Download citation
Download citation
link to html
In the title compounds, C13H15N3O, (I), and C13H15N3O2, (II), the dihedral angles between the planes of the phenyl ring and the amide group are 4.1 (1) and 20.7 (1)°, respectively. The mol­ecules adopt a fully extended conformation, aided by intramolecular interactions. The molecular structures of (I) and (II) display different crystal packing and hydrogen-bonding networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103009764/na1594sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009764/na1594Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009764/na1594IIsup3.hkl
Contains datablock II

CCDC references: 192317; 192320

Comment top

As part of our study of conformational analysis, crystallographic work on N-aromatic amide derivatives has been undertaken. These derivatives are analogs of the active metabolites of the immunosuppressive drug leflunomide, which are known to act, in part, by inhibiting the tyrosine kinase epidermal growth-factor receptor (EGFR; Mattar et al., 1993). EGFR is a membrane- associated tyrosine kinase, which serves as an endogenous negative regulator of apoptosis in breast cancer cells (Uckun et al., 1998). The present study reports the structures of two N-acrylamide compounds, (I) and (II), in order to examine the effects of substituents on the hydrogen-bonding system and on the crystal structure.

The dihedral angle between the planes of the phenyl ring and the amide group is 4.1 (1) and 20.7 (1)° for (I) and (II), respectively. The geometry of the amide group is comparable to that of silimar groups in acetanilides (Haisa et al., 1977). The C10—C11 [1.420 (2) Å in (I) and 1.419 (2) Å in (II)] and C11—N12 [1.148 (2) Å in (I) and 1.147 (2) Å in (II)] bond lengths agree with the expected Csp2—Csp [1.431 (14) Å] and Csp1—N(1) [1.136 (10) Å] bond lengths, respectively (Allen et al., 1987). Similar observations have been noted in the crystal structures of the leflunomide metabolite analogs (Ghosh et al., 1999; Ghosh & Uckun, 1999) and in the acrylamide derivative (Ompraba et al., 2003). In (II), the C2—O17—C18 [118.3 (1)°] angle is close to that expected for sp2 hybridization of atom O17. The distortion and enlargement of the C6—C1—N7, C1—N7—C8 and N7—C8—O9 angles from the trigonal value (120°) are due to the intramolecular C6—H6···O9 hydrogen bond (Table 2 and 4). In both (I) and (II), the cyanoacrylamide side chain is planar, with π-conjugation along the chain causing variations of the bond distances with respect to the localized double and single bonds. The C1—N7—C8—C10 torsion angle does not differ much between (I) and (II) [−178.9 (1) and 176.6 (1)°, respectively], whereas the C6—C1—N7—C8 angle differs significantly [−3.7 (3) and −20.2 (2), respectively], indicating that the large twist around the C1—N7 bond in (II) is due to an intramolecular N7—H7···O17 hydrogen bond. This hydrogen bond determines the orientation of the methoxy group [C1—C2—O17—C18 = 179.5 (1)°], which is coplanar with the phenyl ring.

The supramolecular structures of (I) and (II) are completely different. In (I), the symmetry-related molecules are linked together head-to-tail via N7—H7··· N12 hydrogen bonds to form a dimer comprising an R22(12) ring (Bernstein et al., 1995). The dimers at (x, 1/2 − y, 1/2 + z), (2 − x, 1/2 + y, 1/2 − z) [centre of symmetry at (1, 1/2, 1/2)], and (x, 1/2 − y, −1/2 + z), (2 − x, 1/2 + y, −1/2 − z) [centre of symmetry at (1, 1/2, −1/2)] are further linked by symmetry-related C—H···O hydrogen bonds, involving atom O9 at (x, y, z) with atom H15A at (x, 1/2 − y, 1/2 + z), atom H15A at (x, y, z) with atom O9 at (x, 1/2 − y, −1/2 + z), atom O9 at (2 − x, 1 − y, −z) with atom H15A at (2 − x, 1/2 + y, −1/2 − z), and atom H15A at (2 − x, 1 − y, −z) with atom O9 at (2 − x, 1/2 + y, 1/2 − z), respectively, thus forming an R66(36) ring. Hence, a discrete hexamer is formed and related to it by a centre of symmetry at (1, 1/2, 0) (Fig. 3). The result is a two-dimensional layer, which runs along the bc plane (Fig. 4). In (II), an intramolecular N7—H7···O17 hydrogen bond forms a five-membered ring. A C(8) motif is formed via a C4—H4···O9(1 − x, 1/2 + y, 3/2 − z) hydrogen bond, creating a chain that runs parallel to the ab plane. Two such anti-parallel chains are shown in Fig. 5. In (II), a C—H···π interaction is also observed (Table 4). The H7···C11 distances, 2.34 Å in (I) and 2.28 Å in (II), are short as a result of the positive charge on atom H7 and negative charge on atom C11.

Experimental top

Substituted N-aryl cyano acetamide (0.005 mol) was dissolved in dimethyl formamide (6 ml) and kept in ice-cold conditions. To this solution, POCl3 (1.4 ml, 0.015 mol) was added slowly with stirring. The reaction mixture was allowed to attain room temperature and stirred for 3–4 h. The residue was then poured into crushed ice and neutralized with 10% NaOH. The crude product obtained was filtered, washed with water and dried. Finally, the compound was purified by recrystallization using an ethylacetate–petroleum mixture. [m.p. 445 and 425 K for (I) and (II), respectively.]

Refinement top

All H atoms were fixed geometrically and allowed to ride on the corresponding non-H atoms.

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing displacement ellipsoids at the 35% probability level.
[Figure 3] Fig. 3. A view of the discrete hexamer formed by the molecules of (I). [Symmetry codes: (i) x, 1/2 − y, 1/2 + z; (ii) x, 1/2 − y, −1/2 + z; (iii) 2 − x, 1/2 + y, 1/2 − z; (iv) 2 − x, 1/2 + y, −1/2 − z; (v) 2 − x, 1 − y, −z.]
[Figure 4] Fig. 4. The molecular packing of (I), viewed along the c axis.
[Figure 5] Fig. 5. A view of the crystal structure of (II), viewed along the a axis, showing two anti-parallel C(8) chains. [Symmetry code: (i) 1 − x, 1/2 + y, 3/2 − z.]
(I) 2-Cyano-3-dimethylamino-N-(4-methylphenyl) acrylamide top
Crystal data top
C13H15N3OF(000) = 488
Mr = 229.28Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5846 (3) ÅCell parameters from 4951 reflections
b = 22.4477 (10) Åθ = 1.8–28.3°
c = 7.5989 (3) ŵ = 0.08 mm1
β = 106.306 (1)°T = 293 K
V = 1241.72 (9) Å3Slab, pale yellow
Z = 40.48 × 0.40 × 0.16 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
2242 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ω scansh = 108
8417 measured reflectionsk = 2927
3022 independent reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0849P)2 + 0.2309P]
where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H15N3OV = 1241.72 (9) Å3
Mr = 229.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5846 (3) ŵ = 0.08 mm1
b = 22.4477 (10) ÅT = 293 K
c = 7.5989 (3) Å0.48 × 0.40 × 0.16 mm
β = 106.306 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
2242 reflections with I > 2σ(I)
8417 measured reflectionsRint = 0.037
3022 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3022 reflectionsΔρmin = 0.15 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0150 (2)0.12001 (7)0.3809 (2)0.0450 (4)
C21.1069 (3)0.07426 (8)0.4941 (3)0.0568 (4)
H21.11200.03650.44530.068*
C31.1906 (3)0.08434 (9)0.6780 (3)0.0611 (5)
H31.25130.05320.75080.073*
C41.1860 (2)0.13988 (8)0.7565 (2)0.0543 (4)
C51.0939 (3)0.18476 (8)0.6426 (3)0.0575 (4)
H51.08900.22240.69190.069*
C61.0085 (2)0.17584 (8)0.4579 (2)0.0532 (4)
H60.94710.20710.38580.064*
N70.93245 (19)0.10564 (6)0.19459 (19)0.0506 (4)
H70.95200.07010.16200.061*
C80.8259 (2)0.14088 (7)0.0601 (2)0.0475 (4)
O90.7881 (2)0.19256 (6)0.08790 (19)0.0715 (4)
C100.7555 (2)0.11279 (7)0.1227 (2)0.0461 (4)
C110.7769 (3)0.05031 (8)0.1381 (2)0.0565 (4)
N120.7977 (3)0.00029 (8)0.1408 (3)0.0860 (6)
C130.6724 (2)0.15030 (7)0.2654 (2)0.0473 (4)
H130.67020.19000.23120.057*
N140.59520 (19)0.14039 (6)0.44143 (19)0.0499 (4)
C150.5150 (3)0.18950 (9)0.5640 (3)0.0656 (5)
H15A0.53860.22640.49760.098*
H15B0.38480.18360.61070.098*
H15C0.56890.19070.66410.098*
C160.5832 (3)0.08205 (9)0.5273 (3)0.0656 (5)
H16A0.70360.06930.52880.098*
H16B0.50490.08440.65070.098*
H16C0.53310.05400.45900.098*
C171.2781 (3)0.15063 (11)0.9576 (3)0.0713 (6)
H17A1.40350.16220.97390.107*
H17B1.27450.11481.02530.107*
H17C1.21470.18181.00150.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0454 (8)0.0449 (8)0.0447 (9)0.0026 (6)0.0127 (6)0.0019 (6)
C20.0666 (11)0.0461 (9)0.0536 (10)0.0036 (8)0.0101 (8)0.0017 (7)
C30.0664 (11)0.0617 (11)0.0510 (10)0.0052 (9)0.0094 (8)0.0067 (8)
C40.0508 (9)0.0664 (11)0.0460 (9)0.0104 (8)0.0140 (7)0.0036 (8)
C50.0670 (11)0.0532 (10)0.0521 (10)0.0052 (8)0.0163 (8)0.0098 (8)
C60.0601 (10)0.0460 (9)0.0513 (9)0.0004 (7)0.0120 (8)0.0020 (7)
N70.0606 (8)0.0417 (7)0.0457 (8)0.0052 (6)0.0086 (6)0.0038 (6)
C80.0486 (8)0.0430 (8)0.0489 (9)0.0007 (6)0.0104 (7)0.0026 (7)
O90.0930 (10)0.0484 (7)0.0575 (8)0.0185 (6)0.0043 (7)0.0096 (6)
C100.0474 (8)0.0413 (8)0.0481 (9)0.0002 (6)0.0111 (7)0.0035 (6)
C110.0661 (11)0.0479 (9)0.0487 (9)0.0038 (8)0.0051 (8)0.0052 (7)
N120.1270 (17)0.0518 (10)0.0645 (11)0.0132 (10)0.0026 (11)0.0068 (8)
C130.0472 (8)0.0436 (8)0.0488 (9)0.0030 (6)0.0095 (7)0.0040 (7)
N140.0512 (8)0.0475 (7)0.0470 (8)0.0036 (6)0.0075 (6)0.0023 (6)
C150.0744 (12)0.0572 (11)0.0552 (11)0.0030 (9)0.0017 (9)0.0055 (9)
C160.0754 (13)0.0580 (11)0.0566 (11)0.0008 (9)0.0075 (9)0.0120 (8)
C170.0735 (13)0.0897 (15)0.0473 (10)0.0133 (11)0.0114 (9)0.0043 (10)
Geometric parameters (Å, º) top
C1—C61.390 (2)C10—C131.378 (2)
C1—C21.394 (2)C10—C111.420 (2)
C1—N71.415 (2)C11—N121.148 (2)
C2—C31.381 (3)C13—N141.320 (2)
C2—H20.9300C13—H130.9300
C3—C41.387 (3)N14—C161.455 (2)
C3—H30.9300N14—C151.461 (2)
C4—C51.383 (3)C15—H15A0.9600
C4—C171.511 (3)C15—H15B0.9600
C5—C61.385 (3)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
N7—C81.364 (2)C16—H16C0.9600
N7—H70.8600C17—H17A0.9600
C8—O91.228 (2)C17—H17B0.9600
C8—C101.482 (2)C17—H17C0.9600
C6—C1—C2118.4 (2)C11—C10—C8118.6 (2)
C6—C1—N7124.6 (2)N12—C11—C10176.4 (2)
C2—C1—N7117.0 (1)N14—C13—C10132.0 (2)
C3—C2—C1120.8 (2)N14—C13—H13114.0
C3—C2—H2119.6C10—C13—H13114.0
C1—C2—H2119.6C13—N14—C16124.1 (2)
C2—C3—C4121.5 (2)C13—N14—C15120.4 (2)
C2—C3—H3119.2C16—N14—C15115.5 (2)
C4—C3—H3119.2N14—C15—H15A109.5
C5—C4—C3117.0 (2)N14—C15—H15B109.5
C5—C4—C17121.7 (2)H15A—C15—H15B109.5
C3—C4—C17121.3 (2)N14—C15—H15C109.5
C4—C5—C6122.6 (2)H15A—C15—H15C109.5
C4—C5—H5118.7H15B—C15—H15C109.5
C6—C5—H5118.7N14—C16—H16A109.5
C5—C6—C1119.7 (2)N14—C16—H16B109.5
C5—C6—H6120.2H16A—C16—H16B109.5
C1—C6—H6120.2N14—C16—H16C109.5
C8—N7—C1128.4 (1)H16A—C16—H16C109.5
C8—N7—H7115.8H16B—C16—H16C109.5
C1—N7—H7115.8C4—C17—H17A109.5
O9—C8—N7122.5 (2)C4—C17—H17B109.5
O9—C8—C10121.6 (2)H17A—C17—H17B109.5
N7—C8—C10116.0 (1)C4—C17—H17C109.5
C13—C10—C11125.2 (2)H17A—C17—H17C109.5
C13—C10—C8116.3 (1)H17B—C17—H17C109.5
C6—C1—C2—C30.5 (3)C1—N7—C8—O90.3 (3)
N7—C1—C2—C3179.7 (2)C1—N7—C8—C10178.9 (1)
C1—C2—C3—C40.1 (3)O9—C8—C10—C1310.6 (2)
C2—C3—C4—C50.0 (3)N7—C8—C10—C13170.2 (1)
C2—C3—C4—C17179.9 (2)O9—C8—C10—C11169.1 (2)
C3—C4—C5—C60.1 (3)N7—C8—C10—C1110.1 (2)
C17—C4—C5—C6180.0 (2)C13—C10—C11—N12174 (4)
C4—C5—C6—C10.4 (3)C8—C10—C11—N126 (4)
C2—C1—C6—C50.6 (3)C11—C10—C13—N140.1 (3)
N7—C1—C6—C5179.7 (2)C8—C10—C13—N14179.5 (2)
C6—C1—N7—C83.7 (3)C10—C13—N14—C160.5 (3)
C2—C1—N7—C8175.4 (2)C10—C13—N14—C15179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O90.932.272.864 (2)121
C13—H13···O90.932.342.748 (2)106
N7—H7···N12i0.862.503.228 (2)143
C15—H15A···O9ii0.962.573.360 (2)139
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z1/2.
(II) 2-cyano-3-dimethylamino-N-(2-methoxyphenyl) acrylamide top
Crystal data top
C13H15N3O2F(000) = 520
Mr = 245.28Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5141 (3) ÅCell parameters from 5915 reflections
b = 12.7580 (6) Åθ = 2.2–28.3°
c = 13.9381 (6) ŵ = 0.09 mm1
β = 92.795 (1)°T = 293 K
V = 1334.58 (10) Å3Block, pale yellow
Z = 40.48 × 0.46 × 0.42 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
2425 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ω scansh = 99
9025 measured reflectionsk = 1616
3278 independent reflectionsl = 1218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.0796P]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H15N3O2V = 1334.58 (10) Å3
Mr = 245.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5141 (3) ŵ = 0.09 mm1
b = 12.7580 (6) ÅT = 293 K
c = 13.9381 (6) Å0.48 × 0.46 × 0.42 mm
β = 92.795 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
2425 reflections with I > 2σ(I)
9025 measured reflectionsRint = 0.041
3278 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3278 reflectionsΔρmin = 0.14 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32342 (17)0.33713 (10)0.59837 (10)0.0514 (3)
C20.31085 (17)0.44491 (10)0.57594 (11)0.0542 (3)
C30.3823 (2)0.51814 (12)0.64002 (13)0.0686 (4)
H30.37370.58930.62590.082*
C40.4662 (2)0.48520 (14)0.72487 (14)0.0786 (5)
H40.51550.53470.76740.094*
C50.4784 (2)0.38067 (15)0.74779 (13)0.0762 (5)
H50.53510.35980.80540.091*
C60.4055 (2)0.30611 (12)0.68437 (11)0.0645 (4)
H60.41220.23530.70000.077*
N70.24551 (16)0.26844 (8)0.52943 (8)0.0566 (3)
H70.16880.29590.48910.068*
C80.27600 (17)0.16353 (9)0.51832 (9)0.0492 (3)
O90.38642 (16)0.11575 (8)0.56936 (8)0.0743 (4)
C100.16552 (17)0.11172 (9)0.44245 (9)0.0471 (3)
C110.0296 (2)0.17190 (10)0.39442 (11)0.0639 (4)
N120.0784 (3)0.22659 (12)0.36191 (14)0.1057 (7)
C130.19887 (17)0.00661 (9)0.42685 (9)0.0476 (3)
H130.28880.02190.46700.057*
N140.12454 (15)0.05982 (8)0.36472 (8)0.0521 (3)
C150.1804 (2)0.16950 (10)0.36508 (13)0.0671 (4)
H15A0.27570.17940.41260.101*
H15B0.22070.18780.30290.101*
H15C0.08160.21330.37990.101*
C160.0130 (2)0.03100 (13)0.29272 (13)0.0745 (5)
H16A0.11970.01230.32380.112*
H16B0.03700.08930.25050.112*
H16C0.02680.02760.25630.112*
O170.22428 (14)0.46702 (7)0.48990 (8)0.0645 (3)
C180.2047 (2)0.57396 (11)0.46233 (14)0.0724 (5)
H18A0.14670.61180.51150.109*
H18B0.13420.57830.40320.109*
H18C0.32010.60390.45370.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (7)0.0457 (6)0.0620 (7)0.0014 (5)0.0036 (5)0.0108 (5)
C20.0442 (7)0.0436 (6)0.0753 (9)0.0007 (5)0.0089 (6)0.0125 (6)
C30.0609 (9)0.0505 (8)0.0946 (12)0.0020 (6)0.0049 (8)0.0247 (7)
C40.0679 (10)0.0749 (11)0.0926 (12)0.0002 (8)0.0004 (9)0.0392 (9)
C50.0696 (10)0.0911 (12)0.0671 (9)0.0083 (8)0.0058 (8)0.0230 (8)
C60.0660 (9)0.0611 (8)0.0660 (9)0.0059 (7)0.0010 (7)0.0100 (7)
N70.0639 (7)0.0383 (5)0.0660 (7)0.0039 (5)0.0128 (5)0.0045 (5)
C80.0531 (7)0.0395 (6)0.0544 (7)0.0044 (5)0.0024 (5)0.0001 (5)
O90.0849 (8)0.0514 (5)0.0830 (7)0.0174 (5)0.0334 (6)0.0094 (5)
C100.0536 (7)0.0380 (5)0.0495 (6)0.0035 (5)0.0016 (5)0.0014 (4)
C110.0839 (10)0.0435 (7)0.0620 (8)0.0099 (6)0.0207 (7)0.0050 (6)
N120.1331 (15)0.0691 (9)0.1086 (12)0.0380 (9)0.0599 (11)0.0161 (8)
C130.0520 (7)0.0403 (6)0.0503 (6)0.0022 (5)0.0001 (5)0.0019 (5)
N140.0573 (6)0.0398 (5)0.0588 (6)0.0007 (4)0.0010 (5)0.0039 (4)
C150.0752 (10)0.0398 (7)0.0858 (10)0.0011 (6)0.0020 (8)0.0093 (6)
C160.0795 (11)0.0659 (9)0.0757 (10)0.0080 (8)0.0216 (8)0.0143 (8)
O170.0706 (6)0.0385 (5)0.0837 (7)0.0012 (4)0.0037 (5)0.0012 (4)
C180.0725 (10)0.0397 (7)0.1056 (13)0.0046 (6)0.0093 (9)0.0032 (7)
Geometric parameters (Å, º) top
C1—C61.379 (2)C10—C111.419 (2)
C1—N71.407 (2)C11—N121.147 (2)
C1—C21.412 (2)C13—N141.316 (2)
C2—O171.366 (2)C13—H130.9300
C2—C31.383 (2)N14—C161.452 (2)
C3—C41.379 (3)N14—C151.461 (2)
C3—H30.9300C15—H15A0.9600
C4—C51.373 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.392 (2)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
N7—C81.368 (2)O17—C181.423 (2)
N7—H70.8600C18—H18A0.9600
C8—O91.228 (2)C18—H18B0.9600
C8—C101.469 (2)C18—H18C0.9600
C10—C131.383 (2)
C6—C1—N7124.6 (1)N12—C11—C10174.1 (2)
C6—C1—C2119.6 (1)N14—C13—C10130.8 (1)
N7—C1—C2115.7 (1)N14—C13—H13114.6
O17—C2—C3125.5 (1)C10—C13—H13114.6
O17—C2—C1114.8 (1)C13—N14—C16123.8 (1)
C3—C2—C1119.7 (2)C13—N14—C15120.1 (1)
C4—C3—C2119.7 (2)C16—N14—C15116.1 (1)
C4—C3—H3120.2N14—C15—H15A109.5
C2—C3—H3120.2N14—C15—H15B109.5
C5—C4—C3121.2 (2)H15A—C15—H15B109.5
C5—C4—H4119.4N14—C15—H15C109.5
C3—C4—H4119.4H15A—C15—H15C109.5
C4—C5—C6119.7 (2)H15B—C15—H15C109.5
C4—C5—H5120.1N14—C16—H16A109.5
C6—C5—H5120.1N14—C16—H16B109.5
C1—C6—C5120.1 (2)H16A—C16—H16B109.5
C1—C6—H6120.0N14—C16—H16C109.5
C5—C6—H6120.0H16A—C16—H16C109.5
C8—N7—C1128.4 (1)H16B—C16—H16C109.5
C8—N7—H7115.8C2—O17—C18118.3 (1)
C1—N7—H7115.8O17—C18—H18A109.5
O9—C8—N7122.2 (1)O17—C18—H18B109.5
O9—C8—C10122.4 (1)H18A—C18—H18B109.5
N7—C8—C10115.5 (1)O17—C18—H18C109.5
C13—C10—C11125.6 (1)H18A—C18—H18C109.5
C13—C10—C8116.7 (1)H18B—C18—H18C109.5
C11—C10—C8117.7 (1)
C6—C1—C2—O17178.9 (1)C1—N7—C8—C10176.6 (1)
N7—C1—C2—O170.0 (2)O9—C8—C10—C133.8 (2)
C6—C1—C2—C30.5 (2)N7—C8—C10—C13177.3 (1)
N7—C1—C2—C3179.4 (1)O9—C8—C10—C11173.6 (2)
O17—C2—C3—C4179.8 (1)N7—C8—C10—C115.3 (2)
C1—C2—C3—C40.5 (2)C13—C10—C11—N12162 (2)
C2—C3—C4—C50.9 (2)C8—C10—C11—N1215 (2)
C3—C4—C5—C60.2 (3)C11—C10—C13—N143.4 (2)
N7—C1—C6—C5179.9 (1)C8—C10—C13—N14179.4 (1)
C2—C1—C6—C51.2 (2)C10—C13—N14—C162.7 (2)
C4—C5—C6—C10.8 (2)C10—C13—N14—C15177.8 (1)
C6—C1—N7—C820.2 (2)C3—C2—O17—C180.1 (2)
C2—C1—N7—C8161.0 (1)C1—C2—O17—C18179.5 (1)
C1—N7—C8—O92.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O90.932.382.910 (2)116
C13—H13···O90.932.362.756 (2)106
N7—H7···O170.862.222.596 (1)106
C4—H4···O9i0.932.573.452 (2)158
C18—H18C···Cgii0.962.753.551 (1)141
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H15N3OC13H15N3O2
Mr229.28245.28
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)7.5846 (3), 22.4477 (10), 7.5989 (3)7.5141 (3), 12.7580 (6), 13.9381 (6)
β (°) 106.306 (1) 92.795 (1)
V3)1241.72 (9)1334.58 (10)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.09
Crystal size (mm)0.48 × 0.40 × 0.160.48 × 0.46 × 0.42
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Siemens SMART CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8417, 3022, 2242 9025, 3278, 2425
Rint0.0370.041
(sin θ/λ)max1)0.6660.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.169, 1.04 0.048, 0.152, 1.05
No. of reflections30223278
No. of parameters157166
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.150.19, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2003), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
C1—N71.415 (2)C10—C131.378 (2)
C4—C171.511 (3)C10—C111.420 (2)
N7—C81.364 (2)C11—N121.148 (2)
C8—O91.228 (2)C13—N141.320 (2)
C6—C1—N7124.6 (2)N14—C13—C10132.0 (2)
C2—C1—N7117.0 (1)C13—N14—C16124.1 (2)
C8—N7—C1128.4 (1)C13—N14—C15120.4 (2)
O9—C8—N7122.5 (2)C16—N14—C15115.5 (2)
C6—C1—N7—C83.7 (3)N7—C8—C10—C13170.2 (1)
C1—N7—C8—C10178.9 (1)C11—C10—C13—N140.1 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O90.932.272.864 (2)121
C13—H13···O90.932.342.748 (2)106
N7—H7···N12i0.862.503.228 (2)143
C15—H15A···O9ii0.962.573.360 (2)139
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
C1—N71.407 (2)C10—C111.419 (2)
N7—C81.368 (2)C11—N121.147 (2)
C8—O91.228 (2)C13—N141.316 (2)
C10—C131.383 (2)
C6—C1—N7124.6 (1)N14—C13—C10130.8 (1)
N7—C1—C2115.7 (1)C13—N14—C16123.8 (1)
C8—N7—C1128.4 (1)C13—N14—C15120.1 (1)
O9—C8—N7122.2 (1)C16—N14—C15116.1 (1)
C6—C1—N7—C820.2 (2)C11—C10—C13—N143.4 (2)
C1—N7—C8—C10176.6 (1)C1—C2—O17—C18179.5 (1)
N7—C8—C10—C13177.3 (1)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O90.932.382.910 (2)116
C13—H13···O90.932.362.756 (2)106
N7—H7···O170.862.222.596 (1)106
C4—H4···O9i0.932.573.452 (2)158
C18—H18C···Cgii0.962.753.551 (1)141
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds