—O17.8 (5)C6—C5—O50—C50178.9 (3)
C7—C3—C2—O1152.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H91···O30i0.821.952.735 (4)161
Symmetry code: (i) x+2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H21NO4C15H26NO7P
Mr255.31363.34
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21
Temperature (K)293293
a, b, c (Å)8.134 (3), 22.802 (2), 7.744 (2)6.894 (1), 9.423 (1), 14.428 (2)
α, β, γ (°)90, 90, 9090, 93.266 (10), 90
V3)1436.3 (7)935.8 (2)
Z42
Radiation typeCu KαCu Kα
µ (mm1)0.721.61
Crystal size (mm)0.5 × 0.2 × 0.10.4 × 0.3 × 0.3
Data collection
DiffractometerAFC5S Rigaku
diffractometer
AFC5S Rigaku
diffractometer
Absorption correctionAnalytical
(De Meulenaer & Tompa, 1965)
Analytical
(De Meulenaer & Tompa, 1965)
Tmin, Tmax0.82, 0.920.555, 0.650
No. of measured, independent and
observed [I > 2σ(I)] reflections
1480, 1480, 1195 1887, 1741, 1578
Rint0.0000.018
(sin θ/λ)max1)0.5990.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.163, 1.02 0.035, 0.102, 1.08
No. of reflections14801741
No. of parameters170226
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.160.22, 0.26
Absolute structure?Flack (1983)
Absolute structure parameter?0.03 (3)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989b), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) for (I) top
O1—C21.338 (4)C3—N41.422 (4)
O1—C61.470 (4)N4—C51.264 (4)
C2—O211.218 (4)C5—O501.352 (4)
C2—C31.477 (5)C5—C61.510 (5)
O1—C2—C3—C8144.1 (3)C2—O1—C6—C61142.9 (3)
C8—C3—N4—C5134.6 (3)N4—C5—C6—C62101.4 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O90—H90···O21i0.821.942.757 (4)174
Symmetry code: (i) x, y, z1.
Selected geometric parameters (Å, º) for (II) top
P1—O301.458 (3)C2—O211.211 (4)
P1—O201.568 (3)C2—O11.341 (4)
P1—O101.570 (2)O1—C61.460 (4)
P1—C91.808 (3)C6—C51.502 (5)
C3—N41.436 (5)C5—N41.264 (4)
C3—C21.472 (5)C5—O501.361 (4)
O30—P1—O20115.31 (16)O30—P1—C9115.68 (17)
O30—P1—O10113.75 (18)O20—P1—C9102.13 (15)
O20—P1—O10102.41 (16)O10—P1—C9105.99 (14)
C8—C3—C2—O1142.4 (3)C62—C6—C5—N4102.4 (4)
C2—O1—C6—C62101.8 (3)C8—C3—N4—C5137.6 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O90—H91···O30i0.821.952.735 (4)161
Symmetry code: (i) x+2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds