Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, C19H19I2NO3 and C19H19Br2NO3, are derivatives of α-amino­isobutyric acid with halogen substituents at the para and meta positions, respectively. The ethoxycarbonyl and formamide side chains attached to the Cα atom of the mol­ecule adopt extended and folded conformations, respectively. The crystal structures are stabilized by N—H...O, C—H...O, C—Br...O and C—I...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103005183/na1593sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103005183/na1593Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103005183/na1593IIsup3.hkl
Contains datablock II

CCDC references: 211752; 211753

Comment top

Recently, there has been an increasing interest in the synthesis of structural variations of α-aminoisobutyric acid (Aib) with the aim of incorporating them into peptides (Karle et al., 1994; Ramesh & Balaram, 1999; Formaggio et al., 2000). Dibenzylglycine (Dbzg) is a special structural variant of Aib (Kotha et al., 2002; Scott et al., 1997). The presence of two benzyl groups at α position of Dbzg not only provides rigidity to the peptide backbone, but also acts as a useful vehicle for studying ππ interaction (Studer & Seebach, 1995; Damodharan, Shamaladevi et al., 2002). In this paper, we present the crystal structures of two derivatives of Dbzg with iodine- and bromine-substituted at para and meta position of the benzene rings, namely ethyl 2-formamido-2-(4-iodobenzyl)-3-(4-iodophenyl)propanoate, (I), and ethyl 2-formamido-2-(3-bromobenzyl)-3-(3-bromophenyl)propanoate, (II).

Compound (I) crystallizes from acetone–dichloromethane (1:1), while compound (II) crystallizes from n-propanol–dichloromethane (1:3) both in the P21/n space group (Fig. 1). The I and Br atoms are coplanar with their respective benzene rings. The N-formyl and ethyl ester side chains adopt folded and extended conformations in both compounds [C1—N1—C19—O19 = 2.8 (8) and 2.1 (7)°, and C16—O17—C17—C18 = −175.8 (7) and −169 (1)° in (I) and (II), respectively]. The N-formyl side chain is planar in both compounds. The dihedral angles between the two benzene rings are 68.9 (1) and 62.0 (2)° in (I) and (II), respectively. The terminal atom C18 of the ethyl ester side chains of compound (I) shows high anistropic displacement parameters and in compound (II), atoms C17 and C18 show disorder. There is no significant variation in the conformation of the two compounds (Fig. 2), except for the angle between the two phenyl rings and ethyl ester side chains.

A trans-annular hydrogen bond (Damodharan, Syed Ibrahim et al., 2002) (N1—H···O16, connecting the symmetry related molecules) is present in compound (II). Compound (I) is devoid of the trans-annular hydrogen bond due to steric clashes of iodine at para-position with its symmetry-related molecule. Atom N1 in the N-formyl side chain of (I) participates in a three-centered N—H···O interaction with atoms O16 and O19i (Table 1). In compound (II), the N1—H1···O16 and N1—H1···O16i is bifurcated. An C—I···O-type interaction has also been observed in the packing of compound (I) (Fig. 3a). The distance between I13···O16(-x, 1 − y, −z) is 3.333 (4) Å.

The C7—Br7 and C12—Br12 bond lengths are 1.901 (4) and 1.923 (6) Å, respectively, in compound (II), which is longer than the accepted value of 1.89 Å for bromine bonded to a Csp2 atom. The elongation of the C12—Br12 bond may be due to the electron-withdrawing nature of the Br atom (Dewar & Schmeizing, 1969; Leser & Rabinovich, 1978).

A C—Br···O-type interaction is observed in the packing of compound (II) (Fig. 3 b). The Br7···O19(1/2 + x, 1/2 − y, 1/2 + z) distance is 3.053 (3) Å. Hassel & Roming (1962) have also observed the presence of an attractive interaction between a bonded halogen and an O atom. They interpreted it as a charge transfer between an electron-pair donor (O, N or S) and an electron-pair acceptor.

Experimental top

Compound (I) was synthesized under phase-transfer conditions (PTC) using ethyl isocyanoacetate as a glycine equivalent (see Scheme 1) in a four-step sequence starting from p-toluidine (Kotha & Brahmachary, 1997; Kotha & Brahmachary, 2000). Thus, diazotization of compound (1) and subsequent iodination of the diazo derivative with KI gave 4-iodotoluene, (2). Benzylic bromination of (2) with NBS (please define) in the presence of AIBN/CCl4 reflux conditions gave (3). Alkylation of ethyl isocyanoacetate with (3) under PTC conditions gave the dialkylated product (4). Hydrolysis of the coupling product was achieved by treating (4) in HCl/diethyl ether/H2O solution at room temperature for a few hours to give the N-formyl derivative, (I). A similar procedure was used to synthesize compound (II).

Refinement top

The H atoms were fixed geometrically at calculated position.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) compound (I) and (b) compound (II), showing 50% probability displacement ellipsoids and the atomic numbering schemes.
[Figure 2] Fig. 2. Stereoview of the superposition of compound (I) (grey) and (II) (black).
[Figure 3] Fig. 3. Stereoviews of the packing of (a) molecules of compound (I), showing C—H···O and N—H···O interactions along the ab plane, and (b) molecules of compound (II), showing N—H···O interactions along the bc plane.
(I) ethyl 2-formamido-2-(4-iodobenzyl)-3-(4-iodophenyl)propanoate top
Crystal data top
C19H19I2NO3F(000) = 1080
Mr = 563.15Dx = 1.816 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.982 (7) ÅCell parameters from 3103 reflections
b = 8.922 (5) Åθ = 2.3–26.2°
c = 16.533 (8) ŵ = 3.07 mm1
β = 92.976 (8)°T = 293 K
V = 2059.8 (18) Å3Prism, colourless
Z = 40.76 × 0.46 × 0.29 mm
Data collection top
CCD Area Detector
diffractometer
4852 independent reflections
Radiation source: fine-focus sealed tube4008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1818
Tmin = 0.203, Tmax = 0.472k = 1111
32912 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0899P)2 + 2.926P]
where P = (Fo2 + 2Fc2)/3
4852 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C19H19I2NO3V = 2059.8 (18) Å3
Mr = 563.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.982 (7) ŵ = 3.07 mm1
b = 8.922 (5) ÅT = 293 K
c = 16.533 (8) Å0.76 × 0.46 × 0.29 mm
β = 92.976 (8)°
Data collection top
CCD Area Detector
diffractometer
4852 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4008 reflections with I > 2σ(I)
Tmin = 0.203, Tmax = 0.472Rint = 0.036
32912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 1.47 e Å3
4852 reflectionsΔρmin = 0.58 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I130.14253 (3)0.35627 (4)0.04848 (3)0.07422 (17)
I60.76573 (4)0.46913 (7)0.23825 (4)0.1169 (3)
O170.4014 (2)0.2510 (3)0.02073 (18)0.0522 (7)
O160.3415 (3)0.4393 (3)0.0552 (2)0.0590 (8)
O190.2259 (3)0.0578 (4)0.2465 (2)0.0745 (10)
N10.2725 (3)0.2609 (4)0.1717 (2)0.0460 (8)
H10.27050.35720.17050.055*
C100.1585 (3)0.1453 (5)0.0362 (3)0.0505 (10)
C10.3199 (3)0.1841 (4)0.1025 (2)0.0423 (8)
C20.4070 (3)0.0930 (4)0.1283 (3)0.0461 (9)
H2A0.42860.02950.08340.055*
H2B0.38610.02780.17270.055*
C30.4913 (3)0.1834 (4)0.1543 (2)0.0448 (8)
C160.3541 (3)0.3085 (4)0.0438 (2)0.0432 (8)
C90.2508 (3)0.0762 (5)0.0606 (3)0.0504 (9)
H9A0.23560.00660.09710.060*
H9B0.28400.03520.01260.060*
C150.1539 (3)0.2264 (6)0.0348 (3)0.0587 (11)
H150.20910.23870.06800.070*
C110.0739 (4)0.1295 (7)0.0841 (4)0.0714 (14)
H110.07520.07820.13300.086*
C140.0690 (4)0.2896 (6)0.0575 (3)0.0634 (12)
H140.06800.34690.10440.076*
C40.5750 (3)0.1886 (6)0.1072 (3)0.0613 (11)
H40.57920.13640.05840.074*
C190.2324 (4)0.1928 (6)0.2364 (3)0.0578 (11)
H190.20690.25380.27770.069*
C80.4884 (4)0.2638 (7)0.2263 (3)0.0655 (13)
H80.43280.26240.25970.079*
C120.0107 (4)0.1877 (8)0.0609 (4)0.0741 (15)
H120.06640.17360.09320.089*
C130.0138 (3)0.2675 (5)0.0107 (3)0.0557 (10)
C60.6486 (4)0.3465 (5)0.2010 (3)0.0632 (13)
C170.4373 (5)0.3587 (6)0.0815 (3)0.0761 (16)
H17A0.47660.43290.05620.091*
H17B0.38370.41020.10430.091*
C70.5658 (5)0.3453 (6)0.2494 (4)0.0718 (14)
H70.56210.39930.29750.086*
C50.6534 (4)0.2697 (7)0.1306 (4)0.0725 (14)
H50.70940.27120.09770.087*
C180.4924 (8)0.2847 (8)0.1447 (5)0.128 (4)
H18A0.51610.35720.18370.192*
H18B0.54540.23390.12210.192*
H18C0.45290.21320.17070.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I130.0552 (2)0.0728 (3)0.0959 (3)0.00482 (15)0.01487 (18)0.00889 (18)
I60.1045 (4)0.1038 (4)0.1479 (5)0.0480 (3)0.0587 (3)0.0310 (3)
O170.0611 (18)0.0434 (15)0.0512 (16)0.0017 (13)0.0065 (14)0.0052 (12)
O160.075 (2)0.0330 (14)0.0683 (19)0.0016 (14)0.0061 (16)0.0049 (13)
O190.091 (3)0.056 (2)0.074 (2)0.0096 (19)0.016 (2)0.0140 (17)
N10.0497 (18)0.0317 (15)0.0557 (19)0.0002 (13)0.0046 (15)0.0015 (14)
C100.048 (2)0.046 (2)0.058 (2)0.0104 (17)0.0014 (19)0.0101 (18)
C10.0422 (19)0.0308 (16)0.054 (2)0.0020 (15)0.0001 (16)0.0001 (16)
C20.047 (2)0.0322 (17)0.059 (2)0.0031 (16)0.0004 (18)0.0025 (16)
C30.051 (2)0.0371 (18)0.047 (2)0.0041 (16)0.0052 (17)0.0084 (16)
C160.0409 (19)0.0393 (19)0.049 (2)0.0000 (15)0.0016 (16)0.0029 (16)
C90.048 (2)0.0362 (19)0.067 (3)0.0017 (16)0.0030 (19)0.0049 (18)
C150.048 (2)0.074 (3)0.054 (2)0.007 (2)0.0027 (19)0.001 (2)
C110.054 (3)0.086 (4)0.073 (3)0.007 (3)0.003 (2)0.025 (3)
C140.057 (3)0.074 (3)0.059 (3)0.010 (2)0.009 (2)0.010 (2)
C40.048 (2)0.075 (3)0.061 (3)0.006 (2)0.001 (2)0.007 (2)
C190.061 (3)0.054 (3)0.057 (3)0.002 (2)0.011 (2)0.000 (2)
C80.059 (3)0.084 (4)0.052 (3)0.000 (3)0.001 (2)0.002 (2)
C120.045 (3)0.096 (4)0.080 (3)0.003 (3)0.008 (2)0.009 (3)
C130.048 (2)0.054 (2)0.066 (3)0.0077 (19)0.008 (2)0.011 (2)
C60.059 (3)0.055 (3)0.077 (3)0.004 (2)0.021 (2)0.017 (2)
C170.101 (4)0.059 (3)0.066 (3)0.001 (3)0.019 (3)0.015 (2)
C70.080 (4)0.069 (3)0.069 (3)0.000 (3)0.019 (3)0.010 (2)
C50.049 (3)0.091 (4)0.078 (3)0.005 (3)0.003 (2)0.007 (3)
C180.179 (9)0.074 (4)0.121 (6)0.033 (5)0.080 (7)0.030 (4)
Geometric parameters (Å, º) top
I13—C132.091 (5)C15—H150.9300
I6—C62.089 (5)C11—C121.365 (8)
O17—C161.329 (5)C11—H110.9300
O17—C171.460 (6)C14—C131.373 (7)
O16—C161.194 (5)C14—H140.9300
O19—C191.219 (6)C4—C51.385 (8)
N1—C191.329 (6)C4—H40.9300
N1—C11.463 (5)C19—H190.9300
N1—H10.8600C8—C71.374 (8)
C10—C151.383 (7)C8—H80.9300
C10—C111.396 (7)C12—C131.384 (8)
C10—C91.504 (6)C12—H120.9300
C1—C161.534 (5)C6—C51.349 (8)
C1—C21.543 (5)C6—C71.373 (8)
C1—C91.552 (6)C17—C181.427 (9)
C2—C31.509 (6)C17—H17A0.9700
C2—H2A0.9700C17—H17B0.9700
C2—H2B0.9700C7—H70.9300
C3—C41.373 (6)C5—H50.9300
C3—C81.389 (7)C18—H18A0.9600
C9—H9A0.9700C18—H18B0.9600
C9—H9B0.9700C18—H18C0.9600
C15—C141.384 (7)
C16—O17—C17115.9 (4)C13—C14—H14120.0
C19—N1—C1124.8 (4)C15—C14—H14120.0
C19—N1—H1117.6C3—C4—C5121.5 (5)
C1—N1—H1117.6C3—C4—H4119.2
C15—C10—C11117.3 (5)C5—C4—H4119.2
C15—C10—C9121.3 (4)O19—C19—N1126.0 (5)
C11—C10—C9121.4 (4)O19—C19—H19117.0
N1—C1—C16105.6 (3)N1—C19—H19117.0
N1—C1—C2111.2 (3)C7—C8—C3121.5 (5)
C16—C1—C2109.4 (3)C7—C8—H8119.3
N1—C1—C9111.8 (3)C3—C8—H8119.3
C16—C1—C9110.4 (3)C13—C12—C11120.2 (5)
C2—C1—C9108.4 (3)C13—C12—H12119.9
C3—C2—C1115.9 (3)C11—C12—H12119.9
C3—C2—H2A108.3C14—C13—C12119.5 (5)
C1—C2—H2A108.3C14—C13—I13119.4 (4)
C3—C2—H2B108.3C12—C13—I13121.1 (4)
C1—C2—H2B108.3C5—C6—C7120.1 (5)
H2A—C2—H2B107.4C5—C6—I6121.1 (4)
C4—C3—C8117.1 (4)C7—C6—I6118.9 (4)
C4—C3—C2120.8 (4)C18—C17—O17110.6 (5)
C8—C3—C2122.1 (4)C18—C17—H17A109.5
O16—C16—O17124.5 (4)O17—C17—H17A109.5
O16—C16—C1124.7 (4)C18—C17—H17B109.5
O17—C16—C1110.8 (3)O17—C17—H17B109.5
C10—C9—C1115.4 (3)H17A—C17—H17B108.1
C10—C9—H9A108.4C8—C7—C6119.7 (5)
C1—C9—H9A108.4C8—C7—H7120.2
C10—C9—H9B108.4C6—C7—H7120.2
C1—C9—H9B108.4C6—C5—C4120.1 (5)
H9A—C9—H9B107.5C6—C5—H5119.9
C10—C15—C14121.4 (4)C4—C5—H5119.9
C10—C15—H15119.3C17—C18—H18A109.5
C14—C15—H15119.3C17—C18—H18B109.5
C12—C11—C10121.6 (5)H18A—C18—H18B109.5
C12—C11—H11119.2C17—C18—H18C109.5
C10—C11—H11119.2H18A—C18—H18C109.5
C13—C14—C15119.9 (5)H18B—C18—H18C109.5
C19—N1—C1—C16179.8 (4)C9—C10—C15—C14179.8 (4)
C19—N1—C1—C261.6 (5)C15—C10—C11—C122.0 (9)
C19—N1—C1—C959.7 (5)C9—C10—C11—C12177.7 (5)
N1—C1—C2—C368.8 (4)C10—C15—C14—C132.5 (8)
C16—C1—C2—C347.5 (5)C8—C3—C4—C50.3 (7)
C9—C1—C2—C3167.8 (4)C2—C3—C4—C5179.3 (5)
C1—C2—C3—C4109.9 (5)C1—N1—C19—O192.8 (8)
C1—C2—C3—C870.4 (5)C4—C3—C8—C70.2 (8)
C17—O17—C16—O161.6 (7)C2—C3—C8—C7179.8 (5)
C17—O17—C16—C1179.6 (4)C10—C11—C12—C131.5 (10)
N1—C1—C16—O160.8 (6)C15—C14—C13—C122.9 (8)
C2—C1—C16—O16120.6 (5)C15—C14—C13—I13177.5 (4)
C9—C1—C16—O16120.3 (5)C11—C12—C13—C141.0 (9)
N1—C1—C16—O17177.9 (3)C11—C12—C13—I13179.4 (5)
C2—C1—C16—O1758.1 (4)C16—O17—C17—C18175.8 (7)
C9—C1—C16—O1761.0 (4)C3—C8—C7—C60.8 (8)
C15—C10—C9—C181.7 (5)C5—C6—C7—C80.9 (8)
C11—C10—C9—C198.6 (5)I6—C6—C7—C8179.2 (4)
N1—C1—C9—C1053.3 (5)C7—C6—C5—C40.4 (8)
C16—C1—C9—C1064.0 (5)I6—C6—C5—C4179.7 (4)
C2—C1—C9—C10176.2 (4)C3—C4—C5—C60.2 (9)
C11—C10—C15—C140.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O19i0.862.262.975 (5)141
C9—H9A···O190.972.533.080 (6)116
C9—H9B···O170.972.572.896 (5)100
C2—H2B···O190.972.513.133 (6)122
N1—H1···O160.862.232.643 (5)110
Symmetry code: (i) x+1/2, y+1/2, z1/2.
(II) ethyl 2-formamido-2-(3-bromobenzyl)-3-(3-bromophenyl)propanoate top
Crystal data top
C19H19Br2NO3F(000) = 936
Mr = 469.17Dx = 1.569 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.380 (3) ÅCell parameters from 4648 reflections
b = 14.867 (3) Åθ = 2.1–29.8°
c = 12.525 (3) ŵ = 4.10 mm1
β = 110.431 (4)°T = 293 K
V = 1985.8 (7) Å3Irregular, colorless
Z = 40.43 × 0.25 × 0.18 mm
Data collection top
Bruker CCD area-detector
diffractometer
4648 independent reflections
Radiation source: fine-focus sealed tube2163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1414
Tmin = 0.272, Tmax = 0.526k = 1919
17080 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0772P)2]
where P = (Fo2 + 2Fc2)/3
4648 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 1.14 e Å3
111 restraintsΔρmin = 0.74 e Å3
Crystal data top
C19H19Br2NO3V = 1985.8 (7) Å3
Mr = 469.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.380 (3) ŵ = 4.10 mm1
b = 14.867 (3) ÅT = 293 K
c = 12.525 (3) Å0.43 × 0.25 × 0.18 mm
β = 110.431 (4)°
Data collection top
Bruker CCD area-detector
diffractometer
4648 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2163 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.526Rint = 0.092
17080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051111 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 0.88Δρmax = 1.14 e Å3
4648 reflectionsΔρmin = 0.74 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br70.94125 (5)0.08506 (3)0.15153 (4)0.0729 (2)
Br120.75848 (8)0.87262 (5)0.05108 (7)0.1237 (3)
O190.5956 (3)0.5488 (2)0.1695 (3)0.0736 (9)
C10.7637 (3)0.4759 (3)0.0458 (3)0.0452 (9)
C70.8655 (4)0.1728 (3)0.0379 (4)0.0537 (10)
O170.8801 (3)0.4208 (2)0.2294 (3)0.0769 (10)
N10.7910 (3)0.5094 (2)0.0518 (3)0.0482 (8)
H10.86810.50920.04740.058*
C20.6827 (4)0.3892 (3)0.0132 (4)0.0522 (10)
H2A0.65640.37260.07630.063*
H2B0.60790.40220.05170.063*
C150.8427 (4)0.6540 (4)0.2301 (4)0.0709 (13)
H150.86110.61020.28660.085*
C80.8061 (4)0.2448 (3)0.0656 (4)0.0550 (11)
H80.80370.24990.13890.066*
O160.9890 (3)0.4640 (3)0.1224 (3)0.0779 (10)
C190.7064 (5)0.5406 (3)0.1477 (4)0.0570 (11)
H190.73690.55810.20450.068*
C30.7493 (4)0.3100 (3)0.0158 (4)0.0531 (10)
C110.7327 (4)0.7018 (3)0.0406 (4)0.0670 (12)
H110.67580.69140.03230.080*
C90.6931 (4)0.5455 (3)0.0941 (4)0.0592 (11)
H9A0.60960.55410.03880.071*
H9B0.68430.52090.16260.071*
C160.8914 (4)0.4540 (3)0.1353 (4)0.0553 (11)
C60.8729 (4)0.1630 (3)0.0687 (4)0.0646 (12)
H60.91440.11450.08630.078*
C130.8757 (5)0.8022 (4)0.1734 (5)0.0825 (15)
H130.91420.85820.19010.099*
C50.8163 (5)0.2280 (3)0.1482 (4)0.0705 (13)
H50.82000.22310.22100.085*
C100.7570 (4)0.6357 (3)0.1220 (4)0.0576 (11)
C40.7550 (4)0.2995 (3)0.1235 (4)0.0615 (11)
H40.71670.34160.17980.074*
C140.9001 (5)0.7369 (4)0.2537 (5)0.0861 (16)
H140.95700.74820.32640.103*
C120.7924 (5)0.7831 (3)0.0667 (5)0.0757 (13)
C17A1.0048 (11)0.4083 (12)0.3147 (10)0.108 (6)0.579 (15)
H17A1.05870.37580.28280.130*0.579 (15)
H17B1.04310.46580.34340.130*0.579 (15)
C18A0.9827 (11)0.3543 (9)0.4084 (9)0.142 (7)0.579 (15)
H18A1.06070.34640.47020.213*0.579 (15)
H18B0.94870.29660.37920.213*0.579 (15)
H18C0.92470.38580.43520.213*0.579 (15)
C17B0.9741 (11)0.3658 (9)0.3089 (9)0.094 (6)0.421 (15)
H17C1.04170.35150.28140.113*0.421 (15)
H17D0.93890.31050.32590.113*0.421 (15)
C18B1.017 (2)0.4279 (16)0.4110 (16)0.165 (11)0.421 (15)
H18D1.08390.39970.47140.247*0.421 (15)
H18E0.94860.44020.43630.247*0.421 (15)
H18F1.04720.48320.39010.247*0.421 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br70.0846 (4)0.0531 (3)0.0735 (4)0.0107 (2)0.0183 (3)0.0122 (2)
Br120.1617 (7)0.0705 (4)0.1280 (7)0.0252 (4)0.0368 (5)0.0021 (4)
O190.061 (2)0.068 (2)0.072 (2)0.0116 (17)0.0020 (17)0.0005 (17)
C10.041 (2)0.052 (2)0.045 (2)0.0084 (17)0.0192 (19)0.0048 (18)
C70.053 (3)0.044 (2)0.061 (3)0.0017 (19)0.015 (2)0.003 (2)
O170.074 (2)0.111 (3)0.0454 (19)0.0215 (19)0.0212 (16)0.0185 (18)
N10.0451 (19)0.053 (2)0.046 (2)0.0026 (15)0.0156 (16)0.0055 (16)
C20.050 (2)0.051 (2)0.059 (3)0.0039 (18)0.024 (2)0.010 (2)
C150.063 (3)0.088 (3)0.062 (3)0.003 (3)0.022 (2)0.021 (3)
C80.062 (3)0.051 (2)0.056 (3)0.002 (2)0.025 (2)0.004 (2)
O160.0458 (18)0.122 (3)0.063 (2)0.0101 (18)0.0159 (16)0.018 (2)
C190.068 (3)0.050 (2)0.045 (3)0.004 (2)0.010 (2)0.002 (2)
C30.052 (2)0.045 (2)0.062 (3)0.0005 (18)0.019 (2)0.004 (2)
C110.059 (3)0.058 (3)0.073 (3)0.004 (2)0.009 (2)0.019 (2)
C90.050 (2)0.060 (2)0.069 (3)0.005 (2)0.023 (2)0.008 (2)
C160.057 (3)0.064 (3)0.044 (3)0.006 (2)0.018 (2)0.005 (2)
C60.074 (3)0.057 (3)0.065 (3)0.010 (2)0.028 (3)0.006 (2)
C130.075 (3)0.082 (4)0.096 (4)0.023 (3)0.036 (3)0.045 (3)
C50.094 (4)0.067 (3)0.053 (3)0.010 (3)0.029 (3)0.001 (2)
C100.047 (2)0.061 (3)0.067 (3)0.000 (2)0.021 (2)0.019 (2)
C40.072 (3)0.051 (2)0.057 (3)0.008 (2)0.017 (2)0.006 (2)
C140.071 (3)0.114 (5)0.067 (4)0.013 (3)0.016 (3)0.043 (3)
C120.076 (3)0.063 (3)0.089 (4)0.009 (3)0.030 (3)0.019 (3)
C17A0.063 (6)0.174 (17)0.067 (8)0.006 (9)0.003 (5)0.034 (9)
C18A0.112 (10)0.188 (17)0.112 (12)0.032 (11)0.020 (8)0.081 (12)
C17B0.097 (13)0.126 (15)0.063 (9)0.012 (10)0.032 (8)0.042 (7)
C18B0.149 (19)0.16 (2)0.115 (15)0.026 (17)0.041 (14)0.008 (15)
Geometric parameters (Å, º) top
Br7—C71.901 (4)C11—C101.373 (6)
Br12—C121.923 (6)C11—H110.9300
O19—C191.200 (5)C9—C101.507 (6)
C1—N11.450 (5)C9—H9A0.9700
C1—C161.529 (6)C9—H9B0.9700
C1—C21.554 (5)C6—C51.376 (6)
C1—C91.555 (5)C6—H60.9300
C7—C81.373 (5)C13—C141.355 (8)
C7—C61.375 (6)C13—C121.371 (7)
O17—C161.325 (5)C13—H130.9300
O17—C17B1.436 (11)C5—C41.365 (6)
O17—C17A1.460 (11)C5—H50.9300
N1—C191.334 (5)C4—H40.9300
N1—H10.8600C14—H140.9300
C2—C31.510 (6)C17A—C18A1.513 (15)
C2—H2A0.9700C17A—H17A0.9700
C2—H2B0.9700C17A—H17B0.9700
C15—C141.378 (7)C18A—H18A0.9600
C15—C101.392 (6)C18A—H18B0.9600
C15—H150.9300C18A—H18C0.9600
C8—C31.392 (6)C17B—C18B1.513 (17)
C8—H80.9300C17B—H17C0.9700
O16—C161.186 (5)C17B—H17D0.9700
C19—H190.9300C18B—H18D0.9600
C3—C41.383 (6)C18B—H18E0.9600
C11—C121.369 (6)C18B—H18F0.9600
N1—C1—C16105.2 (3)C7—C6—C5117.1 (4)
N1—C1—C2110.2 (3)C7—C6—H6121.4
C16—C1—C2109.9 (3)C5—C6—H6121.4
N1—C1—C9113.0 (3)C14—C13—C12118.0 (5)
C16—C1—C9110.1 (3)C14—C13—H13121.0
C2—C1—C9108.3 (3)C12—C13—H13121.0
C8—C7—C6122.1 (4)C4—C5—C6122.0 (4)
C8—C7—Br7118.7 (3)C4—C5—H5119.0
C6—C7—Br7119.2 (3)C6—C5—H5119.0
C16—O17—C17B123.3 (6)C11—C10—C15118.3 (4)
C16—O17—C17A109.1 (6)C11—C10—C9120.6 (4)
C17B—O17—C17A28.5 (9)C15—C10—C9121.1 (5)
C19—N1—C1125.4 (4)C5—C4—C3120.7 (4)
C19—N1—H1117.3C5—C4—H4119.6
C1—N1—H1117.3C3—C4—H4119.6
C3—C2—C1114.1 (3)C13—C14—C15121.5 (5)
C3—C2—H2A108.7C13—C14—H14119.3
C1—C2—H2A108.7C15—C14—H14119.3
C3—C2—H2B108.7C11—C12—C13122.1 (5)
C1—C2—H2B108.7C11—C12—Br12118.5 (4)
H2A—C2—H2B107.6C13—C12—Br12119.4 (4)
C14—C15—C10120.1 (5)C18A—C17A—O17104.7 (10)
C14—C15—H15119.9C18A—C17A—H17A110.8
C10—C15—H15119.9O17—C17A—H17A110.8
C7—C8—C3120.1 (4)C18A—C17A—H17B110.8
C7—C8—H8120.0O17—C17A—H17B110.8
C3—C8—H8120.0H17A—C17A—H17B108.9
O19—C19—N1127.7 (4)C17A—C18A—H18A109.5
O19—C19—H19116.2C17A—C18A—H18B109.5
N1—C19—H19116.2H18A—C18A—H18B109.5
C4—C3—C8117.9 (4)C17A—C18A—H18C109.5
C4—C3—C2121.4 (4)H18A—C18A—H18C109.5
C8—C3—C2120.7 (4)H18B—C18A—H18C109.5
C12—C11—C10120.0 (4)O17—C17B—C18B100.5 (11)
C12—C11—H11120.0O17—C17B—H17C111.7
C10—C11—H11120.0C18B—C17B—H17C111.7
C10—C9—C1114.1 (3)O17—C17B—H17D111.7
C10—C9—H9A108.7C18B—C17B—H17D111.7
C1—C9—H9A108.7H17C—C17B—H17D109.4
C10—C9—H9B108.7C17B—C18B—H18D109.5
C1—C9—H9B108.7C17B—C18B—H18E109.5
H9A—C9—H9B107.6H18D—C18B—H18E109.5
O16—C16—O17123.6 (4)C17B—C18B—H18F109.5
O16—C16—C1124.7 (4)H18D—C18B—H18F109.5
O17—C16—C1111.6 (4)H18E—C18B—H18F109.5
C16—C1—N1—C19176.6 (4)C2—C1—C16—O1760.2 (4)
C2—C1—N1—C1965.0 (5)C9—C1—C16—O1759.1 (5)
C9—C1—N1—C1956.4 (5)C8—C7—C6—C50.9 (7)
N1—C1—C2—C366.0 (4)Br7—C7—C6—C5179.8 (3)
C16—C1—C2—C349.6 (5)C7—C6—C5—C40.1 (7)
C9—C1—C2—C3169.9 (4)C12—C11—C10—C150.2 (6)
C6—C7—C8—C30.9 (6)C12—C11—C10—C9179.3 (4)
Br7—C7—C8—C3179.8 (3)C14—C15—C10—C110.4 (7)
C1—N1—C19—O192.1 (7)C14—C15—C10—C9179.9 (4)
C7—C8—C3—C40.1 (6)C1—C9—C10—C1188.3 (5)
C7—C8—C3—C2179.6 (4)C1—C9—C10—C1591.2 (5)
C1—C2—C3—C483.5 (5)C6—C5—C4—C31.1 (7)
C1—C2—C3—C897.1 (4)C8—C3—C4—C51.0 (6)
N1—C1—C9—C1053.6 (5)C2—C3—C4—C5179.5 (4)
C16—C1—C9—C1063.7 (5)C12—C13—C14—C150.6 (8)
C2—C1—C9—C10176.0 (4)C10—C15—C14—C130.2 (8)
C17B—O17—C16—O1622.0 (9)C10—C11—C12—C131.0 (7)
C17A—O17—C16—O165.7 (10)C10—C11—C12—Br12178.5 (3)
C17B—O17—C16—C1157.0 (7)C14—C13—C12—C111.2 (8)
C17A—O17—C16—C1175.3 (8)C14—C13—C12—Br12178.2 (4)
N1—C1—C16—O160.1 (6)C16—O17—C17A—C18A169.4 (11)
C2—C1—C16—O16118.7 (5)C17B—O17—C17A—C18A43.9 (9)
C9—C1—C16—O16122.0 (5)C16—O17—C17B—C18B112.9 (15)
N1—C1—C16—O17178.9 (3)C17A—O17—C17B—C18B45.9 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O160.862.202.620 (4)110
C2—H2B···O190.972.613.205 (5)120
C9—H9A···O190.972.563.095 (6)115
N1—H1···O16i0.862.182.959 (5)150
Symmetry code: (i) x+2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H19I2NO3C19H19Br2NO3
Mr563.15469.17
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)13.982 (7), 8.922 (5), 16.533 (8)11.380 (3), 14.867 (3), 12.525 (3)
β (°) 92.976 (8) 110.431 (4)
V3)2059.8 (18)1985.8 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)3.074.10
Crystal size (mm)0.76 × 0.46 × 0.290.43 × 0.25 × 0.18
Data collection
DiffractometerCCD Area Detector
diffractometer
Bruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.203, 0.4720.272, 0.526
No. of measured, independent and
observed [I > 2σ(I)] reflections
32912, 4852, 4008 17080, 4648, 2163
Rint0.0360.092
(sin θ/λ)max1)0.6650.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.160, 1.01 0.051, 0.147, 0.88
No. of reflections48524648
No. of parameters226242
No. of restraints0111
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 0.581.14, 0.74

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1999), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O19i0.862.262.975 (5)141
C9—H9A···O190.972.533.080 (6)116
C9—H9B···O170.972.572.896 (5)100
C2—H2B···O190.972.513.133 (6)122
N1—H1···O160.862.232.643 (5)110
Symmetry code: (i) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O160.862.202.620 (4)110
C2—H2B···O190.972.613.205 (5)120
C9—H9A···O190.972.563.095 (6)115
N1—H1···O16i0.862.182.959 (5)150
Symmetry code: (i) x+2, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds